[La diffusion nucléaire résonnante]
La diffusion nucléaire résonnante est une spectroscopie atomique sensible aux propriétés magnétiques et électroniques mais aussi aux dynamiques structurales lente et rapide. Elle prend tout son intérêt dans les applications qui tirent avantage des propriétés remarquables des sources de radiation synchrotron de troisième génération et de l'effet Mössbauer. Nous donnerons des exemples tirés de recherches menées à l'ESRF dans les domaines des hautes pressions et des basses températures, des nano-matériaux et de la dynamique des sytèmes désordonnés.
Nuclear resonance scattering is an atomistic spectroscopy sensitive to magnetic and electronic properties as well as slow and fast structural dynamics. Applications, which take advantage of both the outstanding properties of third generation synchrotron radiation sources and those of the Mössbauer effect, benefit most. Examples resulting from investigations at the ESRF will be given in applications to high pressure and low temperatures, nano-scale materials, and dynamics of disordered systems.
Mot clés : Diffusion nucléaire résonnante, Interaction hyperfine, Dynamiques structurales
Rudolf Rüffer 1
@article{CRPHYS_2008__9_5-6_595_0, author = {Rudolf R\"uffer}, title = {Nuclear resonance scattering}, journal = {Comptes Rendus. Physique}, pages = {595--607}, publisher = {Elsevier}, volume = {9}, number = {5-6}, year = {2008}, doi = {10.1016/j.crhy.2007.06.003}, language = {en}, }
Rudolf Rüffer. Nuclear resonance scattering. Comptes Rendus. Physique, Volume 9 (2008) no. 5-6, pp. 595-607. doi : 10.1016/j.crhy.2007.06.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.06.003/
[1] Mössbauer spectroscopy using synchrotron radiation, Phys. Rev. Lett., Volume 66 ( February 1991 ) no. 6, pp. 770-773
[2] Nuclear forward scattering of synchrotron radiation, Phys. Rev. B, Volume 46 ( September 1992 ) no. 10, pp. 6207-6211
[3] Time domain study of 57Fe diffusion using nuclear forward scattering of synchrotron radiation, Phys. Rev. Lett., Volume 76 ( April 1996 ) no. 17, pp. 3220-3223
[4] Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet, Phys. Rev. Lett., Volume 54 ( February 1985 ), pp. 835-838
[5] Nuclear Bragg scattering of synchrotron radiation pulses in a single-reflection geometry, Phys. Rev. Lett., Volume 58 ( June 1987 ) no. 22, pp. 2359-2362
[6] Nuclear Bragg scattering of synchrotron radiation with strong speedup of coherent decay, measured on antiferromagnetic 57FeBO3, Phys. Rev. Lett., Volume 59 ( July 1987 ) no. 3, pp. 355-358
[7] Magnetic behavior of probe layers of 57Fe in thin Fe films observed by means of nuclear resonant scattering of synchrotron radiation, Phys. Rev. B, Volume 58 ( October 1998 ) no. 13, pp. 8590-8595
[8] Perpendicular spin orientation in ultrasmall Fe islands on W(110), Phys. Rev. Lett., Volume 86 ( June 2001 ) no. 24, pp. 5597-5600
[9] Imaging the magnetic spin structure of exchange-coupled thin films, Phys. Rev. Lett., Volume 89 ( November 2002 ) no. 23, p. 237201
[10] Fe diffusion in amorphous and nanocrystalline alloys studied using nuclear resonance reflectivity, Phys. Rev. B, Volume 72 ( July 2005 ) no. 1, p. 014207
[11] Nuclear resonance small-angle scattering of X rays, Phys. Rev. B, Volume 54 ( December 1996 ) no. 21, pp. 14942-14945
