[Challenges scientifiques et technologiques des télécommunications optiques du XXIème siècle]
Cette présentation passe en revue lʼétat de lʼart des systèmes de télécommunications optiques du XXIème siècle à travers les technologies des sources lasers, des photorécepteurs, des circuits photoniques intégrés, des fibres optiques, et des formats de modulation cohérents. Lʼaccent y est placé sur les challenges scientifiques et technologiques posés par lʼapproche des limites physiques ultimes et par le développement de solutions innovantes permettant lʼaugmentation des performances au moindre coût.
The state of the art of XXIst century optical communication systems is reviewed through the associated technologies of laser sources, photo-receivers, integrated photonic circuits, optical fibres, and coherent modulation formats. Emphasis is put on current science and technology challenges to approach ultimate physical limits and to develop innovative solutions allowing performance enhancement at minimal cost increase.
Accepté le :
Publié le :
Mot clés : Amplificateur à fibre dopée à lʼerbium, Format de modulation, Photonique, Limite de Shannon, Multiplexage en longueur dʼonde, Télécommunications optiques
E. Desurvire 1 ; C. Kazmierski 2 ; F. Lelarge 2 ; X. Marcadet 2 ; André Scavennec 2 ; F.A. Kish 3 ; D.F. Welch 3 ; R. Nagarajan 3 ; C.H. Joyner 3 ; R.P. Schneider 3 ; S.W. Corzine 3 ; M. Kato 3 ; P.W. Evans 3 ; M. Ziari 3 ; A.G. Dentai 3 ; J.L. Pleumeekers 3 ; R. Muthiah 3 ; S. Bigo 4 ; M. Nakazawa 5 ; D.J. Richardson 6 ; F. Poletti 6 ; M.N. Petrovich 6 ; S.U. Alam 6 ; W.H. Loh 6 ; D.N. Payne 6
@article{CRPHYS_2011__12_4_387_0, author = {E. Desurvire and C. Kazmierski and F. Lelarge and X. Marcadet and Andr\'e Scavennec and F.A. Kish and D.F. Welch and R. Nagarajan and C.H. Joyner and R.P. Schneider and S.W. Corzine and M. Kato and P.W. Evans and M. Ziari and A.G. Dentai and J.L. Pleumeekers and R. Muthiah and S. Bigo and M. Nakazawa and D.J. Richardson and F. Poletti and M.N. Petrovich and S.U. Alam and W.H. Loh and D.N. Payne}, title = {Science and technology challenges in {XXIst} century optical communications}, journal = {Comptes Rendus. Physique}, pages = {387--416}, publisher = {Elsevier}, volume = {12}, number = {4}, year = {2011}, doi = {10.1016/j.crhy.2011.04.009}, language = {en}, }
TY - JOUR AU - E. Desurvire AU - C. Kazmierski AU - F. Lelarge AU - X. Marcadet AU - André Scavennec AU - F.A. Kish AU - D.F. Welch AU - R. Nagarajan AU - C.H. Joyner AU - R.P. Schneider AU - S.W. Corzine AU - M. Kato AU - P.W. Evans AU - M. Ziari AU - A.G. Dentai AU - J.L. Pleumeekers AU - R. Muthiah AU - S. Bigo AU - M. Nakazawa AU - D.J. Richardson AU - F. Poletti AU - M.N. Petrovich AU - S.U. Alam AU - W.H. Loh AU - D.N. Payne TI - Science and technology challenges in XXIst century optical communications JO - Comptes Rendus. Physique PY - 2011 SP - 387 EP - 416 VL - 12 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2011.04.009 LA - en ID - CRPHYS_2011__12_4_387_0 ER -
%0 Journal Article %A E. Desurvire %A C. Kazmierski %A F. Lelarge %A X. Marcadet %A André Scavennec %A F.A. Kish %A D.F. Welch %A R. Nagarajan %A C.H. Joyner %A R.P. Schneider %A S.W. Corzine %A M. Kato %A P.W. Evans %A M. Ziari %A A.G. Dentai %A J.L. Pleumeekers %A R. Muthiah %A S. Bigo %A M. Nakazawa %A D.J. Richardson %A F. Poletti %A M.N. Petrovich %A S.U. Alam %A W.H. Loh %A D.N. Payne %T Science and technology challenges in XXIst century optical communications %J Comptes Rendus. Physique %D 2011 %P 387-416 %V 12 %N 4 %I Elsevier %R 10.1016/j.crhy.2011.04.009 %G en %F CRPHYS_2011__12_4_387_0
E. Desurvire; C. Kazmierski; F. Lelarge; X. Marcadet; André Scavennec; F.A. Kish; D.F. Welch; R. Nagarajan; C.H. Joyner; R.P. Schneider; S.W. Corzine; M. Kato; P.W. Evans; M. Ziari; A.G. Dentai; J.L. Pleumeekers; R. Muthiah; S. Bigo; M. Nakazawa; D.J. Richardson; F. Poletti; M.N. Petrovich; S.U. Alam; W.H. Loh; D.N. Payne. Science and technology challenges in XXIst century optical communications. Comptes Rendus. Physique, Volume 12 (2011) no. 4, pp. 387-416. doi : 10.1016/j.crhy.2011.04.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.04.009/
[1] Dielectric fibre surface waveguide for optical frequencies, Proc. IEE, Volume 113 ( July 1966 ) no. 7, pp. 1151-1158
[2] Optical Fiber Telecommunications, Optical Fiber Telecommunications IV, Academic Press, San Diego, London, 1979 (see also:)
[3] Erbium-Doped Fiber Amplifiers, Principles and Applications, Erbium-Doped Fiber Amplifiers, Device and System Developments, J. Wiley & Sons, New York, 1994 (and references therein; about EDFA theory and technologies, see also: and references therein)
[4] The golden age of optical amplifiers, Phys. Today, Volume 47 ( January 1994 ) no. 1, p. 20-12 (Japanese translation published in Parity, 10, 3, 1995, pp. 4)
[5] The evolution of optical amplifiers, Optics & Photonics News ( August 2002 ), p. 36
[6] Capacity demands and technology challenges for lightwave systems in the next two decades, IEEE J. Lightwave Technology, Volume 24 (2006) no. 12
[7] Classical and Quantum Information Theory, an Introduction for the Telecom Scientist, Cambridge University Press, 2009
[8] Optical communications, C. R. Physique, Volume 4 (2003) no. 1
[9] Recent advances in optical telecommunications, C. R. Physique, Volume 9 (2008) no. 9–10
[10] Larry A. Coldren, Erik J. Skogen, James W. Raring, Jonathon S. Barton, Dan Lofgreen, Leif Johansson, Jonathan T. Getty, Active photonic integrated circuits (invited), in: IPRM 2005, 8–12 May, Glasgow, Scotland.
[11] Monolithically integrated active components: a quantum-well intermixing approach, Selected Topics in J. Quantum Electron., Volume 11 (2005), pp. 343-355
[12] C. Jany, J. Decobert, F. Alexandre, A. Garreau, J.-G. Provost, O. Drisse, E. Derouin, F. Blache, J. Landreau, N. Lagay, F. Martin, D. Carpentier, C. Kazmierski, 10 Gbit/s 1.55 μm 25 km transmission at 90 °C with new self thermally compensated AlGaInAs directly modulated laser, in: OFC/NFOEC, 27–29 March 2007, Anaheim CA (JWA32).
[13] Philippe Chanclou, Daniel Torrientes, Frank Chang, Benoit Charbonnier, Christophe Kazmierski, 10 Gbit/s for next generation PON with electronic equalization using un-cooled 1.55 μm directly modulated laser, in: ECOC 2009, 20–24 September, Vienna, Austria (PostDeadline3.5).
[14] C. Kazmierski, A. Konczykowska, F. Jorge, F. Blache, M. Riet, C. Jany, A. Scavennec, 100 Gb/s operation of an AlGaInAs semi-insulating buried heterojunction EML, in: OFC 2009, 22–26 March 2009, San Diego CA (OThT7).
[15] R. Alferness, Plenary talk, in: ECOC2008, 21–25 September, Brussels, Belgium.
[16] Inuk Kang, S. Chandrasekhar, C. Kazmierski, M. Rasras, N. Dupuis, 1650-km transmission of 50-Gb/s NRZ and RZ-DQPSK signals generated using an electroabsorption modulators-silica planar lightwave circuit hybrid integrated device, in: OFC2010, 22–25 March, San Diego CA (OMJ4).
[17] Quantum-Dot Heterostructures, John Wiley & Sons, 1999 (and references therein)
[18] Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm, J. Selected Topics Quant. Electron., Volume 13 (2007) no. 1, pp. 111-127 (invited paper)
[19] Pulse generation at 346 GHz using a passively mode locked quantum-dash-based laser at 1.55 μm, Appl. Phys. Lett., Volume 94 (2009), p. 021107
[20] A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, G.-H. Duan, Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash based mode-locked laser, in: Proceedings of European Conference on Optical Communication (ECOC), Bruxelles, September 2008 (post-deadline paper).
[21] Phase noise reduction of a quantum dash mode-locked laser in a millimeter-wave coupled opto-electronic oscillator, J. Lightwave Technol., Volume 26 ( August 2008 ) no. 15, pp. 2789-2794
[22] M. Huchard, P. Chanclou, B. Charbonnier, F. van Dijk, G.-H. Duan, C. Gonzalez, F. Lelarge, M. Thual, M. Weiß, A. Stöhr, 60 GHz radio signal up-conversion and transport using a directly modulated mode-locked laser, in: International Topical Meeting on Microwave Photonics Australia, October 2008 (post-deadline paper).
[23] Science, 264 (1994), p. 553
[24] Top grating index-coupled distributed feedback quantum cascade lasers, Appl. Phys. Lett., Volume 93 (2008), p. 011109
[25] 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach, Appl. Phys. Lett., Volume 95 (2009), p. 141113
[26] Richard Soref, Towards silicon-based longwave integrated optoelectronics (LIO), in: SPIE Photonics West, Silicon Photonics III, 21 January 2008 (invited paper 6898-5).
[27] Quantum cascade laser-based free space optical communications, J. Opt. Fiber. Commun. Rep., Volume 2 (2005), pp. 279-292
[28] Ultrawide-band/high frequency photodetectors, IEEE Trans. Microwave Theory Tech., Volume 47 ( July 1999 ), pp. 1265-1281
[29] Waveguide integrated photodetector with 45 GHz bandwidth, Electron. Lett., Volume 32 ( November 1996 ), pp. 2143-2145
[30] Optical design of evanescently coupled, waveguide-fed photodiodes for ultra-wide-band applications, IEEE Photon. Technol. Lett., Volume 11 ( January 1999 ), pp. 111-113
[31] High gain-bandwidth product over 140-GHz planar junction AlInAs avalanche photodiodes, IEEE Photon. Technol. Lett., Volume 20 ( March 2008 ), pp. 455-457
[32] Stimulated optical radiation in ruby, Nature, Volume 187 ( 6 August 1960 ), pp. 493-494
[33] et al. Coherent light emission from GaAs junctions, Phys. Rev. Lett., Volume 9 ( 1 November 1962 ), pp. 366-368
[34] Coherent (visible) light emission from Ga(As1–x Px) junctions, Appl. Phys. Lett., Volume 1 ( December 1962 ), pp. 82-83
[35] et al. Stimulated emission of radiation from GaAs p–n junctions, Appl. Phys. Lett., Volume I ( November 1962 ), pp. 62-64
[36] et al. Semiconductor maser of GaAs, Appl. Phys. Lett., Volume 1 ( December 1962 ), pp. 91-92
[37] et al. Injection lasers based on heterojunctions in the AlAs–GaAs system with low threshold at room temperature, Fiz: Tekh. Polupr., Volume 3 ( March 1970 ), pp. 1328-1332 (Also Sov. Phys.-Semiconductor, 3, pp. 1107-1110)
[38] et al. Junction lasers which operate continuously at room temperature, Appl. Phys. Lett., Volume 17 ( 1 August 1970 ), pp. 109-111
[39] et al. LPE In1 − xGaxP1 − zAsz (, ) DH laser with multiple thin-layer (< 500 A) active region, Appl. Phys. Lett., Volume 31 ( 15 August 1977 ), pp. 288-290
[40] et al. Distributed feedback single heterojunction GaAs diode laser, Appl. Phys. Lett., Volume 25 ( 15 August 1974 ), pp. 203-206
[41] et al. Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57 μm, Electron. Lett., Volume 17 ( December 1981 ) no. 25/26, pp. 961-963
[42] et al. Room-temperature CW operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm, Appl. Phys. Lett., Volume 28 (1976), p. 709
[43] Integrated optics: An introduction, Bell Sys. Tech. J., Volume 48 (1969), pp. 2059-2069
[44] et al. Monolithic integration of a DFB laser and an MQW optical modulator in the 1.5 μm wavelength range, IEEE JQE, Volume QE-23 (1987), pp. 915-918
[45] et al. Large-scale photonic integrated circuits, IEEE JSTQE, Volume 11 ( January/February 2005 ) no. 1, p. 50
[46] S. Corzine, et al., Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems, IEEE Photonics Technology Letters 22 (14), 1015–1017, art. no. 5458061.
[47] Cramming more components onto integrated circuits, Electronics, Volume 38 ( 19 April 1965 ) no. 8
[48] J.S. Kilby, Miniaturized electronic circuits, U.S. Patent 3,138,743, June 23, 1964 (filed 6 February 1959).
[49] R.N. Noyce, Semiconductor device-and-lead structure, U.S. Patent 2,981,877, April 25, 1961 (filed 30 July 1959).
[50] S. Murthy, et al., Large-scale photonic integrated circuit transmitters with monolithically integrated semiconductor optical amplifiers, in: Conf. Proc. OFC2008, OWE1, 2008.
[51] G. Yang, et al., Grating stabilised high power 980 nm pump modules, in: OFC 2007, March 2007 (poster JWA30).
[52] et al. 40-channel transmitter and receiver photonic integrated circuits operating at per channel data rate 12.5 Gbit/s, Electron. Lett., Volume 43 ( 12 April 2007 ) no. 8
[53] et al. Single chip, 40 channel InP transmitter photonic integrated circuit capable of an aggregate data rate of 1.6 Tb/s, Electron. Lett., Volume 42 ( 22 June 2006 ) no. 13
[54] Advanced optical modulation formats, Proc. IEEE, Volume 94 ( May 2006 ) no. 5, p. 952
[55] S. Corzine, et al., 10-channel × 40 Gb/s per channel DQPSK monolithically integrated InP-based transmitter PIC, in: OFC 2008, February 2008 (talk PDP18).
[56] F. Kish, et al., Current status of large-scale InP photonic integrated circuits, IEEE JSTQE, . | DOI
[57] J.D. McNicol, et al., Single-carrier versus sub-carrier bandwidth considerations for coherent optical systems, in: SPIE Photonics West, January 22–27, 2011, San Francisco, USA, . | DOI
[58] R. Nagarajan, et al., 10 channel, 100 G bits/s per channel, dual polarization, coherent QPSK monolithic InP receiver photonic integrated circuit, in: Optical Fiber Conference, March 2011 (to be presented).
[59] Foreword, C. R. Physique, Volume 9 (2008), pp. 911-913
[60] M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, S. Bigo, 155 × 100 Gbit/s coherent PDM-QPSK transmission over 7200 km, in: Proc. European Conf. on Optical Comm. (ECOCʼ09), Vienna, 20–24 September 2009 (post-deadline paper PD2.5).
[61] Multi-terabit/s DWDM terrestrial transmission with bandwidth-limiting optical filtering, IEEE J. Selected Topics Quant. Electron., Volume 10 ( March–April 2004 ) no. 2, pp. 329-340
[62] G. Charlet, J. Renaudier, P. Brindel, P. Tran, H. Mardoyan, O. Bertran Pardo, M. Salsi, S. Bigo, Performance comparison of DPSK, P-DPSK, RZ-DQPSK and coherent PDM-QPSK at 40 Gb/s over a terrestrial link, in: Proc. Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOECʼ09), San Diego, 22–26 March 2009 (paper JWA40).
[63] Experimental assessment of interactions between nonlinear impairments and polarization mode dispersion in 100-Gb/s coherent systems versus receiver complexity, IEEE Photon. Technol. Lett., Volume 21 (2009) no. 1, pp. 51-53
[64] Self-recovering equalization and carrier tracking in two-dimensional data communication systems, IEEE Trans. Comm., Volume COM-28 ( November 1980 ) no. 11, pp. 1867-1875
[65] Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission, IEEE Trans. Inform. Theory, Volume IT-29 ( July 1983 ) no. 4, pp. 543-551
[66] New transmission systems enabling transparent network perspectives, C. R. Physique, Volume 9 (2008), pp. 985-1001
[67] Physical design and performance estimation of heterogeneous optical transmission systems, C. R. Physique, Volume 9 (2008), pp. 963-984
[68] Optical transport systems and networks: fundamentals and prospects, C. R. Physique, Volume 9 (2008), pp. 914-934
[69] Ultrahigh-Speed Optical Transmission Technology (H.G. Weber; M. Nakazawa, eds.), Springer, 2007
[70] Modulation and multiplexing in optical communication systems, IEEE LEOS Newsletter, Volume 23 (2009) no. 1, pp. 4-10
[71] A.D. Ellis, Modulation formats which approach the Shannon limit, in: OFC2009 (OMM4).
[72] 20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser, Electron. Lett., Volume 43 (2006), pp. 710-712
[73] 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator, Electron. Lett., Volume 36 (2000) no. 24, pp. 2027-2029
[74] Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission, Electron. Lett., Volume 42 (2006) no. 3, pp. 178-179
[75] Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses, IEEE Photon. Technol. Lett., Volume 16 (2004) no. 4, pp. 1059-1061
[76] T. Hirano, P. Guan, T. Hirooka, M. Nakazawa, 640 Gbit/s single-polarization DPSK transmission over 525 km with time-domain optical Fourier transformation in a round-trip configuration, in: OFC 2010 (OThD7).
[77] All-optical switch with switch-off time unrestricted by carrier lifetime, Jpn. J. Appl. Phys., Volume 32 (1993), p. L1746-L1749
[78] C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, H.G. Weber, 320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator, in: OFC 2005 (OTuO3).
[79] A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), pp. 379-423 (and 623-656)
[80] A.H. Gnauck, P.J. Winzer, C.R. Doerr, L.L. Buhl, 10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency, in: OFC2009 (PDPB8).
[81] H. Takahashi, A. Al Amin, S.L. Jansen, I. Morita, H. Tanaka, DWDM transmission with 7.0-bit/s/Hz spectral efficiency using 8 × 65.1-Gbit/s coherent PDM-OFDM signals, in: OFC 2009 (PDPB7).
[82] 256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz, IEEE Photon. Technol. Lett., Volume 22 (2010) no. 3, pp. 185-187
[83] Performance improvement of an acetylene (C2H2) frequency-stabilised fiber laser, IEICE Electron. Express, Volume 3 (2006), pp. 487-492
[84] Certain topics in telegraph transmission theory, AIEE Trans., Volume 47 (1928), pp. 617-644
[85] Digital Communications, McGraw Hill, 2000
[86] http://www.ciscosecure.net/en/US/solutions/collateral/ns341/ns525/ns537/ns827/White_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html (See e.g.)
[87] Nonlinear limits to the information capacity of optical fibre communications, Nature, Volume 411 (2001), pp. 1027-1030
[88] Approaching the non-linear Shannon limit, J. Lightwave Technol., Volume 28 (2010) no. 4, pp. 423-433
[89] et al. Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance, Electron. Lett., Volume 38 (2002), pp. 1168-1169
[90] Rayleigh and Brillouin scattering in K2O–SiO2 glasses, J. Am. Ceram. Soc., Volume 56 (1973), pp. 510-514
[91] et al. Low Rayleigh scattering P2O5–F–SiO2 glasses, IEEE J. Lightwave Technol., Volume 10 (1992), pp. 1532-1534
[92] Fiber materials and fabrication methods (Stewart E. Miller; Ivan P. Kaminow, eds.), Optical Fiber Communications II, Academic Press, 1988
[93] et al. Low loss fluoride fiber by reduced pressure casting, Electron. Lett., Volume 26 (2005), pp. 2115-2116
[94] Single-mode photonic band gap guidance of light in air, Science, Volume 285 (1999), pp. 1537-1539
[95] Ultimate low loss of hollow-core photonic crystal fibers, Opt. Express, Volume 13 (2005), pp. 236-244
[96] J.K. Lyngso, et al., Realization of 7-cell hollow core photonic crystal fibers with low-loss in the region between 1.4 μm and 2.3 μm, in: Proc. OECCʼ09 (paper FS1).
[97] et al. Silica-glass contribution to the effective nonlinearity of hollow-core photonic bandgap fibers, Opt. Express, Volume 15 (2007), pp. 3507-3512
[98] Dispersive multiplexing in multimode optical fiber, Science, Volume 289 (2000), pp. 281-283
[99] Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links, IEEE Communications Magazine, Volume 45 (2007), pp. 57-63
[100] Heterogeneous multicore fibers: proposal and design principle, IEICE Electronics Express, Volume 6 (2009), pp. 98-103
[101] See postdeadline paper volume, in: Proc. Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOECʼ11), Los Angeles, 6–10 March 2011.
[102] Solitary thermal shock-waves and optical damage in optical fibers: The fiber fuse, Opt. Lett., Volume 13 (1988), pp. 767-769
[103] N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, S. Tomita, Suppression of fiber fuse propagation in photonic crystal fiber (PCF) and hole assisted fiber, in: Technical Digest of Microoptics Conference, 2009, p. M7.
[104] Continuous-wave oscillation of a monomode thulium-doped fiber laser, Electron. Lett., Volume 24 (1998) no. 19, pp. 1222-1223
[105] Rare Earth Doped Fiber Lasers and Amplifiers, Marcel Dekker Inc., 1993
[106] et al. Tm-doped fiber lasers: Fundamentals and power scaling, IEEE J. Selected Topics Quant. Electron., Volume 15 (2009), pp. 85-92
[107] Raman amplifiers for telecommunications, IEEE J. Selected Topics Quant. Electron., Volume 8 (2002), pp. 548-558
[108] et al. High-power cw bismuth-fiber lasers, J. Opt. Soc. Amer. B – Opt. Phys., Volume 24 (2007), p. 1749
[109] et al. High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm, Optics Express, Volume 17 (2009), pp. 447-454
[110] C. Farrell, C. Codemard, J. Nilsson, A Raman fiber amplifier generating simultaneous gain across multiple Stokes orders by using step shaped optical pulses, in: Europhoton 2008, Paris, France (paper XX).
[111] Phys. Rev., 128 (1962), p. 2407
[112] Quantum limits in noise in linear amplifiers, Phys. Rev. D, Volume 26 (1982), pp. 1817-1839
[113] Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fiber, Electron. Lett., Volume 43 (2007), pp. 177-178
[114] Quantum mechanics of phase sensitive amplification in a fiber, Opt. Commun., Volume 257 (2006), pp. 146-163
[115] Z. Tong, C. Lundström, A. Bogris, M. Karlsson, P. Andrekson, D. Syvridis, Measurement of sub-1 dB noise figure in a non-degenerate cascaded phase sensitive fibre parametric amplifier, in: Proceedings of ECOC 2009 (Mo. 1.1.2).
[116] All-optical phase and amplitude regenerator for next-generation telecommunications systems, Nature Photonics, Volume 4 (2010), pp. 690-695
Cité par Sources :
Commentaires - Politique