[Dynamique de magnétisation : ultra-rapide et ultra-petit]
Les processus magnétiques ultra-rapides sont d'un grand intérêt scientifique mais ils sont aussi à la base des applications en matière d'enregistrement magnétique à haute densité. Nous démontrons les capacités uniques de la microscopie X magnétique à haute résolution et résolue en temps et prouvons que le mouvement du cœur d'un vortex magnétique peut être imagé. La direction prise par le cœur reste inaccessible à la plupart des techniques expérimentales mais elle a une influence déterminante sur la dynamique de la structure magnétique.
A l'aide de la microscopie X résolue en temps, nous avons imagé le basculement d'une nanostructure ferromagnétique induit par une impulsion de courant polarisée en spin. A la différence du processus habituel de basculement décrit par Néel et Stoner–Wohlfarth, la magnétisation des dispositifs à injection de spin ne bascule pas uniformément mais implique le déplacement d'un vortex magnétique.
Ultrafast magnetic processes are of great scientific interest but also form the basis of high density magnetic recording applications. We demonstrate the uniqueness of time resolved, high resolution magnetic X-ray microscopy, and show that the motion of a magnetic vortex core can be imaged. The vortex core direction is hidden to most experimental techniques, but has a decisive influence on the dynamics of the magnetic structure.
We imaged the switching of a ferromagnetic nanostructure by a spin polarized current pulse using time resolved X-ray microscopy. As opposed to the common uniform switching process due to Néel and Stoner–Wohlfarth, the magnetization in spin injection devices does not switch uniformly, but involves the motion of a magnetic vortex.
Mots-clés : Magnétisme, Microscopie ultra-rapide, Rayonnement synchrotron
Yves Acremann 1
@article{CRPHYS_2008__9_5-6_585_0, author = {Yves Acremann}, title = {Magnetization dynamics: ultra-fast and ultra-small}, journal = {Comptes Rendus. Physique}, pages = {585--594}, publisher = {Elsevier}, volume = {9}, number = {5-6}, year = {2008}, doi = {10.1016/j.crhy.2007.05.017}, language = {en}, }
Yves Acremann. Magnetization dynamics: ultra-fast and ultra-small. Comptes Rendus. Physique, Synchrotron x-rays and condensed matter, Volume 9 (2008) no. 5-6, pp. 585-594. doi : 10.1016/j.crhy.2007.05.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.05.017/
[1] Science, 259 (1993) no. 5095, pp. 658-661
[2] J. Synchrotron Radiat., 10 (2003), pp. 125-136
[3] Mater. Today, 9 (2006)
[4] Rev. Sci. Instrum., 61 (1990) no. 10, pp. 2501-2526
[5] Scanning Microsc. (1987), pp. 241-253
[6] Phys. Rev. Lett., 88 (2002) no. 5 (057201-4)
[7] Phys. Rev. Lett., 86 (2001) no. 18, pp. 4132-4135
[8] J. Appl. Phys., 99 (2006) no. 10 (104905-1)
[9] Phys. Rev. Lett., 79 (1997) no. 6, pp. 1134-1137
[10] Science, 290 (2000) no. 5491, pp. 492-495
[11] Nature, 414 (2001) no. 6859, pp. 51-54
[12] Phys. Rev. Lett., 93 (2004) no. 7 (077207-4)
[13] Phys. Rev. Lett., 94 (2005) no. 12, pp. 1-4
[14] Phys. Rev. B, 71 (2005)
[15] Phys. Rev. Lett., 86 (2001) no. 4, pp. 728-731
[16] J. Appl. Phys., 91 (2002) no. 10, pp. 7331-7333
[17] Phys. Rev. Lett., 95 (2005) no. 23 (237211-4)
[18] Nature, 418 (2002) no. 6897, pp. 509-512
[19] J. Microsc., 210 (2003), pp. 209-213
[20] Science, 289 (2000)
[21] Science, 298 (2002), p. 577
[22] Science, 304 (2004), p. 420
[23] Phys. Rev. Lett., 30 (1973) no. 6, pp. 230-233
[24] Phys. Rev. Lett., 94 (2005) no. 21 (217204-4)
[25] Magnetic vortex core dynamics in cylindrical ferromagnetic dots, Phys. Rev. Lett., Volume 96 (2006), p. 067205
[26] Phys. Rev. B, 67 (2003) no. 9 (94410-1)
[27] Nature, 444 (2006) no. 7118, pp. 461-464
[28] J. Magn. Magn. Mater., 159 (1996), p. L1
[29] Phys. Rev. B, 54 (1996), p. 9353
[30] Europhys. Lett., 45 (1999) no. 5, pp. 626-632
[31] Phys. Rev. Lett., 80 (1998), p. 4281
[32] Science, 285 (1999), p. 867
[33] J. Magn. Magn. Mater., 202 (1999), p. 157
[34] Phys. Rev. Lett., 84 (2000), p. 3149
[35] Nature, 406 (2005), p. 46
[36] Appl. Phys. Lett., 78 (2001), p. 3663
[37] Phys. Rev. Lett., 92 (2004), p. 88302
[38] Phys. Rev. Lett., 93 (2004), p. 166603
[39] Science, 307 (2005), p. 228
[40] J. Magn. Magn. Mater., 286 (2005), p. 77
[41] Nature Mater., 3 (2004) no. 12, pp. 877-881
[42] Nature, 425 (2003), p. 380
[43] Phys. Rev. Lett., 93 (2004), p. 036601
[44] Phys. Rev. Lett., 92 (2004), p. 027201
[45] Science, 291 (2001) no. 5506, pp. 1015-1018
[46] Rev. Sci. Instrum., 78 (2007) no. 1, p. 014702
[47] J.P. Strachan, et al., 2007, in preparation
- Single-Particle Phenomena in Magnetic Nanostructures, Volume 66 (2015), p. 301 | DOI:10.1016/bs.ssp.2015.06.001
- Effects of the competition between the exchange and dipolar interactions in the spin-wave spectrum of two-dimensional circularly magnetized nanodots, Journal of Physics D: Applied Physics, Volume 47 (2014) no. 1, p. 015003 | DOI:10.1088/0022-3727/47/1/015003
- INVESTIGATING ELECTRIC FIELD CONTROL OF MAGNETISM WITH NEUTRON SCATTERING, NONLINEAR OPTICS AND SYNCHROTRON X-RAY SPECTROMICROSCOPY, International Journal of Modern Physics B, Volume 26 (2012) no. 10, p. 1230004 | DOI:10.1142/s0217979212300046
- High‐Resolution Soft X‐Ray Microscopy for Imaging Nanoscale Magnetic Structures and Their Spin Dynamics, X‐Rays in Nanoscience (2010), p. 7 | DOI:10.1002/9783527632282.ch2
- Magnetic memory in discrete media observed by coherent soft x-ray resonant scattering, New Journal of Physics, Volume 11 (2009) no. 11, p. 113026 | DOI:10.1088/1367-2630/11/11/113026
Cité par 5 documents. Sources : Crossref
Commentaires - Politique