Comptes Rendus
Ab-initio calculations of luminescence and optical gain properties in silicon nanostructures
[Calculs ab-initio de la luminescence et des propriétés de gain optique dans des nanostructures de silicium]
Comptes Rendus. Physique, Theoretical spectroscopy, Volume 10 (2009) no. 6, pp. 575-586.

Nous avons effectué des calculs en théorie de la fonctionnelle de la densité et en théorie des perturbations à plusieurs corps dans le but d'étudier les propriétés optiques de nanocristaux de silicium dans plusieurs conditions de passivations de surface, et dans des configurations soit d'état fondamental soit d'état excité. En partant d'agrégats hydrogénés, nous avons considéré différentes géométries de liaison Si/O à l'interface. Nos résultats indiquent qu'il faut prendre en compte non seulement les effets de confinement quantique mais aussi la chimie de l'interface, pour bien comprendre les propriétés physiques de ces systèmes. En particulier nous montrons que seule la présence d'une liaison « bridge » Si–O–Si à la surface permet d'induire un pic excitonique dans le spectre d'émission, avec un déplacement vers le rouge par rapport au seuil d'absorption, permettant d'expliquer le déplacement de Stokes observé, et la PL dans le proche visible observée expérimentalement dans Si-nc. Pour les cristaux de silicium dans une matrice de SiO2, les propriétés optiques sont discutées en détail. L'interaction forte entre le nanocristal et l'environnement, et le rôle actif de la région d'interface entre les deux, sont mis en évidence, en très bon accord avec les résultats expérimentaux. Pour chacun des systèmes considérés, des calculs de gain optique ont été effectués, donnant des pistes concernant les caractéristiques nécessaires pour optimiser la performance de gain optique des Si-nc.

Density-functional and many body perturbation theory calculations have been carried out in order to study the optical properties both in the ground and excited state configurations, of silicon nanocrystals in different conditions of surface passivation. Starting from hydrogenated clusters, we have considered different Si/O bonding geometries at the interface. We provide strong evidence that not only the quantum confinement effect but also the chemistry at the interface has to be taken into account in order to understand the physical properties of these systems. In particular, we show that only the presence of a surface Si–O–Si bridge bond induces an excitonic peak in the emission-related spectra, redshifted with respect to the absorption onset, able to provide an explanation for both the observed Stokes shift and the near-visible PL experimentally observed in Si-nc. For the silicon nanocrystals embedded in a SiO2 matrix, the optical properties are discussed in detail. The strong interplay between the nanocrystal and the surrounding host environment and the active role of the interface region between them is pointed out, in very good agreement with the experimental results. For each system considered, optical gain calculations have been carried out giving some insights on the system characteristics necessary to optimize the gain performance of Si-nc.

Publié le :
DOI : 10.1016/j.crhy.2008.09.003
Keywords: Nanocrystals, Silicon, Optical properties, Gain
Mots-clés : Nanocristaux, Silicium, Propriétés optiques, Gain

Elena Degoli 1 ; Roberto Guerra 2 ; Federico Iori 2 ; Rita Magri 2 ; Ivan Marri 2 ; Olivia Pulci 3 ; Olmes Bisi 1 ; Stefano Ossicini 1

