[Le défi de la prédiction des propriétés optiques des bio-molécules : Que peut nous apprendre la théorie de la fonctionnelle de la densité dépendante du temps ?]
L'utilité de la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) pour l'étude théorique des propriétés optiques de biomolécules a été largement démontrée. Nous discutons les limites des implémentations actuelles de la TDDFT, afin de répondre à certaines questions sur la description des états excités des systèmes biologiques complexes. L'objectif principal de ce travail est d'évaluer les performances de la TDDFT, en régime linéaire, pour les systèmes bio-moléculaires, dans le spectre visible ou UV proche – mesuré, par exemple, avec l'absorption optique ou le dichroïsme optique. Bien que ces spectres soient essentiellement déterminés par les degrées de liberté électroniques, les régions optiquement actives des grands systèmes biologiques peuvent être fortement influencés par les effets dus à l'environnement (solvant, entourage de la protéine, température, etc.). De plus, de nombreux processus biologiques essentiels sont des processus dynamiques photo-induits (photoisomérisation, etc.), et leur description a besoin d'un traitement conjoint des degrés de liberté électroniques et nucléaires. Nous illustrons ces aspects avec une sélection de systèmes bio-moléculaires paradigmatiques : chromophores des protéines fluorescentes, porphyrines, ADN, azobenzène, etc.
The suitability of the time-dependent density-functional theory (TDDFT) approach for the theoretical study of the optical properties of biomolecules is demonstrated by several examples. We critically discuss the limitations of available TDDFT implementations to address some of the present open questions in the description of the excited-state dynamics of biological complexes. The key objective of the present work is to address the performance of TDDFT in the linear response regime of the bio-molecular systems to the visible or near UV radiation – measured by, e.g. optical absorption or optical dichroism spectra. Although these spectra are essentially determined by the electronic degrees of freedom of small, optically active regions within the usually large biological systems, they can also be strongly influenced by environment effects (solvent, hosting protein, temperature, etc.). Moreover, many key biological processes consist of photo-induced dynamics (photoisomerisation, etc.), and their description requires a coupled treatment of electronic and nuclear degrees of freedom. We illustrate these aspects with a selection of paradigmatic biomolecular systems: chromophores in fluorescent proteins, porphyrins, DNA basis, the azobenzene dye, etc.
Mot clés : Biomolécules, Excitations, TDDFT
Alberto Castro 1, 2 ; Miguel A.L. Marques 2, 3, 4 ; Daniele Varsano 2, 5 ; Francesco Sottile 2, 6 ; Angel Rubio 2, 7, 8
@article{CRPHYS_2009__10_6_469_0, author = {Alberto Castro and Miguel A.L. Marques and Daniele Varsano and Francesco Sottile and Angel Rubio}, title = {The challenge of predicting optical properties of biomolecules: {What} can we learn from time-dependent density-functional theory?}, journal = {Comptes Rendus. Physique}, pages = {469--490}, publisher = {Elsevier}, volume = {10}, number = {6}, year = {2009}, doi = {10.1016/j.crhy.2008.09.001}, language = {en}, }
TY - JOUR AU - Alberto Castro AU - Miguel A.L. Marques AU - Daniele Varsano AU - Francesco Sottile AU - Angel Rubio TI - The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory? JO - Comptes Rendus. Physique PY - 2009 SP - 469 EP - 490 VL - 10 IS - 6 PB - Elsevier DO - 10.1016/j.crhy.2008.09.001 LA - en ID - CRPHYS_2009__10_6_469_0 ER -
%0 Journal Article %A Alberto Castro %A Miguel A.L. Marques %A Daniele Varsano %A Francesco Sottile %A Angel Rubio %T The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory? %J Comptes Rendus. Physique %D 2009 %P 469-490 %V 10 %N 6 %I Elsevier %R 10.1016/j.crhy.2008.09.001 %G en %F CRPHYS_2009__10_6_469_0
Alberto Castro; Miguel A.L. Marques; Daniele Varsano; Francesco Sottile; Angel Rubio. The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory?. Comptes Rendus. Physique, Volume 10 (2009) no. 6, pp. 469-490. doi : 10.1016/j.crhy.2008.09.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.09.001/
[1] Introduction to Biophotonics, John Wiley & Sons, Hoboken, 2003
[2] Photosynthesis. Photobiochemistry and Photobiophysics, Springer, Berlin, 1999
[3] Vision: The Approach of Biophysics and Neurosciences (C. Musio, ed.), World Scientific, Singapore, 2001
[4] Biolumnescence: Chemical Principles and Methods, World Scientific, Singapore, 2006
[5] NanoBioTechnology: BioInspired Devices and Materials of the Future (O. Shoseyov; I. Levy, eds.), Humana Press, 2007
[6] Time-Dependent Density-Functional Theory (M.A.L. Marques; C. Ullrich; F. Nogueira; A. Rubio; E.K.U. Gross, eds.), Lecture Notes in Physics, vol. 706, Springer-Verlag, Berlin, 2006
[7] Comput. Phys. Commun., 151 (2003), p. 60
[8] Phys. Status Solidi B, 243 (2006), p. 2465
[9] Phys. Rev. Lett., 52 (1984), p. 997
[10] Adv. Quantum. Chem., 21 (1990), p. 255
[11] Annu. Rev. Phys. Chem., 55 (2004), p. 427
[12] Rev. Mod. Phys., 74 (2002), p. 601
[13] et al. Nature, 450 (2007), p. 56 (See, for example)
[14] Biotechnology Lett., 26 (2004), p. 121
[15] Nature Struct. Biol., 97 (2000), p. 2974
[16] Phys. Rev. Lett., 87 (2001), p. 228102
[17] Phys. Rev. Lett., 90 (2003), p. 258101
[18] J. Comput. Chem., 2 (1983), p. 187
[19] J. Comput. Chem., 11 (1990), p. 700
[20] Reviews in Computational Chemistry, vol. 7 (K.B. Lipkowitz; D.B. Boyd, eds.), Wiley VCH, New York, 1995, p. 119
[21] J. Am. Chem. Soc., 107 (1995), p. 3902
[22] Biochemistry, 36 (1997), p. 36
[23] J. Am. Chem. Soc., 120 (1998), p. 9370
[24] Chem. Rev., 102 (2002), p. 759 (and references therein)
[25] Proc. Natl. Acad. Sci. USA, 93 (1996), p. 8362
[26] J. Am. Chem. Soc., 127 (2005), p. 12329
[27] M.A.L. Marques, X. Löpez, A. Castro, A. Rubio, in press
[28] The Porphyrin Handbook (K. Kadish; K.M. Smith; R. Guilard, eds.), Academic Press, London, 1999
[29] The Porphyrins, vol. 3 (D. Dolphin, ed.), Academic Press, New York, 1973
[30] F. Sottile, C. Hogan, M. Palummo, A. Rubio, in preparation
[31] J. Phys. Chem. B, 110 (2006), p. 7129
[32] Photochemistry and Photobiology of Nucleic Acids (S.Y. Yang, ed.), Academic Press, New York, 1976, p. 23
[33] Chem. Rev., 104 (2004), p. 1977
[34] Topics in Current Chemistry (G. Schuster, ed.), Springer-Verlag, Heidelberg, 2004, p. 183
[35] Encyclopedia of Nanoscience and Nanotechnology and Handbook of Nanostructured Biomaterials and their Application in Nanotechnology (H.S. Nalwa, ed.), APS, College Park, MD, 2004, p. 475
[36] Rev. Mod. Phys., 76 (2004), p. 195
[37] Proc. Natl. Acad. Sci. USA, 102 (2005), p. 11589
[38] Phys. Rev. B, 65 (2002), p. 045104
[39] Modern Methods for Theoretical Physical Chemistry of Biopolymers (E.B. Starikov; S. Tanaka; J.P. Lewis, eds.), Elsevier, Amsterdam, 2005
[40] Chem. Phys. Lett., 272 (1997), p. 489
[41] Phys. Rev. Lett., 98 (2007), p. 086802
[42] Phys. Rev. Lett., 101 (2008), p. 13302
[43] Proc. Natl. Acad. Sci. USA, 99 (2002), p. 7998
[44] Nature, 171 (1953), p. 737
[45] Curr. Opin. Chem. Biol., 7 (2003), p. 727
[46] Acc. Chem. Res., 40 (2007), p. 141
[47] Curr. Opin. Chem. Biol., 10 (2006), p. 622
[48] Angew. Chem. Int. Ed., 44 (2005), p. 3118
[49] Science, 302 (2003), p. 868
[50] J. Phys. Chem. B, 111 (2007), p. 14012
[51] J. Am. Chem. Soc., 126 (2004), p. 1102
[52] J. Org. Chem., 70 (2005), p. 639
[53] Phys. Rev. A, 60 (1999), p. 1271
[54] D. Varsano, A. Castro, M.A.L. Marques, R. Di Felice, A. Rubio, in preparation
[55] Phys. Rev. E, 77 (2008), p. 021901
[56] Phys. Rev. Lett., 86 (2001), p. 2984
[57] J. Am. Chem. Soc., 105 (1983), p. 3388
[58] Chem. Phys. Lett., 104 (1984), p. 440
[59] Recent Advances in Density Functional Methods, Part I (D.P. Chong, ed.), World Scientific, Singapore, 1995, p. 155
[60] Recent Developments and Applications in Density Functional Theory (J. Seminario, ed.), Elsevier, Amsterdam, 1996, p. 391
[61] Phys. Rev. B, 54 (1996), p. 4484
[62] Z. Phys. D, 42 (1997), p. 219
[63] Phys. Rev. A, 58 (1999), p. 2604
[64] Phys. Rev. A, 60 (1999), p. 3809
[65] J. Chem. Phys., 115 (2001), p. 3006
[66] Theor. Chim. Acta, 68 (1985), p. 45
[67] Theor. Chim. Acta, 72 (1987), p. 459
[68] J. Chem. Phys., 108 (1998), p. 4060
[69] Phys. Rev. Lett., 88 (2002), p. 166402
[70] J. Chem. Phys., 55 (1971), p. 562
[71] J. Chem. Phys., 93 (1990), p. 1061
[72] Theor. Chim. Acta, 43 (1977), p. 261
[73] Eur. Phys. J. D, 28 (2004), p. 211
[74] A first-principles time-dependent density functional theory scheme for the computation of the electromagnetic response of nanostructures http://nano-bio.ehu.es/files/acastro_phd.pdf (PhD. Thesis, University of Valladolid, 2004. The thesis can be downloaded from)
[75] J. Phys. Cond. Matt., 16 (2004), p. 8521
[76] J. Am. Chem. Soc., 38 (1916), p. 762
[77] J. Chem. Phys., 92 (1990), p. 5397
[78] Phys. Rev. A, 71 (2005), p. 010501
[79] J. Phys. Chem., 100 (1996), p. 15398
[80] J. Chem. Phys., 98 (1993), p. 8870
[81] Nature, 371 (1994), p. 683
[82] Angew. Chem. Int. Ed. Engl., 36 (1997), p. 1808
[83] Phys. Rev. B, 49 (1994), p. 2421
[84] Int. J. Quantum Chem., 91 (2003), p. 131
[85] Phys. Rev. B, 23 (1981), p. 5408
[86] Phys. Rev. Lett., 77 (1996), p. 202
[87] Phys. Rev. Lett., 91 (2003), p. 126402
[88] Phys. Rev. Lett., 80 (1998), p. 4153
[89] Phys. Rev. Lett., 96 (2006), p. 073201
[90] J. Chem. Phys., 127 (2007), p. 124101
[91] Phys. Rev. Lett., 77 (1996), p. 2037
[92] Phys. Rev. Lett., 79 (1997), p. 1905
[93] Phys. Rev. Lett., 79 (1997), p. 4878
[94] Phys. Rev. B, 65 (2002), p. 245102
[95] J. Chem. Phys., 121 (2004), p. 8731
[96] Phys. Rev. B, 71 (2005), p. 165104
[97] J. Chem. Phys., 120 (2004), p. 5932
[98] J. Chem. Phys., 122 (2004), p. 054111
[99] J. Chem. Phys., 119 (2003), p. 2943
[100] J. Chem. Phys., 119 (2003), p. 12697
[101] J. Am. Chem. Soc., 126 (2004), p. 4007
[102] Rep. Prog. Phys., 70 (2007), p. 357
[103] Density Functional Theory II (R.F. Nalewajski, ed.), Topics in Current Chemistry, vol. 18, Springer, Berlin, 1996
[104] Phys. Rev. A, 55 (1997), p. 2630
[105] Phys. Rev. A, 57 (1998), p. 3433
[106] Int. J. Quantum Chem., 69 (1998), p. 265
[107] Phys. Rev. B, 66 (2002), p. 035114
[108] Phys. Rev. B, 72 (2005), p. 125203
[109] Phys. Rev. B, 69 (2004), p. 155112
[110] Phys. Rev. Lett., 88 (2002), p. 066404
[111] J. Chem. Phys., 126 (2007), p. 014503
[112] J. Phys. Chem. A, 111 (2007), p. 10196
[113] Rep. Prog. Phys., 69 (2006), p. 1195
[114] J. Chem. Phys., 117 (2002), p. 7433
[115] Mol. Phys., 103 (2005), p. 963
Cité par Sources :
Commentaires - Politique