[Heterostructures semiconductrices pour l'électronique de spin et l'information quantique]
Un choix des expériences optiques est présenté, démontrant l'utilité des semiconducteurs dans deux domaines nouveaux de recherche : l'électronique de spin et l'information quantique. D'abord, nous montrons des exemples de manipulation de spin dans des puits quantiques. La lumière est employée pour produire la polarisation de spin et pour la détecter. Ensuite nous discutons de l'application des méthodes optiques dans les études du ferromagnétisme induit par les porteurs dans des puits quantiques. Finalement, nous présentons des exemples de spectroscopie de boites quantiques individuelles liés aux perspectives d'application des boites quantiques en information quantique, en particulier l'utilisation des mesures de corrélation de photons comme outil d'étude des mécanismes d'excitation des boites quantiques.
A selection of optical experiments is presented, demonstrating the utility of semiconductors in two novel areas of research: spintronics and quantum information. First we show examples of spin manipulation in semiconductor quantum wells. The light is used to generate a spin polarization and to detect it. Next we discuss application of optical methods in studies of carrier-induced ferromagnetism in quantum wells. Finally, we present examples of single quantum dot spectroscopy related to perspectives of application of quantum dots in quantum information, and, in particular, the use of photon correlation measurements as a tool to study the quantum dot excitation mechanisms.
Mot clés : Heterostructures semiconductrices, Électronique de spin, Information quantique
Jan A. Gaj 1 ; Joël Cibert 2 ; Andrzej Golnik 1 ; Mateusz Goryca 1 ; Elżbieta Janik 3 ; Tomasz Kazimierczuk 1 ; Łukasz Kłopotowski 3 ; Piotr Kossacki 1 ; Jacek Kossut 3 ; Katarzyna Kowalik 1 ; Olivier Krebs 4 ; Aristide Lemaître 4 ; Sebastian Maćkowski 3 ; Wiktor Maślana 1 ; Michał Nawrocki 1 ; Paulina Płochocka 1 ; Bernard Piechal 1 ; Pascale Senellart 4 ; Jan Suffczyński 1 ; Serge Tatarenko 2 ; Artur Trajnerowicz 1 ; Paul Voisin 4
@article{CRPHYS_2007__8_2_243_0, author = {Jan A. Gaj and Jo\"el Cibert and Andrzej Golnik and Mateusz Goryca and El\.zbieta Janik and Tomasz Kazimierczuk and {\L}ukasz K{\l}opotowski and Piotr Kossacki and Jacek Kossut and Katarzyna Kowalik and Olivier Krebs and Aristide Lema{\^\i}tre and Sebastian Ma\'ckowski and Wiktor Ma\'slana and Micha{\l} Nawrocki and Paulina P{\l}ochocka and Bernard Piechal and Pascale Senellart and Jan Suffczy\'nski and Serge Tatarenko and Artur Trajnerowicz and Paul Voisin}, title = {Semiconductor heterostructures for spintronics and quantum information}, journal = {Comptes Rendus. Physique}, pages = {243--252}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.02.009}, language = {en}, }
TY - JOUR AU - Jan A. Gaj AU - Joël Cibert AU - Andrzej Golnik AU - Mateusz Goryca AU - Elżbieta Janik AU - Tomasz Kazimierczuk AU - Łukasz Kłopotowski AU - Piotr Kossacki AU - Jacek Kossut AU - Katarzyna Kowalik AU - Olivier Krebs AU - Aristide Lemaître AU - Sebastian Maćkowski AU - Wiktor Maślana AU - Michał Nawrocki AU - Paulina Płochocka AU - Bernard Piechal AU - Pascale Senellart AU - Jan Suffczyński AU - Serge Tatarenko AU - Artur Trajnerowicz AU - Paul Voisin TI - Semiconductor heterostructures for spintronics and quantum information JO - Comptes Rendus. Physique PY - 2007 SP - 243 EP - 252 VL - 8 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2006.02.009 LA - en ID - CRPHYS_2007__8_2_243_0 ER -
%0 Journal Article %A Jan A. Gaj %A Joël Cibert %A Andrzej Golnik %A Mateusz Goryca %A Elżbieta Janik %A Tomasz Kazimierczuk %A Łukasz Kłopotowski %A Piotr Kossacki %A Jacek Kossut %A Katarzyna Kowalik %A Olivier Krebs %A Aristide Lemaître %A Sebastian Maćkowski %A Wiktor Maślana %A Michał Nawrocki %A Paulina Płochocka %A Bernard Piechal %A Pascale Senellart %A Jan Suffczyński %A Serge Tatarenko %A Artur Trajnerowicz %A Paul Voisin %T Semiconductor heterostructures for spintronics and quantum information %J Comptes Rendus. Physique %D 2007 %P 243-252 %V 8 %N 2 %I Elsevier %R 10.1016/j.crhy.2006.02.009 %G en %F CRPHYS_2007__8_2_243_0
Jan A. Gaj; Joël Cibert; Andrzej Golnik; Mateusz Goryca; Elżbieta Janik; Tomasz Kazimierczuk; Łukasz Kłopotowski; Piotr Kossacki; Jacek Kossut; Katarzyna Kowalik; Olivier Krebs; Aristide Lemaître; Sebastian Maćkowski; Wiktor Maślana; Michał Nawrocki; Paulina Płochocka; Bernard Piechal; Pascale Senellart; Jan Suffczyński; Serge Tatarenko; Artur Trajnerowicz; Paul Voisin. Semiconductor heterostructures for spintronics and quantum information. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 243-252. doi : 10.1016/j.crhy.2006.02.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.02.009/
