[Le point sur les effets biologiques à 40–60 GHz]
Les ondes millimétriques correspondent à la gamme des fréquences comprises entre 30 et 300 GHz. De nombreuses applications existent et émergent actuellement dans ce domaine, notamment en télécommunications, imagerie et surveillance. De plus, certaines de ces fréquences sont utilisées en thérapie en Europe de lʼEst, ce qui suggère que des interactions avec lʼorganisme sont possibles. Cette revue vise à résumer lʼétat des connaissances actuelles sur les interactions ondes millimétriques/matière vivante. Plusieurs exemples représentatifs de la littérature scientifique sont présentés. Enfin, les différents mécanismes potentiellement impliqués dans les effets biologiques des ondes millimétriques seront discutés.
Millimetre waves correspond to the range of frequencies located between 30 and 300 GHz. Many applications exist and are emerging in this band, including wireless telecommunications, imaging and monitoring systems. In addition, some of these frequencies are used in therapy in Eastern Europe, suggesting that interactions with the human body are possible. This review aims to summarise current knowledge on interactions between millimetre waves and living matter. Several representative examples from the scientific literature are presented. Then, possible mechanisms of interactions between millimetre waves and biological systems are discussed.
Mots-clés : Ondes millimétriques, Effets biologiques, Études in vivo et in vitro
Yves Le Dréan 1 ; Yonis Soubere Mahamoud 1 ; Yann Le Page 1 ; Denis Habauzit 1 ; Catherine Le Quément 1 ; Maxim Zhadobov 2 ; Ronan Sauleau 2
@article{CRPHYS_2013__14_5_402_0, author = {Yves Le Dr\'ean and Yonis Soubere Mahamoud and Yann Le Page and Denis Habauzit and Catherine Le Qu\'ement and Maxim Zhadobov and Ronan Sauleau}, title = {State of knowledge on biological effects at 40{\textendash}60 {GHz}}, journal = {Comptes Rendus. Physique}, pages = {402--411}, publisher = {Elsevier}, volume = {14}, number = {5}, year = {2013}, doi = {10.1016/j.crhy.2013.02.005}, language = {en}, }
TY - JOUR AU - Yves Le Dréan AU - Yonis Soubere Mahamoud AU - Yann Le Page AU - Denis Habauzit AU - Catherine Le Quément AU - Maxim Zhadobov AU - Ronan Sauleau TI - State of knowledge on biological effects at 40–60 GHz JO - Comptes Rendus. Physique PY - 2013 SP - 402 EP - 411 VL - 14 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2013.02.005 LA - en ID - CRPHYS_2013__14_5_402_0 ER -
%0 Journal Article %A Yves Le Dréan %A Yonis Soubere Mahamoud %A Yann Le Page %A Denis Habauzit %A Catherine Le Quément %A Maxim Zhadobov %A Ronan Sauleau %T State of knowledge on biological effects at 40–60 GHz %J Comptes Rendus. Physique %D 2013 %P 402-411 %V 14 %N 5 %I Elsevier %R 10.1016/j.crhy.2013.02.005 %G en %F CRPHYS_2013__14_5_402_0
Yves Le Dréan; Yonis Soubere Mahamoud; Yann Le Page; Denis Habauzit; Catherine Le Quément; Maxim Zhadobov; Ronan Sauleau. State of knowledge on biological effects at 40–60 GHz. Comptes Rendus. Physique, Volume 14 (2013) no. 5, pp. 402-411. doi : 10.1016/j.crhy.2013.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.02.005/
[1] 60 GHz wireless: up close and personal, IEEE Microw. Mag., Volume 11 (2010), pp. 44-50
[2] Medical application of millimetre waves, QJM, Volume 91 (1998), pp. 57-66
[3] Biologic effects of millimeteric waves (94 GHz). Are there long term consequences?, Pathol. Biol., Volume 55 (2007), pp. 246-255
[4] Heating and pain sensation produced in human skin by millimeter waves: comparison to a simple thermal model, Health Phys., Volume 78 (2000), pp. 259-267
[5] Current state and implications of research on biological effects of millimeter waves: a review of the literature, Bioelectromagnetics, Volume 19 (1998), pp. 393-413
[6] Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Phys., Volume 74 (1998), pp. 494-522
[7] Near-field dosimetry for in vitro exposure of human cells at 60 GHz, Bioelectromagnetics, Volume 33 (2012), pp. 55-64
[8] Characterization of the interactions between a 60-GHz antenna and the human body in an off-body scenario, IEEE Trans. Antennas Propagat., Volume 60 (2012), pp. 5958-5965
