Comptes Rendus
The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory?
[Le défi de la prédiction des propriétés optiques des bio-molécules : Que peut nous apprendre la théorie de la fonctionnelle de la densité dépendante du temps ?]
Comptes Rendus. Physique, Volume 10 (2009) no. 6, pp. 469-490.

L'utilité de la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) pour l'étude théorique des propriétés optiques de biomolécules a été largement démontrée. Nous discutons les limites des implémentations actuelles de la TDDFT, afin de répondre à certaines questions sur la description des états excités des systèmes biologiques complexes. L'objectif principal de ce travail est d'évaluer les performances de la TDDFT, en régime linéaire, pour les systèmes bio-moléculaires, dans le spectre visible ou UV proche – mesuré, par exemple, avec l'absorption optique ou le dichroïsme optique. Bien que ces spectres soient essentiellement déterminés par les degrées de liberté électroniques, les régions optiquement actives des grands systèmes biologiques peuvent être fortement influencés par les effets dus à l'environnement (solvant, entourage de la protéine, température, etc.). De plus, de nombreux processus biologiques essentiels sont des processus dynamiques photo-induits (photoisomérisation, etc.), et leur description a besoin d'un traitement conjoint des degrés de liberté électroniques et nucléaires. Nous illustrons ces aspects avec une sélection de systèmes bio-moléculaires paradigmatiques : chromophores des protéines fluorescentes, porphyrines, ADN, azobenzène, etc.

The suitability of the time-dependent density-functional theory (TDDFT) approach for the theoretical study of the optical properties of biomolecules is demonstrated by several examples. We critically discuss the limitations of available TDDFT implementations to address some of the present open questions in the description of the excited-state dynamics of biological complexes. The key objective of the present work is to address the performance of TDDFT in the linear response regime of the bio-molecular systems to the visible or near UV radiation – measured by, e.g. optical absorption or optical dichroism spectra. Although these spectra are essentially determined by the electronic degrees of freedom of small, optically active regions within the usually large biological systems, they can also be strongly influenced by environment effects (solvent, hosting protein, temperature, etc.). Moreover, many key biological processes consist of photo-induced dynamics (photoisomerisation, etc.), and their description requires a coupled treatment of electronic and nuclear degrees of freedom. We illustrate these aspects with a selection of paradigmatic biomolecular systems: chromophores in fluorescent proteins, porphyrins, DNA basis, the azobenzene dye, etc.

Publié le :
DOI : 10.1016/j.crhy.2008.09.001
Keywords: Biomolecules, Excitations, TDDFT
Mot clés : Biomolécules, Excitations, TDDFT

Alberto Castro 1, 2 ; Miguel A.L. Marques 2, 3, 4 ; Daniele Varsano 2, 5 ; Francesco Sottile 2, 6 ; Angel Rubio 2, 7, 8

1 Institut für Theoretische Physik, Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
2 European Theoretical Spectroscopy Facility (ETSF)
3 Laboratoire de physique de la matière condensée et nanostructures, Université Lyon I, CNRS, UMR 5586, domaine scientifique de la Doua, 69622 Villeurbanne cedex, France
4 Centre for Computational Physics, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
5 National Center on nanoStructures and bioSystems at Surfaces (S3) of INFM-CNR, c/o Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, 41100 Modena, Italy
6 Laboratoire des solides irradies, École polytechnique, 91128 Palaiseau cedex, France
7 Departamento de Fisica de Materiales, Universidad del País Vasco, Edificio Korta, 20018 San Sebastián, Spain
8 Centro Mixto CSIC-UPV/EHU and DIPC, Universidad del País Vasco, 20018 San Sebastián, Spain
@article{CRPHYS_2009__10_6_469_0,
     author = {Alberto Castro and Miguel A.L. Marques and Daniele Varsano and Francesco Sottile and Angel Rubio},
     title = {The challenge of predicting optical properties of biomolecules: {What} can we learn from time-dependent density-functional theory?},
     journal = {Comptes Rendus. Physique},
     pages = {469--490},
     publisher = {Elsevier},
     volume = {10},
     number = {6},
     year = {2009},
     doi = {10.1016/j.crhy.2008.09.001},
     language = {en},
}
TY  - JOUR
AU  - Alberto Castro
AU  - Miguel A.L. Marques
AU  - Daniele Varsano
AU  - Francesco Sottile
AU  - Angel Rubio
TI  - The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory?
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 469
EP  - 490
VL  - 10
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.09.001
LA  - en
ID  - CRPHYS_2009__10_6_469_0
ER  - 
%0 Journal Article
%A Alberto Castro
%A Miguel A.L. Marques
%A Daniele Varsano
%A Francesco Sottile
%A Angel Rubio
%T The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory?
%J Comptes Rendus. Physique
%D 2009
%P 469-490
%V 10
%N 6
%I Elsevier
%R 10.1016/j.crhy.2008.09.001
%G en
%F CRPHYS_2009__10_6_469_0
Alberto Castro; Miguel A.L. Marques; Daniele Varsano; Francesco Sottile; Angel Rubio. The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory?. Comptes Rendus. Physique, Volume 10 (2009) no. 6, pp. 469-490. doi : 10.1016/j.crhy.2008.09.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.09.001/