[1] Spintronics: fundamentals and applications, Rev. Mod. Phys. (An introduction to semiconductor spintronics, Solid State Physics), Volume 6 (2005) no. 9, pp. 919-1026
[2] Happy centenary, photon, Nature, Volume 404 (2000), p. 247
[3] Practical quantum key distribution with polarization entangled photons, Opt. Express, Volume 12 (2004), pp. 3865-3871
[4] Information and computation: Classical and quantum aspects, Rev. Mod. Phys., Volume 74 (2002), p. 347
[5] Quelques suggestions concernant la production optique et la detection optique d'une inégalité de population des niveaux de quantification spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la resonance magnétique, J. Phys. et Radium, Volume 11 (1950), p. 255
[6] Optical Orientation (F. Meier; B.P. Zakharchenya, eds.), Modern Problems in Condensed Matter Sciences, vol. 8, North-Holland, Amsterdam, 1984
[7] Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz, Z. Phys., Volume 30 (1924), p. 93
[8] Resonant Faraday rotation: internal clock for ultra-fast processes, Ann. Phys., Volume 36 (1976) no. 2, p. 1343-83
[9] Diluted Magnetic Semiconductors (J.K. Furdyna; J. Kossut, eds.), Semiconductors and Semimetals, vol. 25, Academic Press, Boston, 1988
[10] Optically induced magnetization in a dilute magnetic semiconductor: Hg1−xMnxTe, Phys. Rev. Lett., Volume 55 (1985), p. 1510
[11] Ultrafast manipulation of electron spin coherence, Science, Volume 292 (2001), p. 2458
[12] Room-temperature spin memory in two-dimensional electron gases, Science, Volume 277 (1997), p. 1284
[13] Optical orientation and alignment of excitons in self-assembled CdSe/ZnSe quantum dots: The role of excited states, Phys. Rev. B, Volume 72 (2005), p. 155301
[14] Circular-to-linear and linear-to-circular conversion of optical polarization by semiconductor quantum dots, Phys. Rev. Lett., Volume 96 (2006), p. 027402
[15] Tunneling of spin polarized excitons in CdTe based asymmetric double quantum well structure, Solid State Commun., Volume 119 (2001), p. 147
[16] Relation of magneto-optical properties of free excitons to spin alignment of Mn2+ ions in Cd1−xMnxTe, Solid State Commun., Volume 29 (1979), p. 435
[17] Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells, Phys. Rev. B, Volume 77 (1996), p. 2814
[18] Femtosecond dynamics of neutral and charged exciton absorption in Cd1−xMnxTe quantum well, Acta Phys. Polon., Volume 102 (2002), p. 679
[19] et al. Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells, Phys. Rev. B, Volume 92 (2004), p. 177402
[20] Optical studies of charged excitons in II–VI semiconductor quantum wells, J. Phys. C, Volume 15 (2003), p. R471
[21] Observation of negatively charged excitons X− in semiconductor quantum wells, Phys. Rev. Lett., Volume 71 (1993), p. 1752
[22] Dynamics of neutral and charged exciton line intensities, Semicond. Sci. Technol., Volume 19 (2004), p. S296
[23] Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, Volume 287 (2000), p. 1019
[24] Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells, Phys. Rev. Lett., Volume 79 (1997), p. 511
[25] Light and electric field control of ferromagnetism in magnetic quantum structures, Phys. Rev. Lett., Volume 88 (2002), p. 207204
[26] Light controlled and probed ferromagnetism of (Cd,Mn)Te quantum wells, Physica E, Volume 12 (2002), p. 344
[27] P. Kossacki, et al., Physica E, submitted for publication
[28] Correlation between photons in two coherent beams of light, Nature, Volume 177 (1956), p. 27
[29] Long decays of excitonic photoluminescence from CdTe/ZnTe individual quantum dots, Acta Phys. Polon. A, Volume 108 (2005), p. 831
[30] Correlated photon emission from a single II–VI quantum dot, Appl. Phys. Lett., Volume 85 (2004), p. 6251
[31] et al. Excitation mechanisms of individual CdTe/ZnTe quantum dots studied by photon correlation spectroscopy | arXiv
[32] Submicrosecond correlations in photoluminescence from InAs quantum dots, Phys. Rev. B, Volume 69 (2004), p. 205324
[33] A semiconductor source of triggered entangled photon pairs, Nature, Volume 439 (2006), p. 179
[34] Influence of an in-plane electric field on exciton fine structure in InAs–GaAs self-assembled quantum dots, Appl. Phys. Lett., Volume 86 (2005), p. 041907
[35] Influence of electric field on fine structure of exciton complexes in CdTe/ZnTe self-assembled quantum dot, Phys. Status Solidi (c), Volume 3 (2006), p. 865
Cité par Sources :
Commentaires - Politique