[9] Wearable end-fire textile antenna for on-body communications at 60 GHz, IEEE Antennas Wirel. Propag. Lett., Volume 11 (2012), pp. 799-802
[10] Millimeter-wave interactions with the human body: state of knowledge and recent advances, Int. J. Microw. Wireless Technol., Volume 3 (2011), pp. 237-247
[11] Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: involvement of endogenous opioids, Bioelectromagnetics, Volume 25 (2004), pp. 466-473
[12] Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids, Bioelectromagnetics, Volume 29 (2008), pp. 284-295
[13] Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves, Radiat. Res., Volume 161 (2004), pp. 341-345
[14] Low power millimeter wave irradiation exerts no harmful effect on human keratinocytes in vitro, Bioelectromagnetics, Volume 24 (2003), pp. 165-173
[15] Millimeter wave radiations at 60 GHz do not modify stress-sensitive gene expression of chaperone proteins, Bioelectromagnetics, Volume 28 (2007), pp. 188-196
[16] Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress, Cell Biol. Toxicol., Volume 25 (2009), pp. 471-478
[17] Study of narrow band millimeter-wave potential interactions with endoplasmic reticulum stress sensor genes, Bioelectromagnetics, Volume 30 (2009), pp. 365-373
[18] Gene expression changes in the skin of rats induced by prolonged 35 GHz millimeter-wave exposure, Radiat. Res., Volume 169 (2008), pp. 288-300
[19] Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation, Bioelectromagnetics, Volume 33 (2012), pp. 147-158
[20] Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line, Anticancer Res., Volume 25 (2005), pp. 1023-1028
[21] Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture, Anticancer Res., Volume 25 (2005), pp. 1009-1013
[22] Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: ultrastructural- and metabolic-induced changes, Bioelectrochemistry, Volume 70 (2007), pp. 214-220
[23] Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells, Cell Biochem. Biophys., Volume 55 (2009), pp. 25-32
[24] Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes, Int. J. Mol. Med., Volume 23 (2009), pp. 461-467
[25] Millimeter wave treatment inhibits NO-induced apoptosis of chondrocytes through the p38MAPK pathway, Int. J. Mol. Med., Volume 25 (2010), pp. 393-399
[26] Millimeter wave treatment promotes chondrocyte proliferation by upregulating the expression of cyclin-dependent kinase 2 and cyclin A, Int. J. Mol. Med., Volume 26 (2010), pp. 77-84
[27] Millimeter wave treatment promotes chondrocyte proliferation via G1/S cell cycle transition, Int. J. Mol. Med., Volume 29 (2012), pp. 823-831
[28] The effect of different treatment time of millimeter wave on chondrocyte apoptosis, caspase-3, caspase-8, and MMP-13 expression in rabbit surgically induced model of knee osteoarthritis, Rheumatol. Int., Volume 32 (2012), pp. 2847-2856
[29] Millimeter wave radiation induces apoptosis via affecting the ratio of Bax/Bcl-2 in SW1353 human chondrosarcoma cells, Oncol. Rep., Volume 27 (2012), pp. 664-672
[30] Millimeter wave treatment inhibits the mitochondrion-dependent apoptosis pathway in chondrocytes, Mol. Med. Rep., Volume 4 (2011), pp. 1001-1006
[31] Microwave exposure affecting reproductive system in male rats, Appl. Biochem. Biotechnol., Volume 162 (2010), pp. 416-428
[32] Effect of millimeter wave irradiation on tumor metastasis, Bioelectromagnetics, Volume 27 (2006), pp. 258-264
[33] Effect of millimeter waves on cyclophosphamide induced suppression of T cell functions, Bioelectromagnetics, Volume 24 (2003), pp. 356-365
[34] Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell, and macrophage functions, Bioelectromagnetics, Volume 27 (2006), pp. 458-466
[35] Effect of millimeter waves on natural killer cell activation, Bioelectromagnetics, Volume 26 (2005), pp. 10-19
[36] Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes, Bull. Exp. Biol. Med., Volume 137 (2004), pp. 364-366
[37] Pharmacological analysis of anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation, Biofizika, Volume 51 (2006), pp. 1055-1068
[38] Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: frequency and power dependence, Bioelectromagnetics, Volume 29 (2008), pp. 197-206