[1] P.N. Prasad Introduction to Biophotonics, John Wiley & Sons, Hoboken, 2003

[2] K. Bacon Photosynthesis. Photobiochemistry and Photobiophysics, Springer, Berlin, 1999

[3] Vision: The Approach of Biophysics and Neurosciences (C. Musio, ed.), World Scientific, Singapore, 2001

[4] O. Shimomura Biolumnescence: Chemical Principles and Methods, World Scientific, Singapore, 2006

[5] NanoBioTechnology: BioInspired Devices and Materials of the Future (O. Shoseyov; I. Levy, eds.), Humana Press, 2007

[6] Time-Dependent Density-Functional Theory (M.A.L. Marques; C. Ullrich; F. Nogueira; A. Rubio; E.K.U. Gross, eds.), Lecture Notes in Physics, vol. 706, Springer-Verlag, Berlin, 2006

[7] M.A.L. Marques; A. Castro; G.F. Bertsch; A. Rubio Comput. Phys. Commun., 151 (2003), p. 60

[8] A. Castro; H. Appel; M. Oliveira; C.A. Rozzi; X. Andrade; F. Lorenzen; E.K.U. Gross; M.A.L. Marques; A. Rubio Phys. Status Solidi B, 243 (2006), p. 2465

[9] E. Runge; E.K.U. Gross Phys. Rev. Lett., 52 (1984), p. 997

[10] E.K.U. Gross; W. Kohn Adv. Quantum. Chem., 21 (1990), p. 255

[11] M.A.L. Marques; E.K.U. Gross Annu. Rev. Phys. Chem., 55 (2004), p. 427

[12] G. Onida; L. Reinig; A. Rubio Rev. Mod. Phys., 74 (2002), p. 601

[13] J. Livet et al. Nature, 450 (2007), p. 56 (See, for example)

[14] S. Takeda; N. Kamiya; Teruyuki Nagamune Biotechnology Lett., 26 (2004), p. 121

[15] T.M.H. Creemers; A.J. Lock; V. Subramaniam; T.M. Jovin; S. Völker; T.M.H. Creemers; A.J. Lock; V. Subramaniam; T.M. Jovin; S. Völker Nature Struct. Biol., 97 (2000), p. 2974

[16] S.B. Nielsen; A. Lapierre; J.U. Andersen; U.V. Pedersen; S. Tomita; L.H. Andersen Phys. Rev. Lett., 87 (2001), p. 228102

[17] M.A.L. Marques; X. López; D. Varsano; A. Castro; A. Rubio Phys. Rev. Lett., 90 (2003), p. 258101

[18] B.R. Brooks; R.E. Bruccoleri; B.D. Olafson; D.J. States; S. Swaminathan; M. Karplus J. Comput. Chem., 2 (1983), p. 187

[19] M.J. Field; P.A. Bash; M. Karplus J. Comput. Chem., 11 (1990), p. 700

[20] J. Gao Reviews in Computational Chemistry, vol. 7 (K.B. Lipkowitz; D.B. Boyd, eds.), Wiley VCH, New York, 1995, p. 119

[21] M.J.S. Dewar; E. Zoebisch; E.F. Healy; J.J.P. Stewart J. Am. Chem. Soc., 107 (1995), p. 3902

[22] R. Wachter; B. King; R. Heim; K. Kallio; R. Tsien; S. Boxer; S. Remington Biochemistry, 36 (1997), p. 36

[23] B.G. Bublitz; B. King; S. Boxer J. Am. Chem. Soc., 120 (1998), p. 9370

[24] M. Zimmer Chem. Rev., 102 (2002), p. 759 (and references therein)

[25] M. Chattoraj; B. King; G. Bublitz; S. Boxer Proc. Natl. Acad. Sci. USA, 93 (1996), p. 8362

[26] X. López; M.A.L. Marques; A. Castro; A. Rubio J. Am. Chem. Soc., 127 (2005), p. 12329

[27] M.A.L. Marques, X. Löpez, A. Castro, A. Rubio, in press

[28] The Porphyrin Handbook (K. Kadish; K.M. Smith; R. Guilard, eds.), Academic Press, London, 1999

[29] M. Gouterman The Porphyrins, vol. 3 (D. Dolphin, ed.), Academic Press, New York, 1973

[30] F. Sottile, C. Hogan, M. Palummo, A. Rubio, in preparation

[31] D. Varsano; R. Di Felice; M.A.L. Marques; A. Rubio J. Phys. Chem. B, 110 (2006), p. 7129

[32] M. Daniels Photochemistry and Photobiology of Nucleic Acids (S.Y. Yang, ed.), Academic Press, New York, 1976, p. 23

[33] C.E.C. Hernández; B. Cohen; P.M. Hare; B. Kohler Chem. Rev., 104 (2004), p. 1977

[34] D. Porath; G. Cuniberti; R.D. Felice Topics in Current Chemistry (G. Schuster, ed.), Springer-Verlag, Heidelberg, 2004, p. 183

[35] M. Di Ventra; M. Zwolak Encyclopedia of Nanoscience and Nanotechnology and Handbook of Nanostructured Biomaterials and their Application in Nanotechnology (H.S. Nalwa, ed.), APS, College Park, MD, 2004, p. 475

[36] R.G. Endres; D. Cox; R. Singh Rev. Mod. Phys., 76 (2004), p. 195

[37] H. Coehn; C. Nogues; R. Naaman; D. Porath Proc. Natl. Acad. Sci. USA, 102 (2005), p. 11589

[38] R. Di Felice; A. Calzolari; E. Molinari; A. Garbesi Phys. Rev. B, 65 (2002), p. 045104

[39] R. Di Felice; A. Calzolari Modern Methods for Theoretical Physical Chemistry of Biopolymers (E.B. Starikov; S. Tanaka; J.P. Lewis, eds.), Elsevier, Amsterdam, 2005

[40] T. Nägele; R. Hoche; W. Zinth; J. Wachtveitl Chem. Phys. Lett., 272 (1997), p. 489

[41] J.M. Simmons; V.E. Campbell; T.J. Mark; F. Léonard; P. Gopalan; M.A. Eriksson Phys. Rev. Lett., 98 (2007), p. 086802

[42] J.M. García-Lastra; K. Thygesen; A. Rubio Phys. Rev. Lett., 101 (2008), p. 13302

[43] S. Spörlein; H. Carstens; H. Satzger; C. Renner; R. Behrendt; L. Moroder; P. Tavan; W. Zinth; J. Wachtveitl Proc. Natl. Acad. Sci. USA, 99 (2002), p. 7998

[44] J.H. Watson; F.H. Crick Nature, 171 (1953), p. 737

[45] A.A. Henry; F.E. Romesbergi Curr. Opin. Chem. Biol., 7 (2003), p. 727

[46] A.T. Krueger; H. Lu; A.H. Lee; E.T. Kool Acc. Chem. Res., 40 (2007), p. 141

[47] I. Hirao Curr. Opin. Chem. Biol., 10 (2006), p. 622

[48] J. Gao; H. Liu; E.T. Kool Angew. Chem. Int. Ed., 44 (2005), p. 3118

[49] H. Liu; J. Gao; S.R. Lynch; E.T. Kool Science, 302 (2003), p. 868

[50] D. Varsano; A. Garbesi; R. Di Felice J. Phys. Chem. B, 111 (2007), p. 14012

[51] H. Liu; J. Gao; L. Maynard; Y.D. Saito; E.T. Kool J. Am. Chem. Soc., 126 (2004), p. 1102

[52] H. Liu; J. Gao; E.T. Kool J. Org. Chem., 70 (2005), p. 639

[53] K. Yabana; G.F. Bertsch Phys. Rev. A, 60 (1999), p. 1271

[54] D. Varsano, A. Castro, M.A.L. Marques, R. Di Felice, A. Rubio, in preparation

[55] U. Kadhane; A.I.S. Holm; S.V. Hoffmann; S.B. Nielsen Phys. Rev. E, 77 (2008), p. 021901

[56] T. Kreibich; E.K.U. Gross Phys. Rev. Lett., 86 (2001), p. 2984

[57] V. Bonačić-Koutecký; M. Persico J. Am. Chem. Soc., 105 (1983), p. 3388

[58] V. Bonačić-Koutecký; J. Köhler; J. Michl Chem. Phys. Lett., 104 (1984), p. 440

[59] M.E. Casida Recent Advances in Density Functional Methods, Part I (D.P. Chong, ed.), World Scientific, Singapore, 1995, p. 155

[60] M. Casida Recent Developments and Applications in Density Functional Theory (J. Seminario, ed.), Elsevier, Amsterdam, 1996, p. 391

[61] K. Yabana; G.F. Bertsch Phys. Rev. B, 54 (1996), p. 4484

[62] K. Yabana; G.F. Bertsch Z. Phys. D, 42 (1997), p. 219

[63] K. Yabana; G.F. Bertsch Phys. Rev. A, 58 (1999), p. 2604

[64] K. Yabana; G.F. Bertsch Phys. Rev. A, 60 (1999), p. 3809

[65] M.A.L. Marques; A. Castro; A. Rubio J. Chem. Phys., 115 (2001), p. 3006

[66] V. Bonačić-Koutecký; J. Michl Theor. Chim. Acta, 68 (1985), p. 45

[67] V. Bonačić-Koutecký; K. Schöffel; J. Michl Theor. Chim. Acta, 72 (1987), p. 459

[68] I. Frank; J. Hütter; D. Marx; M. Parrinello J. Chem. Phys., 108 (1998), p. 4060

[69] N.L. Doltsinis; D. Marx Phys. Rev. Lett., 88 (2002), p. 166402

[70] J.C. Tully; R.K. Preston J. Chem. Phys., 55 (1971), p. 562

[71] J.C. Tully J. Chem. Phys., 93 (1990), p. 1061

[72] T. Ziegler; A. Rauk; E.J. Baerends Theor. Chim. Acta, 43 (1977), p. 261

[73] A. Castro; M.A.L. Marques; J.A. Alonso; G.F. Bertsch; A. Rubio Eur. Phys. J. D, 28 (2004), p. 211

[74] A. Castro A first-principles time-dependent density functional theory scheme for the computation of the electromagnetic response of nanostructures http://nano-bio.ehu.es/files/acastro_phd.pdf (PhD. Thesis, University of Valladolid, 2004. The thesis can be downloaded from)

[75] A.P. Horsfield; D.R. Bowler; A.J. Fisher; T.N. Todorov; C.G. Sanchez J. Phys. Cond. Matt., 16 (2004), p. 8521

[76] G.N. Lewis J. Am. Chem. Soc., 38 (1916), p. 762

[77] A.D. Becke; K.E. Edgecombe J. Chem. Phys., 92 (1990), p. 5397

[78] T. Burnus; M.A.L. Marques; E.K.U. Gross Phys. Rev. A, 71 (2005), p. 010501

[79] R.F.W. Bader; S. Johnson; T.-H. Tang; P.L.A. Popelier J. Phys. Chem., 100 (1996), p. 15398

[80] J.F. Dobson J. Chem. Phys., 98 (1993), p. 8870

[81] B. Silvi; A. Savin Nature, 371 (1994), p. 683

[82] A. Savin; R. Nesper; S. Wengert; T.F. Fässler Angew. Chem. Int. Ed. Engl., 36 (1997), p. 1808

[83] R. van Leeuwen; E.J. Baerends Phys. Rev. B, 49 (1994), p. 2421

[84] F. Della Sala; Andreas Grling Int. J. Quantum Chem., 91 (2003), p. 131

[85] J.P. Perdew; A. Zunger Phys. Rev. B, 23 (1981), p. 5408

[86] E. Hult; Y. Andersson; B.I. Lundqvist Phys. Rev. Lett., 77 (1996), p. 202

[87] H. Rydberg; M. Dion; N. Jacobson; E. Schröder; P. Hyldgaard; S.I. Simak; D.C. Langreth; B.I. Lundqvist Phys. Rev. Lett., 91 (2003), p. 126402

[88] W. Kohn; Y. Meir; D.E. Makarov Phys. Rev. Lett., 80 (1998), p. 4153

[89] J.F. Dobson; A. White; A. Rubio Phys. Rev. Lett., 96 (2006), p. 073201

[90] E. Orestes; K. Capelle J. Chem. Phys., 127 (2007), p. 124101

[91] G. Vignale; W. Kohn Phys. Rev. Lett., 77 (1996), p. 2037

[92] M.J. Bünner; E.K.U. Gross Phys. Rev. Lett., 79 (1997), p. 1905

[93] G. Vignale; C.A. Ullrich; S. Conti Phys. Rev. Lett., 79 (1997), p. 4878

[94] C.A. Ullrich; G. Vignale; C.A. Ullrich; G. Vignale Phys. Rev. B, 65 (2002), p. 245102

[95] Y. Kurzweil; R. Baer J. Chem. Phys., 121 (2004), p. 8731

[96] I.V. Tokatly; I.V. Tokatly Phys. Rev. B, 71 (2005), p. 165104

[97] N. Maitra; F. Zhang; R. Cave J. Chem. Phys., 120 (2004), p. 5932

[98] M. Casida J. Chem. Phys., 122 (2004), p. 054111

[99] A. Dreuw; J.L. Weisman; M. Head-Gordon J. Chem. Phys., 119 (2003), p. 2943

[100] D.J. Tozer J. Chem. Phys., 119 (2003), p. 12697

[101] D.J. Tozer; M. Head-Gordon J. Am. Chem. Soc., 126 (2004), p. 4007

[102] S. Botti; A. Schindlmayr; R. Del Sole; L. Reining Rep. Prog. Phys., 70 (2007), p. 357

[103] E.K.U. Gross; J. Dobson; M. Petersilka Density Functional Theory II (R.F. Nalewajski, ed.), Topics in Current Chemistry, vol. 18, Springer, Berlin, 1996

[104] A. Görling Phys. Rev. A, 55 (1997), p. 2630

[105] A. Görling Phys. Rev. A, 57 (1998), p. 3433

[106] A. Görling Int. J. Quantum Chem., 69 (1998), p. 265

[107] Y.H. Kim; A. Görling Phys. Rev. B, 66 (2002), p. 035114

[108] S. Botti; A. Fourreau; F. Nguyen; Y.-O. Renault; F. Sottile; L. Reining Phys. Rev. B, 72 (2005), p. 125203

[109] S. Botti; F. Sottile; N. Vast; V. Olevano; L. Reining; H.-C. Weissker; A. Rubio; G. Onida; R. Del Sole; R.W. Godby Phys. Rev. B, 69 (2004), p. 155112

[110] L. Reining; V. Olevano; A. Rubio; G. Onida Phys. Rev. Lett., 88 (2002), p. 066404

[111] A. Bastida; C. Cruz; J. Zúñiga; A. Requena; B. Miguel J. Chem. Phys., 126 (2007), p. 014503

[112] K. Takatsuka J. Phys. Chem. A, 111 (2007), p. 10196

[113] A.P. Horsfield; D.R. Bowler; H. Ness; C.G. Sánchez; T.N. Todorov; A.J. Fisher Rep. Prog. Phys., 69 (2006), p. 1195

[114] F. Furche; R. Ahlrichs J. Chem. Phys., 117 (2002), p. 7433

[115] I. Tavernelli; U.F. Röhrig; U. Rothlisberger Mol. Phys., 103 (2005), p. 963

Cité par Sources :

Commentaires - Politique