1 Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, via Amendola 2, 42100 Reggio Emilia, Italy
2 Dipartimento di Fisica, Università di Modena e Reggio Emilia, via Campi 213/A, 41100 Modena, Italy
3 European Theoretical Spectroscopy Facility (ETSF) and CNR-INFM, Dipartimento di Fisica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
@article{CRPHYS_2009__10_6_575_0,
     author = {Elena Degoli and Roberto Guerra and Federico Iori and Rita Magri and Ivan Marri and Olivia Pulci and Olmes Bisi and Stefano Ossicini},
     title = {Ab-initio calculations of luminescence and optical gain properties in silicon nanostructures},
     journal = {Comptes Rendus. Physique},
     pages = {575--586},
     publisher = {Elsevier},
     volume = {10},
     number = {6},
     year = {2009},
     doi = {10.1016/j.crhy.2008.09.003},
     language = {en},
}
TY  - JOUR
AU  - Elena Degoli
AU  - Roberto Guerra
AU  - Federico Iori
AU  - Rita Magri
AU  - Ivan Marri
AU  - Olivia Pulci
AU  - Olmes Bisi
AU  - Stefano Ossicini
TI  - Ab-initio calculations of luminescence and optical gain properties in silicon nanostructures
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 575
EP  - 586
VL  - 10
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.09.003
LA  - en
ID  - CRPHYS_2009__10_6_575_0
ER  - 
%0 Journal Article
%A Elena Degoli
%A Roberto Guerra
%A Federico Iori
%A Rita Magri
%A Ivan Marri
%A Olivia Pulci
%A Olmes Bisi
%A Stefano Ossicini
%T Ab-initio calculations of luminescence and optical gain properties in silicon nanostructures
%J Comptes Rendus. Physique
%D 2009
%P 575-586
%V 10
%N 6
%I Elsevier
%R 10.1016/j.crhy.2008.09.003
%G en
%F CRPHYS_2009__10_6_575_0
Elena Degoli; Roberto Guerra; Federico Iori; Rita Magri; Ivan Marri; Olivia Pulci; Olmes Bisi; Stefano Ossicini. Ab-initio calculations of luminescence and optical gain properties in silicon nanostructures. Comptes Rendus. Physique, Theoretical spectroscopy, Volume 10 (2009) no. 6, pp. 575-586. doi : 10.1016/j.crhy.2008.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.09.003/

[1] S. Ossicini; L. Pavesi; F. Priolo Light Emitting Silicon for Microphotonics, Springer Tracts on Modern Physics, vol. 194, Springer-Verlag, Berlin, 2003

[2] Bisi; S. Ossicini; L. Pavesi Surf. Sci. Rep., 38 (2000), p. 5

[3] G. Franzó; A. Irrera; E.C. Moreira; M. Miritello; F. Iacona; D. Sanfilippo; G. Di Stefano; P.G. Falica; F. Priolo Appl. Phys. A, 77 (2003), p. 57

[4] R.J. Walters; G.I. Bourianoff; H.A. Atwater Nature Materials, 4 (2005), p. 143

[5] L. Pavesi; L. Dal Negro; C. Mazzoleni; G. Franzó; F. Priolo Nature (London), 408 (2000), p. 440

[6] L. Khriachtchev; M. Rasanen; S. Novikov; J. Sinkkonen Appl. Phys. Lett., 79 (2001), p. 1249

[7] L. Dal Negro; M. Cazzanelli; L. Pavesi; S. Ossicini; D. Pacifici; G. Franzó; F. Priolo; F. Iacona Appl. Phys. Lett., 82 (2003), p. 4636

[8] J. Ruan; P.M. Fauchet; L. Dal Negro; M. Cazzanelli; L. Pavesi Appl. Phys. Lett., 83 (2003), p. 5479

[9] M. Cazzanelli; D. Kovalev; L. Dal Negro; Z. Gaburro; L. Pavesi Phys. Rev. Lett., 93 (2004), p. 207042

[10] K. Luterová; K. Dohnalová; V. Šervček; I. Pelant; J.-P. Likforman; O. Cérgut; P. Gilliot; B. Hönerlage Appl. Phys. Lett., 87 (2004), p. 3280

[11] Towards the First Silicon Laser (L.D. Negro; S. Gaponenko; L. Pavesi, eds.), Nato Science Series, vol. 93, Kluwer Academic Publishers, Dordrecht, 2003

[12] S. Ossicini; C. Arcangeli; O. Bisi; E. Degoli; M. Luppi; R. Magri; L. Dal Negro; L. Pavesi Gain theory and models in silicon nanostructures (L. Dal Negro; S. Gaponenko; L. Pavesi, eds.), Towards the First Silicon Laser, Nato Science Series, vol. 93, Kluwer Academic Publishers, Dordrecht, 2003, pp. 271-290