[39] Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation, Bioelectromagnetics, Volume 30 (2009), pp. 454-461
[40] Protein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter waves, Bioelectromagnetics, Volume 31 (2010), pp. 656-663
[41] Reactions of keratinocytes to in vitro millimeter wave exposure, Bioelectromagnetics, Volume 22 (2001), pp. 358-364
[42] Effect of millimeter waves and cyclophosphamide on cytokine regulation, Immunopharmacol. Immunotoxicol., Volume 34 (2012), pp. 107-112
[43] Low-intensity electromagnetic millimeter waves for pain therapy, Evid.-Based Complement. Alternat. Med., Volume 3 (2006), pp. 201-207
[44] Pain relief caused by millimeter waves in mice: results of cold water tail flick tests, Int. J. Radiat. Biol., Volume 76 (2000), pp. 575-579
[45] Physiological mechanisms underlying millimetre wave therapy (S.N. Ayrapetyan; M.S. Markov, eds.), Bioelectromagnetics, Springer, 2006, pp. 241-251
[46] Experimental study on the low-intensity millimeter-wave electro-magnetic stimulation of acupuncture points, Acupunct. Electro-Ther. Res., Volume 25 (2000), pp. 91-99
[47] Hypothalamic effects of millimeter wave irradiation depend on location of exposed acupuncture zones in unanesthetized rabbits, Am. J. Chin. Med., Volume 30 (2002), pp. 29-35
[48] Treatment of rheumatoid arthritis with electromagnetic millimeter waves applied to acupuncture points – a randomized double blind clinical study, Acupunct. Electro-Ther. Res., Volume 28 (2003), pp. 11-18
[49] Hypoalgesic effect of millimeter waves in mice: dependence on the site of exposure, Life Sci., Volume 66 (2000), pp. 2101-2111
[50] Peripheral neural system involvement in hypoalgesic effect of electromagnetic millimeter waves, Life Sci., Volume 68 (2001), pp. 1143-1151
[51] Electromagnetic millimeter waves increase the duration of anaesthesia caused by ketamine and chloral hydrate in mice, Int. J. Radiat. Biol., Volume 72 (1997), pp. 475-480
[52] Millimeter wave effects on electrical responses of the sural nerve in vivo, Bioelectromagnetics, Volume 31 (2010), pp. 180-190
[53] Impact of low intensity millimetre waves on cell functions, Electron. Lett., Volume 46 (2010), p. S70-S72
[54] Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices, J. Neural Eng., Volume 7 (2010), p. 045003
[55] Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro, Bioelectromagnetics, Volume 27 (2006), pp. 233-244
[56] Interactions between 60 GHz millimeter waves and artificial biological membranes: Dependence on radiation parameters, IEEE Trans. Microwave Theory Tech., Volume 54 (2006), pp. 2534-2542
[57] Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase, Bioelectromagnetics, Volume 28 (2007), pp. 587-598
[58] The response of giant phospholipid vesicles to millimeter waves radiation, Biochim. Biophys. Acta, Volume 1788 (2009), pp. 1497-1507
- A review of research on RF MEMS for metaverse interactions, Journal of Micromechanics and Microengineering, Volume 34 (2024) no. 8, p. 083003 | DOI:10.1088/1361-6439/ad63b2
- A Novel Reverberation Chamber for In Vitro Bioelectromagnetic Experiments at 3.5 GHz, IEEE Transactions on Electromagnetic Compatibility, Volume 65 (2023) no. 1, p. 39 | DOI:10.1109/temc.2022.3216045
- , 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON) (2022), p. 440 | DOI:10.1109/sibircon56155.2022.10016933
- A Study on the Electromagnetic Radiation in Human Head Tissues on 5G Mobile Exposure, Advanced Materials and Engineering Technologies, Volume 162 (2022), p. 169 | DOI:10.1007/978-3-030-92964-0_17
- Millimeter waves alter DNA secondary structures and modulate the transcriptome in human fibroblasts, Biomedical Optics Express, Volume 13 (2022) no. 5, p. 3131 | DOI:10.1364/boe.458478
- Millimeter-Wave Heating In Vitro: Local Microscale Temperature Measurements Correlated to Heat Shock Cellular Response, IEEE Transactions on Biomedical Engineering, Volume 69 (2022) no. 2, p. 840 | DOI:10.1109/tbme.2021.3108038
- Synergistic effects of carbon black and steel fibers on electromagnetic wave shielding and mechanical properties of graphite/cement composites, Journal of Building Engineering, Volume 45 (2022), p. 103561 | DOI:10.1016/j.jobe.2021.103561
- Design and performance analysis of a low-pull-in-voltage RF MEMS shunt switch for millimeter-wave therapy, IoT, and 5G applications, Journal of Computational Electronics, Volume 21 (2022) no. 2, p. 522 | DOI:10.1007/s10825-022-01863-3
- Electromagnetic Field Exposure: Fundamentals and Key Practices, Low Electromagnetic Field Exposure Wireless Devices (2022), p. 1 | DOI:10.1002/9781119909194.ch1
- Road Ahead for Low EMF User Proximity Devices, Low Electromagnetic Field Exposure Wireless Devices (2022), p. 225 | DOI:10.1002/9781119909194.ch10
- THE EFFECT OF EHF RADIATION WITH A WAVELENGTH OF 5.6 MM ON BIOLOGICAL OBJECTS IN VITRO AND IN VIVO, Russian Journal of Biological Physics and Chemisrty, Volume 7 (2022) no. 1, p. 152 | DOI:10.29039/rusjbpc.2022.0497
- Feasibility study on transcutaneous auricular vagus nerve stimulation using millimeter waves, Biomedical Physics Engineering Express, Volume 7 (2021) no. 6, p. 065028 | DOI:10.1088/2057-1976/ac2c54
- Influence of weak microwaves on spatial collision and energy distribution of water molecules, Chemical Physics, Volume 540 (2021), p. 110977 | DOI:10.1016/j.chemphys.2020.110977
- Glass composite modified with silicon carbide and gallium arsenide, that absorbs electromagnetic radiation, IOP Conference Series: Materials Science and Engineering, Volume 1019 (2021) no. 1, p. 012091 | DOI:10.1088/1757-899x/1019/1/012091
- A Survey on Electromagnetic Risk Assessment and Evaluation Mechanism for Future Wireless Communication Systems, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Volume 4 (2020) no. 1, p. 24 | DOI:10.1109/jerm.2019.2917766
- Development Challenges of Millimeter‐Wave 5G Beamformers, Wiley 5G Ref (2020), p. 1 | DOI:10.1002/9781119471509.w5gref226
- Stimulated activity in the neural tissue, Journal of Applied Physics, Volume 125 (2019) no. 21 | DOI:10.1063/1.5083062
- Notes on parliament hearing in Tallinn, Estonia June 4, 2019 as regards the deployment of the fifth generation, 5G, of wireless communication, World Academy of Sciences Journal (2019) | DOI:10.3892/wasj.2019.28
- The human skin as a sub-THz receiver – Does 5G pose a danger to it or not?, Environmental Research, Volume 163 (2018), p. 208 | DOI:10.1016/j.envres.2018.01.032
- 5 G wireless telecommunications expansion: Public health and environmental implications, Environmental Research, Volume 165 (2018), p. 484 | DOI:10.1016/j.envres.2018.01.016
- Is there a Biological Basis for Therapeutic Applications of Millimetre Waves and THz Waves?, Journal of Infrared, Millimeter, and Terahertz Waves, Volume 39 (2018) no. 9, p. 863 | DOI:10.1007/s10762-018-0483-5
- High ambient radiofrequency radiation in Stockholm city, Sweden, Oncology Letters (2018) | DOI:10.3892/ol.2018.9789
- Impact of 60‐GHz millimeter waves on stress and pain‐related protein expression in differentiating neuron‐like cells, Bioelectromagnetics, Volume 37 (2016) no. 7, p. 444 | DOI:10.1002/bem.21995
- Effects of millimeter wave treatment on the germination rate and antioxidant potentials and gamma-aminobutyric acid of the germinated brown rice, Food Science and Biotechnology, Volume 25 (2016) no. 1, p. 111 | DOI:10.1007/s10068-016-0016-8
- Comment on “Non-thermal mechanism of weak microwave fields influence on neurons” [J. Appl. Phys. 114, 104701 (2013)], Journal of Applied Physics, Volume 119 (2016) no. 8 | DOI:10.1063/1.4942821
- Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome, PLOS ONE, Volume 11 (2016) no. 8, p. e0160810 | DOI:10.1371/journal.pone.0160810
- Safe for Generations to Come: Considerations of Safety for Millimeter Waves in Wireless Communications, IEEE Microwave Magazine, Volume 16 (2015) no. 2, p. 65 | DOI:10.1109/mmm.2014.2377587
- Impact of 60‐GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression, Bioelectromagnetics, Volume 35 (2014) no. 6, p. 444 | DOI:10.1002/bem.21864
- Transcriptome Analysis Reveals the Contribution of Thermal and the Specific Effects in Cellular Response to Millimeter Wave Exposure, PLoS ONE, Volume 9 (2014) no. 10, p. e109435 | DOI:10.1371/journal.pone.0109435
Cité par 29 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier