[Application des courbes de dispersion négative des vitesses pour la distinction de l'onde de Rayleigh dans le film de celle du substrat]
Ce travail concerne l'investigation des structures couches minces/substrats vérifiant l'effet de charge dans le but de déterminer l'épaisseur critique à partir de laquelle la vitesse de l'onde de Rayleigh de la couche peut être complètement dissociée de celle du substrat. Ainsi, nous avons tout d'abord calculé les courbes de dispersion des vitesses de Rayleigh d'un grand nombre de films (une trentaine) déposés sur plusieurs substrats lents et rapides (Be, Al2O3, AlN, Si, SiO2, Mg, SiC, TiN, WC et Pyrex). Ensuite, à partir du début de la saturation de chaque courbe (correspondante au seuil des caractéristiques intrinsèques du film) nous avons déterminé l'épaisseur normalisée de transition pour toutes les combinaisons films/substrats. Ainsi, il nous a été possible d'établir une relation analytique linéaire reliant cette épaisseur aux effets combinés des vitesses et densités des films et substrats. Cette relation, peut être utilisée en tant que méthode alternative directe pour prédire l'épaisseur critique de la transition pour toute structure film/substrat et éviter les calculs habituels fastidieux des courbes de dispersion.
This work concerns the investigation of loading layers/substrate structures in order to determine the critical thickness at which Rayleigh wave characteristics of layers can be completely distinguished from those of the substrates. To do so, we first calculate Rayleigh velocity dispersion curves of several thin film materials (about thirty) deposited on different slow and fast substrates (Be, Al2O3, AlN, Si, SiO2, Mg, SiC, TiN, WC and Pyrex). Then, from the beginning of curve saturation (corresponding to the onset of intrinsic layer characteristics) we deduced normalized thickness transition for all layers/substrates combinations. Thus, we were able to deduce an analytical linear expression relating the critical thickness to combined effects of densities and velocities of both layers and substrates. Such a simple relation can be used, as an alternative method, to predict the transition critical thickness for any layer/substrate combination without the usual lengthy calculation of dispersion curves.
Accepté le :
Publié le :
Mot clés : Couches minces, Propriétés élastiques, Dispersion de la vitesse, Ondes acoustique de surface, Effet de charge
Zahia Hadjoub 1 ; Ibtissem Touati 1 ; Malika Doghmane 1, 2 ; Abdellaziz Doghmane 1
@article{CRPHYS_2008__9_8_903_0, author = {Zahia Hadjoub and Ibtissem Touati and Malika Doghmane and Abdellaziz Doghmane}, title = {Application of negative velocity dispersion curves to the distinction between layer and substrate {Rayleigh} waves}, journal = {Comptes Rendus. Physique}, pages = {903--910}, publisher = {Elsevier}, volume = {9}, number = {8}, year = {2008}, doi = {10.1016/j.crhy.2008.08.001}, language = {en}, }
TY - JOUR AU - Zahia Hadjoub AU - Ibtissem Touati AU - Malika Doghmane AU - Abdellaziz Doghmane TI - Application of negative velocity dispersion curves to the distinction between layer and substrate Rayleigh waves JO - Comptes Rendus. Physique PY - 2008 SP - 903 EP - 910 VL - 9 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2008.08.001 LA - en ID - CRPHYS_2008__9_8_903_0 ER -
%0 Journal Article %A Zahia Hadjoub %A Ibtissem Touati %A Malika Doghmane %A Abdellaziz Doghmane %T Application of negative velocity dispersion curves to the distinction between layer and substrate Rayleigh waves %J Comptes Rendus. Physique %D 2008 %P 903-910 %V 9 %N 8 %I Elsevier %R 10.1016/j.crhy.2008.08.001 %G en %F CRPHYS_2008__9_8_903_0
Zahia Hadjoub; Ibtissem Touati; Malika Doghmane; Abdellaziz Doghmane. Application of negative velocity dispersion curves to the distinction between layer and substrate Rayleigh waves. Comptes Rendus. Physique, Volume 9 (2008) no. 8, pp. 903-910. doi : 10.1016/j.crhy.2008.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.08.001/
[1] , Physical Acoustics, vol. X, Academic Press, New York, 1972, pp. 35-127
(R.N. Thurson; P.W. Mason, eds.)[2] Ultrasonic Waves in Solid Media, Cambridge Univ. Press, Cambridge, 1999
[3] Rev. Mod. Phys., 67 (1995), p. 863
[4] Phys. Chem. News, 27 (2006), p. 26
[5] Meas. Sci. Technol., 13 (2002), p. R21
[6] J. Acoust. Soc. Am., 115 (2004), p. 2798
[7] Electron. Lett., 34 (1998), p. 313
[8] Advances in Acoustic Microscopy, vol. 1 (A. Briggs, ed.), Plenum Press, New York, 1995, pp. 153-208
[9] J. Appl. Phys., 72 (1992), p. 1805
[10] Acoustic Microscopy, Clarendon Press, Oxford, 1992
[11] C. R. Physique, 8 (2007), p. 948
[12] IEEE Sonics Ultrason., SU-32 (1985), p. 189
[13] Appl. Phys. Lett., 38 (1981), p. 858
[14] Handbook of Elastic Properties of Solids, Liquids and Gases, vol. 1 (M. Levy; H. Bass; R. Stern, eds.), Academic Press, New York, 2001, pp. 187-226
[15] Thin Solid Films, 310 (1997), p. 203
[16] Evaluation of Materials and Structures by Quantitative Ultrasonics (J.D. Achenbach, ed.), Springer-Verlag, Wien, 1993, pp. 133-147
[17] Evaluation of Materials and Structures by Quantitative Ultrasonics (J.D. Achenbach, ed.), Springer-Verlag, Wien, 1993
[18] Acoustic Surface Waves (A.A. Oliner, ed.), Springer-Verlag, Berlin, 1978, pp. 13-60
[19] Ultrasonic Symposium, IEEE, New York, 1981 (p. 561)
Cité par Sources :
Commentaires - Politique