[Technologie RFID pour implants dans le corps humain]
Cet article dresse un état de lʼart sur la technologie des puces RFID implantées dans le corps humain. Il explore la faisabilité dʼimplants permettant de localiser en temps réel des personnes ou encore de contrôler à distance les fonctions biologiques du corps humain. Des résultats sur la miniaturisation des puces RFID passives et implantables dans le corps sont présentés. Des considérations sur le choix de la fréquence de la communication sans fil entre lʼimplant RFID et son lecteur sont formulées. Deux techniques usuelles (à savoir le couplage inductif et le couplage électromagnétique) pour alimenter sans fil et à distance lʼimplant RFID passif et pour lire les données de lʼimplant sont décrites. Des applications biomédicales et thérapeutiques des implants RFID sont finalement données.
This article presents an overview on Radio Frequency Identification (RFID) technology for human implants and investigates the technological feasibility of such implants for locating and tracking persons or for remotely controlling human biological functions. Published results on the miniaturization of implantable passive RFID devices are reported as well as a discussion on the choice of the transmission frequency in wireless communication between a passive RFID device implanted inside human body and an off-body interrogator. The two techniques (i.e., inductive coupling and electromagnetic coupling) currently used for wirelessly supplying power to and read data from a passive implantable RFID device are described and some documented biomedical and therapeutic applications of human RFID-implant devices are finally reported.
Mots-clés : Technologie RFID, Implant humains, Nanotechnologies
Hervé Aubert 1, 2
@article{CRPHYS_2011__12_7_675_0, author = {Herv\'e Aubert}, title = {RFID technology for human implant devices}, journal = {Comptes Rendus. Physique}, pages = {675--683}, publisher = {Elsevier}, volume = {12}, number = {7}, year = {2011}, doi = {10.1016/j.crhy.2011.06.004}, language = {en}, }
Hervé Aubert. RFID technology for human implant devices. Comptes Rendus. Physique, Nanoscience and nanotechnologies: hopes and concerns, Volume 12 (2011) no. 7, pp. 675-683. doi : 10.1016/j.crhy.2011.06.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.06.004/
[1] K.R. Foster, J. Jaeger, IEEE spectrum: RFID inside, http://spectrum.ieee.org/print/4939, July 2007.
[2] A. Masters, K. Michael, Humancentric applications of RFID implants: The usability contexts of control, convenience and care, in: Proceedings of the Second IEEE International Workshop on Mobile Commerce and Services (WMCSʼ05), 2005.
[3] E. Freudenthal, D. Herrera, F. Kautz, C. Natividad, A. Ogrey, J. Sipla, A. Sosa, C. Betancourt, L. Estevez, Evaluation of HF RFID for implanted medical applications, Departmental Technical Reports (CS), 2007, Paper 162, http://digitalcommons.utep.edu/cs_techrep/162.
[4] Towards a single-chip, implantable RFID system: is a single-cell radio possible?, Biomed. Microdevices, Volume 24 ( January 2009 ) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896640/ | DOI
[5] Nanotube radio, Nano Lett., Volume 7 (2007) no. 11, pp. 3508-3511
[6] Worldʼs first single carbon nanotube radio, Current Science, Volume 94 ( January 2008 ) no. 2, pp. 166-167
[7] SoC issues for RF smart dust, Proceedings of the IEEE, Volume 94 ( June 2006 ) no. 6, pp. 1177-1196
[8] Smart dust: Communicating with a cubic-millimeter, Computer, Volume 34 (2001), pp. 44-51
[9] Smart dust: nanostructured devices in a grain of sand, Chemical Communications, Volume 11 (2005), p. 1375
[10] M. Chen, Body Area Networks: A Survey, ACM/Springer Mobile Networks and Applications (MONET), 2010.
[11] M. Usami, An ultra small RFID chip: μ-chip, in: Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Papers, IEEE, 2004, pp. 241–244.
[12] Coil-on-chip RFID tag, Maxell, Fairlawn, NJ, 2010 [online]. Available: http://www.maxell-usa.com/index.aspx?id=4;41;432;0.
[13] MEMS-based inductively coupled RFID transponder for implantable wireless sensor applications, IEEE Transactions on Magnetics, Volume 43 ( June 2007 ) no. 6, pp. 2412-2414
[14] Batteryless-wireless MEMS sensor system with a 3D loop antenna, IEEE Sensors, Volume 2007 ( October 2007 ), pp. 252-255
[15] A small OCA on a 1 × 0.5-mm2 2.45-GHz RFID tag—design and integration based on a CMOS-compatible manufacturing technology, IEEE Electron Device Lett., Volume 27 (2006) no. 2, pp. 96-98
[16] A 2.45-GHz near-field RFID system with passive on-chip antenna tags, IEEE Trans. Microw. Theory Tech., Volume 56 ( June 2008 ) no. 6, pp. 1397-1404
[17] S. Radiom, M. Baghaei-Nejad, G. Vandenbosch, L.-R. Zheng, G. Gielen, Far-field RF powering system for RFID and implantable devices with monolithically integrated on-chip antenna, in: IEEE Radio Frequency Integrated Circuits Symposium, 2010.
[18] IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, IEEE Standard C95.1-1999, 1999.
[19] IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz to 300 GHz, IEEE Standard C95.3-2002, 2002.
[20] Antennas and propagation of implanted RFIDs for pervasive healthcare applications, Proceedings of the IEEE, Volume 98 ( September 2010 ) no. 9, pp. 1648-1655
[21] Planar inverted-F antennas on implantable medical devices: Meandered type versus spiral type, Microw. Opt. Technol. Lett., Volume 48 (2006) no. 3, pp. 567-572
[22] et al. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna, Nature, Volume 415 (2002) no. 6868, pp. 152-155
[23] Optimum electromagnetic heating of nanoparticle thermal contrast agents at RF frequencies, Journal of Applied Physics, Volume 106 (2009), p. 054309
[24] Medical Nanorobot Architecture Based on Nanobioelectronics, Recent Patents on Nanotechnology 2007, vol. 1 (No. 1), Bentham Science Publishers Ltd., February 2007 http://www.bentham.org/nanotec/samples/nanotec1-1/Cavalcanti.pdf (available at:)
[25] RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, Wiley, Hoboken, NJ, 2003
[26] Investigation into the future of RFID in biomedical applications, Proc. of SPIE – Int. Soc. Optical Eng., Volume 5119 (2003), pp. 199-209
[27] Power harvesting and telemetry in CMOS for implanted devices, IEEE Trans. Circ. Syst., Volume 52 (2003) no. 12, pp. 2605-2613
[28] M. Usami, A. Sato, K. Sameshima, K. Watanabe, H. Yoshigi, R. Imura, Powder LSI: an ultra small RF identification chip for individual recognition applications, in: Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, IEEE International, 2003.
[29] http://www.engadget.com/2007/02/14/hitachis-rfid-powder-freaks-us-the-heck-out.
[30] M. Usami, H. Tanabe, A. Sato, I. Sakama, Y. Maki, T. Iwamatsu, T. Ipposhi, Y. Inoue, A
[31] A new Contactless Smart Card IC using an on-chip antenna and an asynchronous microcontroller, IEEE J. Solid-State Circuits, Volume 36 (2001) no. 7, pp. 1101-1107
[32] M. Usami, An ultra small RFID chip: μ-chip, in: LEEE Asia-Pacific Conference on Advanced System Integrated Circuits (AP-AS1C2004), August 4–5, 2004.
[33] M. Usami, Ultra-small RLID chip technology, in: 13th IEEE International Conference on Circuits and Systems (ICECS ʼ06), 2006, pp. 708–711.
[34] Quantitative theory of nanowire and nanotube antenna performance, IEEE Trans. Nanotechnol., Volume 5 (2006) no. 4, pp. 314-334
[35] P.J. Burke, Z. Yu, S. Li, C. Rutherglen, Nanotube technology for microwave applications, in: Proc. of IEEE MTT International Microwave Symposium, 2005.
[36] Carbon nanotube radio, Nano Lett., Volume 7 (2007) no. 11, pp. 3296-3299
[37] Efficient antenna design of inductive coupled RFID-systems with high power demand, Journal of Communications, Volume 2 ( November 2007 ) no. 6, pp. 14-23
[38] Antenna Theory – Analysis and Design, John Wiley & Sons, 2005
[39] Y. Jia, M. Heiss, Q. Fu, N.A. Gay, A prototype RFID humidity sensor for built environment monitoring, in: International Workshop on Education Technology and Training & International Workshop on Geoscience and Remote Sensing, 2008, pp. 496–499.
[40] M.M. Jatlaoui, P. Pons, H. Aubert, Radio-frequency pressure transducer, in: 37th European Microwave Conference (EuMCʼ07), München, Germany, 8–12 October 2007, pp. 983–986.
[41] M.M. Jatlaoui, P. Pons, H. Aubert, Pressure micro-sensor based on radio-frequency transducer, in: IEEE International Microwave Symposium (IMS), Atlanta, Georgia, USA, 15–20 June 2008.
[42] M.M. Jatlaoui, F. Chebila, I. Gmati, P. Pons, H. Aubert, New electromagnetic transduction micro-sensor concept for passive wireless pressure monitoring application, in: Transducers 2009, 15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, Colorado, USA, June 21–25, 2009.
[43] M.M. Jatlaoui, F. Chebila, P. Pons, H. Aubert, Pressure sensing approach based on electromagnetic transduction principle, in: Asia Pacific Microwave Conference (APMC 2008), Hong Kong and Macao, China, 16–19 December 2008.
[44] M.M. Jatlaoui, F. Chebila, P. Pons, H. Aubert, Wireless interrogation techniques for a passive pressure micro-sensor using an EM transducer, in: European Microwave Week, Nuova Fiera di Roma, Rome, Italy, 28 September–2 October 2009.
[45] M.M. Jatlaoui, F. Chebila, P. Pons, H. Aubert, New micro-sensors identification techniques based on reconfigurable multi-band scatterers, in: Asia-Pacific Microwave Conference (APMC 2009), Singapore, December 7–10, 2009.
[46] M.M. Jatlaoui, F. Chebila, S. Bouaziz, P. Pons, H. Aubert, Original identification technique of passive EM sensors using loaded transmission delay lines, in: European Microwave Week (EuMW 2010), Paris, France, 26 September–1 October 2010.
[47] M.M. Jatlaoui, F. Chebila, T. Idda, P. Pons, H. Aubert, Phenomenological theory and experimental characterizations of passive wireless EM pressure micro-sensor prototype, in: The 9th Annual IEEE Conference on Sensors (IEEE Sensors 2010), Waikaloa, Hawaï, USA, November 1–4, 2010.
[48] T.T. Thai, M. Jatlaoui, H. Aubert, P. Pons, G.R. DeJean, M.M. Tentzeris, R. Plana, A novel passive wireless ultrasensitive temperature RF transducer for remote sensing, in: IEEE International Microwave Symposium (IMS), Anaheim, California, USA, May 23–28, 2010.
[49] T.T. Thai, F. Chebila, M.M. Jatlaoui, M. Mehdi, P. Pons, H. Aubert, G.R. DeJean, M.M. Tentzeris, R. Plana, Design and development of a millimetre-wave novel passive ultrasensitive temperature transducer for remote sensing and identification, in: European Microwave Week (EuMW 2010), Paris, France, 26 September–1 October 2010.
[50] Feasibility of passive gas sensor based on whispering gallery modes and its RADAR interrogation: Theoretical and experimental investigations, Sensors & Transducers Journal, Volume 116 ( May 2010 ) no. 5, pp. 38-48
[51] H. Hallil, F. Chebila, P. Menini, P. Pons, H. Aubert, Feasibility of wireless gas detection with an FMCW RADAR interrogation of passive RF gas sensor, in: The 9th Annual IEEE Conference on Sensors (IEEE Sensors 2010), Waikaloa, Hawaï, USA, November 1–4, 2010.
[52] H. Hallil, P. Menini, H. Aubert, Novel microwave gas sensor using dielectric resonator with SnO2 sensitive layer, in: Eurosensors 2009, Lausanne, Switzerland, 6–9 September 2009.
[53] H. Hallil, P. Menini, H. Aubert, New microwave gas detector using dielectric resonator based on a Whispering-Gallery-Mode, in: European Microwave Week, Nuova Fiera di Roma, Rome, Italy, 28 September–2 October 2009.
[54] H. Hallil, P. Menini, H. Aubert, Novel millimeter-wave gas sensor using dielectric resonator with sensitive layer on TiO2, in: 8th IEEE Conference on Sensors, Christchurch, New Zealand, 25–28 October 2009.
[55] Magellan Technology, White paper: A comparison of RFID frequencies and protocols, March 2006 [online]. Available: http://www.magtech.com.au/res/PDF/Brochures%20and%20Documents/Whitepapers/RFID%20Frequencies%20and%20Protocols.pdf.
[56] P. Vaillancourt, A. Djemouai, J.F. Harvey, M. Sawan, EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant, in: Proc. IEEE EMBS Conf., vol. 6, 1997, pp. 2499–2502.
[57] RF powering of millimeter- and submillimeter-sized neural prosthetic implants, IEEE Trans. Biomed. Eng., Volume 33 ( March 1988 ) no. 3, pp. 323-327
[58] A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode, IEEE J. Solid-State Circuits, Volume 33 ( January 1998 ) no. 1, pp. 109-118
[59] A wide-band frequency-shift keying wireless link for inductively powered biomedical implants, IEEE Trans. Circuits Syst. I, Reg. Papers, Volume 51 ( December 2004 ) no. 12, pp. 2374-2383
[60] A neuro-stimulus chip with telemetry unit for retinal prosthetic device, IEEE J. Solid-State Circuits, Volume 35 ( July 2000 ) no. 7, pp. 1487-1497
[61] RFID security and privacy: A research survey, Journal of Selected Areas in Communication (J-SAC), Volume 24 ( February 2006 ) no. 2, pp. 381-395
[62] D.D. Arumugam, D.W. Engels, Characterization of RF propagation in muscle tissue for passive UHF RFID tags, in: XXIX General Assembly of the International Union of Radio Science URSI, Chicago, August 7–17, 2008.
[63] OʼDriscol, 2009.
[64] Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom, IEEE Trans. Microw. Theory Tech., Volume 56 ( October 2008 ) no. 10, pp. 2366-2376
[65] P. Irazoqui-Pastor, I. Mody, J.W. Judy, In-vivo EEG recording using a wireless implantable neural transceiver, in: Proc. 1st Int. IEEE EMBS Conf. Neural Engineering, vol. 1, 2003, pp. 622–625.
[66] Biosensor Technology, M-Biotech, Salt Lake City, 2003 http://www.m-biotech.com/technology1.html
[67] Microelectrode array for chronic deep-brain microstimulation and recording, IEEE Trans. Biomedical Engineering, Volume 53 ( April 2006 ) no. 4, pp. 726-737
[68] D. McCreery, Microelectrode array for chronic deep-brain microstimulation for recording, US 3006/0276866 A1, December 2006.
[69] On-chip antennas in silicon ICs and their application, III Trans. Electron Devices, Volume 52 ( July 2005 ) no. 7, pp. 1312-1323
- Nanotechnology in Societal Development, Nanotechnology in Societal Development (2024), p. 1 | DOI:10.1007/978-981-97-6184-5_1
- , 2023 4th International Conference on Computing and Communication Systems (I3CS) (2023), p. 1 | DOI:10.1109/i3cs58314.2023.10127380
- An Approach to the Bibliometric Analysis for the RFID Chips Implants in Humans, Communication and Applied Technologies, Volume 318 (2023), p. 69 | DOI:10.1007/978-981-19-6347-6_7
- Beyond Tissue replacement: The Emerging role of smart implants in healthcare, Materials Today Bio, Volume 22 (2023), p. 100784 | DOI:10.1016/j.mtbio.2023.100784
- Augmented body surveillance: Human microchip implantations and the omnipresent threat of function creep, Technology in Society, Volume 74 (2023), p. 102295 | DOI:10.1016/j.techsoc.2023.102295
- , 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT) (2022), p. 1 | DOI:10.1109/icccnt54827.2022.9984500
- Compensation topologies for wireless power transmission system in medical implant applications: A review, Biosensors and Bioelectronics: X, Volume 11 (2022), p. 100180 | DOI:10.1016/j.biosx.2022.100180
- A Machine Learning Enabled Near Infrared Tracking Scheme for Localization of Gastrointestinal Smart Capsule, IEEE Access, Volume 10 (2022), p. 92481 | DOI:10.1109/access.2022.3203846
- , 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA) (2021), p. 5 | DOI:10.1109/rfid-ta53372.2021.9617423
- Photoacoustic and piezo-ultrasound hybrid-induced energy transfer for 3D twining wireless multifunctional implants, Energy Environmental Science, Volume 14 (2021) no. 3, p. 1490 | DOI:10.1039/d0ee03801f
- A Pseudonymisation Protocol With Implicit and Explicit Consent Routes for Health Records in Federated Ledgers, IEEE Journal of Biomedical and Health Informatics, Volume 25 (2021) no. 6, p. 2172 | DOI:10.1109/jbhi.2020.3028454
- Development of aMSTsensor probe, based on aSP3Tswitch, for biomedical applications, Microwave and Optical Technology Letters, Volume 63 (2021) no. 1, p. 82 | DOI:10.1002/mop.32567
- Recent Advances in Wearable Sensing Technologies, Sensors, Volume 21 (2021) no. 20, p. 6828 | DOI:10.3390/s21206828
- , 2020 IEEE International Symposium on Technology and Society (ISTAS) (2020), p. 134 | DOI:10.1109/istas50296.2020.9462217
- A Wireless Implantable Strain Sensing Scheme Using Ultrasound Imaging of Highly Stretchable Zinc Oxide/Poly Dimethylacrylamide Nanocomposite Hydrogel, ACS Applied Bio Materials, Volume 3 (2020) no. 7, p. 4012 | DOI:10.1021/acsabm.9b01032
- Service Innovation for Cyborgs – Human Augmentation as a Self-experiment, Advances in the Human Side of Service Engineering, Volume 1208 (2020), p. 22 | DOI:10.1007/978-3-030-51057-2_4
- , 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (2019), p. 1 | DOI:10.1109/bsn.2019.8771087
- Pricing Based on Real-Time Analysis of Forklift Utilization Using RFID in Warehouse Management, Advanced Methodologies and Technologies in Business Operations and Management (2019), p. 1155 | DOI:10.4018/978-1-5225-7362-3.ch087
- Radio Frequency Backscatter Communication for High Data Rate Deep Implants, IEEE Transactions on Microwave Theory and Techniques, Volume 67 (2019) no. 3, p. 1093 | DOI:10.1109/tmtt.2018.2886844
- Sensors for Implants: Real-Time Failure Detection on the Arabin Pessary, Modern Sensing Technologies, Volume 29 (2019), p. 17 | DOI:10.1007/978-3-319-99540-3_2
- Pricing Based on Real-Time Analysis of Forklift Utilization Using RFID in Warehouse Management, Encyclopedia of Information Science and Technology, Fourth Edition (2018), p. 5490 | DOI:10.4018/978-1-5225-2255-3.ch477
- RFID Antennas for Body-Area Applications: From Wearables to Implants, IEEE Antennas and Propagation Magazine, Volume 60 (2018) no. 5, p. 14 | DOI:10.1109/map.2018.2859167
- , 2017 11th European Conference on Antennas and Propagation (EUCAP) (2017), p. 1024 | DOI:10.23919/eucap.2017.7928224
- , 2017 Eleventh International Conference on Sensing Technology (ICST) (2017), p. 1 | DOI:10.1109/icsenst.2017.8304470
- Review of Near-Field Wireless Power and Communication for Biomedical Applications, IEEE Access, Volume 5 (2017), p. 21264 | DOI:10.1109/access.2017.2757267
- Enabling Technologies for Green Internet of Things, IEEE Systems Journal, Volume 11 (2017) no. 2, p. 983 | DOI:10.1109/jsyst.2015.2415194
- , 2016 IEEE International Symposium on Technology and Society (ISTAS) (2016), p. 1 | DOI:10.1109/istas.2016.7764047
- , 2016 Loughborough Antennas Propagation Conference (LAPC) (2016), p. 1 | DOI:10.1109/lapc.2016.7807538
- Miniaturized Blood Pressure Telemetry System with RFID Interface, Electronics, Volume 5 (2016) no. 3, p. 51 | DOI:10.3390/electronics5030051
- Drug Delivery Based on Swarm Microrobots, International Journal of Computational Intelligence and Applications, Volume 15 (2016) no. 02, p. 1650006 | DOI:10.1142/s1469026816500061
- Lightweight, self-tuning data dissemination for dense nanonetworks, Nano Communication Networks, Volume 8 (2016), p. 2 | DOI:10.1016/j.nancom.2015.09.003
- , 2015 International Conference on Cloud Technologies and Applications (CloudTech) (2015), p. 1 | DOI:10.1109/cloudtech.2015.7336997
- , 2015 International Symposium on Next-Generation Electronics (ISNE) (2015), p. 1 | DOI:10.1109/isne.2015.7131993
- Threshold voltage compensation scheme for RF‐to‐DC converter used in RFID applications, Electronics Letters, Volume 51 (2015) no. 12, p. 892 | DOI:10.1049/el.2015.0445
- A Miniature Energy Harvesting Rectenna for Operating a Head-Mountable Deep Brain Stimulation Device, IEEE Access, Volume 3 (2015), p. 223 | DOI:10.1109/access.2015.2414411
- RFID in Healthcare – Current Trends and the Future, Mobile Health, Volume 5 (2015), p. 839 | DOI:10.1007/978-3-319-12817-7_36
- Closed loop deep brain stimulation: an evolving technology, Australasian Physical Engineering Sciences in Medicine, Volume 37 (2014) no. 4, p. 619 | DOI:10.1007/s13246-014-0297-2
- CMOS-Enabled Interdigitated Back-Contact Solar Cells for Biomedical Applications, IEEE Transactions on Electron Devices, Volume 61 (2014) no. 12, p. 4019 | DOI:10.1109/ted.2014.2364539
- , The 8th European Conference on Antennas and Propagation (EuCAP 2014) (2014), p. 1749 | DOI:10.1109/eucap.2014.6902131
- , 2013 ICME International Conference on Complex Medical Engineering (2013), p. 541 | DOI:10.1109/iccme.2013.6548309
- , 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) (2013), p. 651 | DOI:10.1109/iciea.2013.6566448
- , 2013 IEEE SENSORS (2013), p. 1 | DOI:10.1109/icsens.2013.6688353
- , 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2012), p. 851 | DOI:10.1109/embc.2012.6346065
- , 2012 ICME International Conference on Complex Medical Engineering (CME) (2012), p. 485 | DOI:10.1109/iccme.2012.6275746
- , 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2012), p. 1610 | DOI:10.1109/icsmc.2012.6377967
- Implantable Devices: Issues and Challenges, Electronics, Volume 2 (2012) no. 1, p. 1 | DOI:10.3390/electronics2010001
Cité par 46 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier