Comptes Rendus
Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media
[Spectroscopie RMN dans les milieux poreux par inversion Laplace multi-dimensionnelle]
Comptes Rendus. Physique, Volume 11 (2010) no. 2, pp. 172-180.

Les méthodes de RMN multi-dimensionnelles basées sur les transformations de Laplace inverses (TLI) peuvent être utilisées pour examiner le comportement de molécules des liquides dans les matrices poreuses. La TLI est particulièrement utile quand le signal est caractérisé par une décroissance multi-exponentielle, par exemple dans la relaxation de spin ou dans le déphasage d'un signal d'écho de spin RMN associé à la diffusion moléculaire sous l'influence de gradients de champ produits par impulsions ou internes. Des expériences de corrélation ou d'échange sont toutes deux possibles, la seconde fournissant des aperçus sur la migration de molécules entre des régions caractérisées par des dynamiques locales différentes.

Multi-dimensional NMR methods based on Inverse Laplace Transformations (ILT) may be used to examine the behavior of liquid state molecules in a porous matrix. The ILT is particularly useful when the signal is characterized by multi-exponential decay, for example in spin relaxation or in the dephasing of the NMR spin echo signal associated with molecular diffusion under the influence of pulsed magnetic or internal field gradients. Both correlation and exchange experiments are possible, the latter providing insight regarding the migration of molecules between regions characterized by different local dynamics.

Publié le :
DOI : 10.1016/j.crhy.2010.06.014
Keywords: Multi-dimensional NMR, Diffusion, Exchange, Anisotropy, Relaxation, Inverse Laplace transformation, Porous media
Mot clés : RMN multi-dimensionnelle, Diffusion, Échange, Anisotropie, Relaxation, Transformée de Laplace inverse, Milieux poreux
Petrik Galvosas 1 ; Paul T. Callaghan 1

1 MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
@article{CRPHYS_2010__11_2_172_0,
     author = {Petrik Galvosas and Paul T. Callaghan},
     title = {Multi-dimensional inverse {Laplace} spectroscopy in the {NMR} of porous media},
     journal = {Comptes Rendus. Physique},
     pages = {172--180},
     publisher = {Elsevier},
     volume = {11},
     number = {2},
     year = {2010},
     doi = {10.1016/j.crhy.2010.06.014},
     language = {en},
}
TY  - JOUR
AU  - Petrik Galvosas
AU  - Paul T. Callaghan
TI  - Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 172
EP  - 180
VL  - 11
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.06.014
LA  - en
ID  - CRPHYS_2010__11_2_172_0
ER  - 
%0 Journal Article
%A Petrik Galvosas
%A Paul T. Callaghan
%T Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media
%J Comptes Rendus. Physique
%D 2010
%P 172-180
%V 11
%N 2
%I Elsevier
%R 10.1016/j.crhy.2010.06.014
%G en
%F CRPHYS_2010__11_2_172_0
Petrik Galvosas; Paul T. Callaghan. Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media. Comptes Rendus. Physique, Volume 11 (2010) no. 2, pp. 172-180. doi : 10.1016/j.crhy.2010.06.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.014/

[1] R.R. Ernst; G. Bodenhausen; A. Wokaun Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1987

[2] C.L. Lawson; R.J. Hanson Solving Least Squares Problems, Prentice Hall, Englewood Cliffs, NJ, 1974

[3] Stephen W. Provencher CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations, Comput. Phys. Commun., Volume 27 (1982) no. 3, pp. 229-242

[4] Kenneth P. Whittall; Alexander L. MacKay Quantitative interpretation of NMR relaxation data, J. Magn. Reson., Volume 84 ( August 1989 ) no. 1, pp. 134-152

[5] K.F. Morris; C.S. Johnson Diffusion-ordered 2-dimensional nuclear-magnetic-resonance spectroscopy, J. Am. Chem. Soc., Volume 114 ( April 1992 ) no. 8, pp. 3139-3141

[6] P. Stilbs; K. Paulsen; P.C. Griffiths Global least-squares analysis of large, correlated spectral data sets: Application to component-resolved FT-PGSE NMR spectroscopy, J. Phys. Chem., Volume 100 ( May 1996 ) no. 20, pp. 8180-8189

[7] L. Venkataramanan; Y.Q. Song; M.D. Hürlimann Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions, IEEE Trans. Signal Process., Volume 50 (2002) no. 5, pp. 1017-1026

[8] P.C. Hansen The truncated SVD as a method for regularization, Bit, Volume 27 (1987) no. 4, pp. 534-553

[9] P.T. Callaghan; I. Furo Diffusion–diffusion correlation and exchange as a signature for local order and dynamics, J. Chem. Phys., Volume 120 (2004) no. 8, pp. 4032-4038

[10] Ying Qiao; Petrik Galvosas; Thorsteinn Adalsteinsson; Monika Schönhoff; Paul T. Callaghan Diffusion exchange NMR spectroscopic study of dextran exchange through polyelectrolyte multilayer capsules, J. Chem. Phys., Volume 122 (2005), p. 214912

[11] P.J. McDonald; J.P. Korb; J. Mitchell; L. Monteilhet Surface relaxation and chemical exchange in hydrating cement pastes: A two-dimensional NMR relaxation study, Phys. Rev. E, Volume 72 (2005) no. 1, p. 011409

[12] K.E. Washburn; P.T. Callaghan Tracking pore to pore exchange using relaxation exchange spectroscopy, Phys. Rev. Lett., Volume 97 ( October 2006 ) no. 17, p. 175502

[13] J. Mitchell; J.D. Griffith; J.H.P. Collins; A.J. Sederman; L.F. Gladden; M.L. Johns Validation of NMR relaxation exchange time measurements in porous media, J. Chem. Phys., Volume 127 (2007) no. 23, p. 234701

[14] Y.Q. Song; L. Venkataramanan; M.D. Hürlimann; M. Flaum; P. Frulla; C. Straley T1T2 correlation spectra obtained using a fast two-dimensional Laplace inversion, J. Magn. Reson., Volume 154 ( February 2002 ), pp. 261-268

[15] M.D. Hürlimann; L. Venkataramanan Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields, J. Magn. Reson., Volume 157 (2002) no. 1, pp. 31-42

[16] P.T. Callaghan; S. Godefroy; B.N. Ryland Diffusion–relaxation correlation in simple pore structures, J. Magn. Reson., Volume 162 (2003) no. 2, pp. 320-327

[17] P.L. Hubbard; K.M. McGrath; P.T. Callaghan A study of anisotropic water self-diffusion and defects in the lamellar mesophase, Langumir, Volume 21 (2005) no. 10, pp. 4340-4346

[18] Ying Qiao; Petrik Galvosas; Paul T. Callaghan Diffusion correlation NMR spectroscopic study of anisotropic diffusion of water in plant tissues, Biophys. J., Volume 89 (2005) no. 4, pp. 2899-2905

[19] C.H. Arns; K.E. Washburn; P.T. Callaghan Multidimensional NMR inverse Laplace spectroscopy in petrophysics, Petrophys., Volume 48 ( October 2007 ) no. 5, pp. 380-392

[20] K.E. Washburn; P.T. Callaghan Propagator resolved transverse relaxation exchange spectroscopy, J. Magn. Reson., Volume 186 ( June 2007 ) no. 2, pp. 337-340

[21] J.H. Lee; C. Labadie; C.S. Springer; G.S. Harbison 2-dimensional inverse laplace transform NMR – altered relaxation-times allow detection of exchange-correlation, J. Am. Chem. Soc., Volume 115 ( August 1993 ) no. 17, pp. 7761-7764

[22] R.M. Cotts; M.J.R. Hoch; T. Sun; J.T. Markert Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems, J. Magn. Reson., Volume 83 (1989) no. 2, pp. 252-266

[23] P.T. Callaghan; S. Godefroy; B.N. Ryland Use of the second dimension in PGSE NMR studies of porous media, Magn. Reson. Imaging, Volume 21 (2003) no. 3–4, pp. 243-248

[24] Marcel Gratz; Markus Wehring; Petrik Galvosas; Frank Stallmach Multidimensional NMR diffusion studies in microporous materials, Microporous Mesoporous Mater., Volume 125 (2009), pp. 30-34

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multi-scales nuclear spin relaxation of liquids in porous media

Jean-Pierre Korb

C. R. Phys (2010)