[12] Coarsening of antiferromagnetic domains in multilayers: The key role of magnetocrystalline anisotropy, Phys. Rev. Lett., Volume 88 ( March 2002 ) no. 15, p. 157202
[13] Observation of nuclear resonant scattering accompanied by phonon excitation using synchrotron radiation, Phys. Rev. Lett., Volume 74 ( May 1995 ) no. 19, pp. 3828-3831
[14] Phonon density of states measured by inelastic nuclear resonant scattering, Phys. Rev. Lett., Volume 74 ( May 1995 ), pp. 3832-3835
[15] Energy dependence of nuclear recoil measured with incoherent nuclear scattering, Europhys. Lett., Volume 30 ( February 1995 ), pp. 427-430
[16] Single-nucleus quantum beats excited by synchrotron radiation, Europhys. Lett., Volume 34 (1996) no. 5, pp. 331-336
[17] Synchrotron-radiation-based perturbed angular correlations used in the investigation of rotational dynamics in soft matter, Phys. Rev. B, Volume 73 ( January 2006 ) no. 2, p. 024203
[18] Nuclear Resonant Scattering of Synchrotron Radiation (E. Gerdau; H. de Waard, eds.), Hyperfine Interactions, vol. 123–125, Baltzer Science Publishers, 1999/2000
[19] Nuclear Condensed Matter Physics with Synchrotron Radiation—Basic Principles, Methodology and Applications, Springer Tracts in Modern Physics, vol. 208, Springer Publishers, 2004
[20] Nuclear resonant scattering at high pressure and high temperature, High Pressure Res., Volume 24 (2004), pp. 447-457
[21] Absolute temperature measurement in a laser-heated diamond anvil cell, Geophys. Res. Lett., Volume 31 (2004), p. L14611
[22] H.F. Grünsteudel, Der α-ϵ-Übergang in Eisen als Beispiel für nukleare Vorwärtsstreuung von Synchrotronstrahlung an Proben unter hohem Druck, PhD thesis, Universität Paderborn, Paderborn, 1997
[23] Density of phonon states in iron at high pressure, Science, Volume 287 ( February 2000 ), pp. 1250-1252
[24] Phonon density of states of iron up to 153 gigapascal, Science, Volume 292 ( May 2001 ), pp. 914-916
[25] R. Lübbers, H. Giefers, K. Rupprecht, G. Wortmann, A.I. Chumakov, High-pressure phonon spectroscopy of oriented hcp iron. ESRF Highlights 2000, February 2001, pp. 48–49
[26] Phonon spectroscopy of oriented hcp iron, High Pressure Res., Volume 22 ( May 2002 ), pp. 501-506
[27] Elastic anisotropy in textured hcp-iron to 112 GPa from sound wave propagation measurements, Earth Planetary Sci. Lett., Volume 225 ( August 2004 ) no. 1–2, pp. 243-251
[28] Phase transitions, Grüneisen parameter and elasticity for shocked iron between 77 GPa and 400 GPa, J. Geophys. Res., Volume 91 (1986), pp. 7485-7494
[29] Pressure-induced magnetic order in golden SmS, Phys. Rev. Lett., Volume 92 ( February 2004 ) no. 6, p. 066401
[30] Divalent-to-trivalent transition of Sm in SmS: Implications for the high-pressure magnetically ordered state, Phys. Rev. B, Volume 73 ( April 2006 ) no. 14, p. 140409
[31] Size and oxidation effects on the vibrational properties of nanocrystalline α-Fe, Phys. Rev. B, Volume 66 ( August 2002 ) no. 7, p. 073410
[32] Collective nature of the boson peak and universal transboson dynamics of glasses, Phys. Rev. Lett., Volume 92 ( June 2004 ) no. 24, p. 245508
[33] Density of vibrational states of a hyperquenched glass, Phys. Rev. Lett., Volume 96 ( May 2006 ) no. 20, p. 205502