[13] L. Dal Negro; M. Cazzanelli; Z. Gaburro; P. Bettotti; L. Pavesi; F. Priolo; G. Franzò; D. Pacifici; F. Iacona Stimulated emission in silicon nanocrystals: Gain measurement and rate equation modeling (L. Pavesi; S. Gaponenko; L. Dal Negro, eds.), Towards the First Silicon Laser, NATO Science Series, vol. 93, Kluwer Academic Publishers, Dordrecht, 2003, pp. 145-164

[14] M.V. Wolkin; J. Jorne; P.M. Fauchet; G. Allan; C. Delerue Phys. Rev. Lett., 82 (1999), p. 197

[15] A. Puzder; A.J. Williamson; J.C. Grossman; G. Galli Phys. Rev. Lett., 88 (2002), p. 097401

[16] M. Luppi; S. Ossicini J. Appl. Phys., 94 (2003), p. 2130

[17] I. Vasiliev; J.R. Chelikowsky; R.M. Martin Phys. Rev. B, 65 (2002), p. 121302(R)

[18] M. Gatti; G. Onida Phys. Rev. B, 72 (2005), p. 045442

[19] L. Ramos; J. Furthmüller; F. Bechstedt Appl. Phys. Lett., 87 (2005), p. 143113

[20] O. Pulci; M. Marsili; E. Luppi; C. Hogan; V. Garbuio; F. Sottile; R. Magri; R. Del Sole Phys. Status Solidi B, 242 (2005) no. 13, pp. 2737-2750

[21] M. Palummo; M. Bruno; O. Pulci; E. Luppi; E. Degoli; S. Ossicini; R. Del Sole Surf. Sci., 601 (2007) no. 13, p. 2696

[22] F. Bassani; G. Pastori Parravicini Electronic States and Optical Transitions in Solids, Pergamon Press, New York, 1975

[23] E. Luppi; E. Degoli; G. Cantele; S. Ossicini; R. Magri; D. Ninno; O. Bisi; O. Pulci; G. Onida; M. Gatti; A. Incze; R. Del Sole Opt. Mater., 27 (2005), p. 1008

[24] A. Puzder; A.J. Williamson; J.C. Grossman; G. Galli J. Am. Chem. Soc., 125 (2003), p. 2786

[25] A. Franceschetti; S.T. Pantelides Phys. Rev. B, 68 (2003), p. 033313

[26] E. Degoli; G. Cantele; E. Luppi; R. Magri; D. Ninno; O. Bisi; S. Ossicini Phys. Rev. B, 69 (2004), p. 155411

[27] S. Baroni; A. Dal Corso; S. de Gironcoli; P. Giannozzi; C. Cavazzoni; G. Ballabio; S. Scandolo; G. Chiarotti; P. Focher; A. Pasquarello; K. Laasonen; A. Trave; R. Car; N. Marzari; A. Kokalj The DFT calculations for oxidized clusters have been performed using the ESPRESSO package http://www.pwscf.org/

[28] Z. Ma; X. Liao; G. Kong; J. Chu Appl. Phys. Lett., 75 (1999), p. 1857

[29] M. Luppi; S. Ossicini Phys. Rev. B, 71 (2005), p. 035340

[30] H. Kageshima; K. Shiraishi Proc. 23rd Int. Conf. Phys. Semicon. (M. Scheffler; R. Zimmermann, eds.), World Scientific, Singapore, 1996, p. 903

[31] N. Daldosso; M. Luppi; S. Ossicini; E. Degoli; R. Magri; G. Dalba; P. Fornasini; R. Grisenti; F. Rocca; L. Pavesi; S. Boninelli; F. Priolo; C. Spinella; F. Iacona Phys. Rev. B, 68 (2003), p. 085327

[32] T. Takagahara; K. Takeda Phys. Rev. B, 46 (1992) no. 15, p. 578

[33] N. Daldosso; G. Dalba; R. Grisenti; L.D. Negro; L. Pavesi; F. Rocca; F. Priolo; D. Pacifici; G. Franzò; F. Iacona Physica E (Amsterdam), 16 (2003), p. 429

  • Ivan Marri; Simone Grillo; Michele Amato; Stefano Ossicini; Olivia Pulci Interplay of Quantum Confinement and Strain Effects in Type I to Type II Transition in GeSi Core–Shell Nanocrystals, The Journal of Physical Chemistry C, Volume 127 (2023) no. 2, p. 1209 | DOI:10.1021/acs.jpcc.2c07024
  • Dipti Jasrasaria; Daniel Weinberg; John P. Philbin; Eran Rabani Simulations of nonradiative processes in semiconductor nanocrystals, The Journal of Chemical Physics, Volume 157 (2022) no. 2 | DOI:10.1063/5.0095897
  • Stefano Ossicini; Ivan Marri; Michele Amato; Maurizia Palummo; Enric Canadell; Riccardo Rurali Ab initio studies of the optoelectronic structure of undoped and doped silicon nanocrystals and nanowires: the role of size, passivation, symmetry and phase, Faraday Discussions, Volume 222 (2020), p. 217 | DOI:10.1039/c9fd00085b
  • Tong Wu; Kotaro Fujii; Taito Murakami; Masatomo Yashima; Satoru Matsuishi Synthesis and Photoluminescence Properties of Rare-Earth-Activated Sr3–xAxAlO4H (A = Ca, Ba; x = 0, 1): New Members of Aluminate Oxyhydrides, Inorganic Chemistry, Volume 59 (2020) no. 20, p. 15384 | DOI:10.1021/acs.inorgchem.0c02356
  • C.C. Baganha; E. Ribeiro; E.S. Silveira; K.D. Machado; M.J.S.P. Brasil; F. Iikawa; U.S. Sias; E.C. Moreira; M. Behar Coexistence of interface states and confined electronic levels contribution for the light emission of Si nanocrystals embedded in SiO2, Journal of Luminescence, Volume 209 (2019), p. 291 | DOI:10.1016/j.jlumin.2019.01.039
  • Ivan Marri; Stefano Ossicini, Volume 1989 (2018), p. 020002 | DOI:10.1063/1.5047756
  • Kateřina Herynkova; Ivan Pelant Optical Gain in Porous Silicon, Handbook of Porous Silicon (2018), p. 501 | DOI:10.1007/978-3-319-71381-6_36
  • Ivan Marri; Elena Degoli; Stefano Ossicini First Principle Studies of B and P Doped Si Nanocrystals, physica status solidi (a), Volume 215 (2018) no. 3 | DOI:10.1002/pssa.201700414
  • Ivan Marri; Michele Amato; Roberto Guerra; Stefano Ossicini First Principles Modeling of Si/Ge Nanostructures for Photovoltaic and Optoelectronic Applications, physica status solidi (b), Volume 255 (2018) no. 10 | DOI:10.1002/pssb.201700627
  • Kateřina Herynkova; Ivan Pelant Optical Gain in Porous Silicon, Handbook of Porous Silicon (2017), p. 1 | DOI:10.1007/978-3-319-04508-5_36-2
  • Ivan Marri; Elena Degoli; Stefano Ossicini Doped and codoped silicon nanocrystals: The role of surfaces and interfaces, Progress in Surface Science, Volume 92 (2017) no. 4, p. 375 | DOI:10.1016/j.progsurf.2017.07.003
  • Yinan Shu; B. Scott Fales; Wei-Tao Peng; Benjamin G. Levine Understanding Nonradiative Recombination through Defect-Induced Conical Intersections, The Journal of Physical Chemistry Letters, Volume 8 (2017) no. 17, p. 4091 | DOI:10.1021/acs.jpclett.7b01707
  • Ivan Marri; Marco Govoni; Stefano Ossicini Carrier Multiplication in Silicon Nanocrystals: Theoretical Methodologies and Role of the Passivation, physica status solidi c, Volume 14 (2017) no. 12 | DOI:10.1002/pssc.201700198
  • Matteo Bertocchi; Michele Amato; Ivan Marri; Stefano Ossicini Tuning the Work Function of Si(100) Surface by Halogen Absorption: A DFT Study, physica status solidi c, Volume 14 (2017) no. 12 | DOI:10.1002/pssc.201700193
  • Ivan Marri; Marco Govoni; Stefano Ossicini First-principles calculations of electronic coupling effects in silicon nanocrystals: Influence on near band-edge states and on carrier multiplication processes, Solar Energy Materials and Solar Cells, Volume 145 (2016), p. 162 | DOI:10.1016/j.solmat.2015.07.013
  • Yinan Shu; Benjamin G. Levine First-Principles Study of Nonradiative Recombination in Silicon Nanocrystals: The Role of Surface Silanol, The Journal of Physical Chemistry C, Volume 120 (2016) no. 40, p. 23246 | DOI:10.1021/acs.jpcc.6b06785
  • Yinan Shu; B. Scott Fales; Benjamin G. Levine Defect-Induced Conical Intersections Promote Nonradiative Recombination, Nano Letters, Volume 15 (2015) no. 9, p. 6247 | DOI:10.1021/acs.nanolett.5b02848
  • Yinan Shu; Benjamin G. Levine Nonradiative Recombination via Conical Intersections Arising at Defects on the Oxidized Silicon Surface, The Journal of Physical Chemistry C, Volume 119 (2015) no. 4, p. 1737 | DOI:10.1021/jp5114202
  • Kateřina Herynková; Ivan Pelant Optical Gain in Porous Silicon, Handbook of Porous Silicon (2014), p. 1 | DOI:10.1007/978-3-319-04508-5_36-1
  • Kateřina Herynková; Ivan Pelant Optical Gain in Porous Silicon, Handbook of Porous Silicon (2014), p. 345 | DOI:10.1007/978-3-319-05744-6_36
  • Ivan Marri; Marco Govoni; Stefano Ossicini Red-Shifted Carrier Multiplication Energy Threshold and Exciton Recycling Mechanisms in Strongly Interacting Silicon Nanocrystals, Journal of the American Chemical Society, Volume 136 (2014) no. 38, p. 13257 | DOI:10.1021/ja5057328
  • Yinan Shu; Benjamin G. Levine Do Excited Silicon–Oxygen Double Bonds Emit Light?, The Journal of Physical Chemistry C, Volume 118 (2014) no. 14, p. 7669 | DOI:10.1021/jp500013g
  • Yinan Shu; Benjamin G. Levine Communication: Non-radiative recombination via conical intersection at a semiconductor defect, The Journal of Chemical Physics, Volume 139 (2013) no. 8 | DOI:10.1063/1.4819784
  • Leonid Khriachtchev; Stefano Ossicini; Fabio Iacona; Fabrice Gourbilleau Silicon Nanoscale Materials: From Theoretical Simulations to Photonic Applications, International Journal of Photoenergy, Volume 2012 (2012), p. 1 | DOI:10.1155/2012/872576
  • C.C. Baganha; E. Ribeiro; E. Silveira; M.J.S.P. Brasil; F. Iikawa; U.S. Sias; E.C. Moreira; M. Behar Temperature dependence of the light emission of Si nanocrystals embedded in SiO2, Physics Procedia, Volume 28 (2012), p. 39 | DOI:10.1016/j.phpro.2012.03.667
  • M.X. Xiao; M. Zhao; Q. Jiang Effects of surface modifications on band gaps and electronic states of GaN/InN core/shell nanowires, Chemical Physics Letters, Volume 512 (2011) no. 4-6, p. 251 | DOI:10.1016/j.cplett.2011.07.049
  • Ivan Pelant Optical gain in silicon nanocrystals: Current status and perspectives, physica status solidi (a), Volume 208 (2011) no. 3, p. 625 | DOI:10.1002/pssa.201000374
  • Stefano Ossicini; Michele Amato; Roberto Guerra; Maurizia Palummo; Olivia Pulci Silicon and Germanium Nanostructures for Photovoltaic Applications: Ab-Initio Results, Nanoscale Research Letters, Volume 5 (2010) no. 10, p. 1637 | DOI:10.1007/s11671-010-9688-9

Cité par 28 documents. Sources : Crossref

Commentaires - Politique