[34] Effect of densification on the density of vibrational states of glasses, Phys. Rev. Lett., Volume 97 ( September 2006 ) no. 13, p. 135501
[35] Long-range reactive dynamics in myoglobin, Phys. Rev. Lett., Volume 86 ( May 2001 ) no. 21, pp. 4966-4969
[36] Vibrational dynamics of myoglobin determined by the phonon-assisted Mössbauer effect, Phys. Rev. E, Volume 65 ( May 2002 ) no. 5, p. 051916
[37] Nuclear resonant forward and nuclear inelastic scattering using synchrotron radiation for spin crossover systems (P. Gütlich; H.A. Goodwin, eds.), Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry, vol. 235, Springer, 2004, pp. 137-152
[38] Strongly decoupled europium and iron vibrational modes in filled skutterudites, Phys. Rev. B, Volume 71 (2005) no. 14, p. 140302
[39] 149Sm nuclear resonant inelastic scattering of Sm-based filled-skutterudite compounds, Phys. B: Condensed Matter, Volume 383 (2006), pp. 142-143
[40] γ-ray wavelength standard for atomic scales, Phys. Rev. Lett., Volume 85 ( July 2000 ) no. 3, pp. 495-498
[41] A classical Hanbury Brown–Twiss experiment with hard X-rays, J. Synchrotron Radiation, Volume 6 (1999), pp. 1065-1066
[42] X-ray interferometry with microelectronvolt resolution, Phys. Rev. Lett., Volume 90 ( January 2003 ) no. 1, p. 013904
[43] Measurement of X-ray pulse widths by intensity interferometry, Phys. Rev. Lett., Volume 88 ( May 2002 ) no. 24, p. 244801
[44] Accelerating the spontaneous emission of X rays from atoms in a cavity, Phys. Rev. Lett., Volume 95 (2005) no. 9, p. 097601
[45] A. Barla, J.P. Sanchez, Y. Haga, G. Lapertot, B.P. Doyle, O. Leupold, R. Rüffer, M.M. Abd-Elmeguid, R. Lengsdorf, J. Flouquet, Pressure-induced magnetic order in non-magnetic SmS, in: ESRF Highlights 2003, February 2004, pp. 6–7
[46] L. Pasquini, A. Barla, A.I. Chumakov, O. Leupold, R. Rüffer, A. Deriu, E. Bonetti, Scale effects on the vibrational properties of nanocrystalline iron, in: ESRF Highlights 2002, February 2003, pp. 57–58
[47] A. Gupta, M. Gupta, S. Chakravarty, R. Rüffer, H.-C. Wille, O. Leupold, Iron self-diffusion in amorphous and nanocrystalline alloys using nuclear resonance reflectivity, in: ESRF Highlights 2005, February 2006, pp. 8–9
[48] R. Röhlsberger, J. Bansmann, V. Senz, K.-L. Jonas, A. Bettac, O. Leupold, R. Rüffer, E. Burkel, K.-H. Meiwes-Broer, Magnetic order in ultrasmall iron islands on Tungsten(110), in: ESRF Highlights 2001, February 2002, p. 69
[49] T. Klein, R. Röhlsberger, K. Schlage, H. Thomas, O. Leupold, E. Burkel, Imaging the magnetic structure of exchange-coupled thin films, in: ESRF Highlights 2004, February 2005, pp. 11–12
[50] A.I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T. Asthalter, R. Rüffer, O. Leupold, W. Petry, Universal dynamics of glasses, in: ESRF Highlights 2004, February 2005, pp. 7–8
[51] Structural and secondary relaxations in supercooled di-n-butyl phthalate and diisobutyl phthalate at elevated pressure, J. Phys. Chem. B, Volume 108 (2004), pp. 4997-5003
[52] I. Sergueev, U. van Bürck, A.I. Chumakov, T. Asthalter, G.V. Smirnov, H. Franz, R. Rüffer, W. Petry, Rotational and translational dynamics studied by nuclear resonant scattering, in: ESRF Highlights 2003, February 2004, pp. 12–13
Cité par Sources :
Commentaires - Politique