[Voir et mesurer sous contrainte mécanique avec des électrons : La microscopie électronique à transmission (MET) in situ]
Des premières observations du mouvement de dislocations en 1956 jusqu'aux derniers développements de porte-objets à commandes piézo-électriques et de caméras à détection d'électrons dans les microscopes électroniques à transmission (MET) modernes, les essais mécaniques in situ ont toujours permis une observation inégalée des mécanismes impliqués dans la déformation plastique. Bien que les porte-objets équipés d'une cellule de charge ou de MEMS offrent une visualisation presque directe de ces effets, l'élaboration des étapes nécessaires pour mesurer les relations entre contrainte et déformation à partir d'expériences réalisées in situ dans un MET a une longue histoire. Aujourd'hui, la réalisation d'un essai mécanique complet tout en observant l'évolution d'une structure de dislocations est possible ; ceci constitue la combinaison parfaite pour explorer les effets de taille dans la plasticité. Les nouvelles techniques intrinsèques d'imagerie (comme l'holographie en champ sombre) et l'accès à de nouveaux outils d'acquisition d'images (nouvelles caméras, taux d'acquisition rapides) vont étendre l'efficacité et les capacités de mesures sans entraver l'observation des mécanismes.
From the first observation of moving dislocations in 1956 to the latest developments of piezo-actuated sample holders and direct electron sensing cameras in modern transmission electron microscopes (TEM), in situ mechanical testing has brought an unequaled view of the involved mechanisms during the plastic deformation of materials. Although MEMS-based or load-cell equipped holders provide an almost direct measure of these quantities, deriving stress and strain from in situ TEM experiments has an extensive history. Nowadays, the realization of a complete mechanical test while observing the evolution of a dislocation structure is possible, and it constitutes the perfect combination to explore size effects in plasticity. New cameras, data acquisition rates and intrinsic image-related techniques, such as holography, should extend the efficiency and capabilities of in situ deformation inside a TEM.
Mot clés : Microscopie MET in situ, Déformation plastique, Structure et dynamique des dislocations
Marc Legros 1
@article{CRPHYS_2014__15_2-3_224_0, author = {Marc Legros}, title = {In situ mechanical {TEM:} {Seeing} and measuring under stress with electrons}, journal = {Comptes Rendus. Physique}, pages = {224--240}, publisher = {Elsevier}, volume = {15}, number = {2-3}, year = {2014}, doi = {10.1016/j.crhy.2014.02.002}, language = {en}, }
Marc Legros. In situ mechanical TEM: Seeing and measuring under stress with electrons. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 224-240. doi : 10.1016/j.crhy.2014.02.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.02.002/
[1] Direct Observations of moving dislocations: Reflections on the 30th anniversary of the first recorded observations of moving dislocations by transmission electron microscopy, Mater. Sci. Eng., Volume 84 (1986), pp. 1-10
[2] Direct Observations of moving dislocations: Reflections on the 30th anniversary of the first recorded observations of moving dislocations by transmission electron microscopy (B. Cantor; M.J. Goringe, eds.), Topics in Electron Diffraction and Microscopy of Materials, Wiley, 1999, p. 1
[3] Direct observations of the arrangement and motion of dislocations in aluminium, Philos. Mag., Volume 1 (1956), pp. 677-684
[4] In-situ dynamic observation of dislocation motion at low and high temperatures by HVEM (P.R. Swann; C.J. Humphreys; M.J. Goringe, eds.), The Proceedings of the Third International Conference on High Voltage Electron Microscopy, Academic Press, 1974, pp. 199-205
[5] Load-elongation curves of pure body-centred cubic metals at low temperatures, J. Phys. Soc. Jpn., Volume 35 (1973), p. 1
[6] Performance and applications of the Toulouse 3 million volt electron microscope, J. Microsc., Volume 97 (2011), pp. 3-27
[7] High voltage electron microscopy, Oxford, England, August 27–30, 1973 (1974)
[8] 5th International Conference on High Voltage Electron Microscopy (T. Imura; H. Hashimoto, eds.), The Japanese Society for Electron Microscopy, 1977
[9] U. Messerschmidt, F. Appel, J. Heydenreich, V. Schmidt, Electron microscopy in plasticity and fracture research of materials, 1990.
[10] November 9–12, 1992, Nagoya, Japan, Microscopy Microanalysis Microstructures, vol. 4 (1993)
[11] J. Microsc., 203 (2001) no. 1
[12] Comments on the paper: observation of dislocation dynamics in the electron microscope, by BW Lagow et al., Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 352 (2003), pp. 71-75
[13] Introduction, Dislocation Dynamics During Plastic Deformation, Springer Series in Materials Science, vol. 129, 2010
[14] Preparation of H-bar cross-sectional specimen for in situ TEM straining experiments: A FIB-based method applied to a nitrided Ti-6Al-4V alloy, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 528 (2011), pp. 1367-1371
[15] Development of precision TEM holder assemblies for use in extreme environments, University of Pittsburgh, 2006 (Ph.D. dissertation)
[16] Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: An in situ TEM study, Acta Mater., Volume 61 (2013), pp. 205-216
[17] Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films, Acta Mater., Volume 54 (2006), pp. 2253-2263
[18] Dislocation mechanisms in Ni3Al at room temperature. In situ straining experiments in TEM, Philos. Mag. A, Volume 4 (1991), pp. 153-170
[19] Web site: robertson.matse.illinois.edu, n.d.
[20] In situ experiments in the new transmission electron microscopes, Microsc. Microanal. Microstruct., Volume 4 (1993) no. 2–3, pp. 111-117
[21] et al. In situ deformation in T.E.M.: recent developments, Microsc. Microanal. Microstruct., Volume 4 (1993), pp. 153-170
[22] In situ deformation of thin films on substrates, Microsc. Res. Tech., Volume 72 (2009), pp. 270-283
[23] L.P. Kubin, J. Lepinoux, J. Rabier, P. Veyssière, A. Fourdeux, In situ plastic deformation of metals and alloys in the 200 kV electron microscope, in: Proceedings of the 6th International Conference on the Strength of Metals and Alloys, 1982, p. 953.
[24] In situ TEM observations of the cyclic dislocation behaviour in persistent slip bands of copper single crystals, Philos. Mag. A, Volume 51 (1985), pp. 675-696
[25] Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy, J. Mater. Res., Volume 11 (2011), pp. 752-759
[26] W.C. Oliver, J.B. Pethica, Patent US4848141 – Method for continuous determination of the elastic stiffness of contact, Google Patents, Google.com.
[27] Hardness measurement at penetration depths as small as 20 nm, Philos. Mag. A, Volume 48 (1983), pp. 593-606
[28] Vickers indentation curves of magnesium oxide (MgO), J. Lubr. Technol., Volume 106 (1984), pp. 43-48
[29] Nature, 395 (1998), pp. 780-783
[30] Atomistic visualization of deformation in gold, Phys. Rev. B, Volume 57 (1998), pp. 11158-11163
[31] Time-resolved high-resolution electron microscopy of solid state direct bonding of gold and zinc oxide nanocrystallites at ambient temperature, Appl. Phys. Lett., Volume 70 (1997), pp. 964-966
[32] Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, Volume 283 (1999), pp. 1513-1516
[33] Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM, Journal of Physics and Chemistry of Solids., Volume 61 (2000) no. 7, pp. 1025-1030
[34] et al. Development of a nanoindenter for In situ Transmission Electron Microscopy, Microscopy and Microanalysis., Volume 7 (2001) no. 6, pp. 507-517
[35] Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature, Acta Mater., Volume 52 (2004), pp. 5381-5387
[36] In situTEM nanoindentation and deformation of Si-nanoparticle clusters, J. Phys. D, Appl. Phys., Volume 42 (2008), p. 035410
[37] Grain boundary–mediated plasticity in nanocrystalline nickel, Science, Volume 305 (2004), pp. 654-657
[38] Comment on “Grain boundary-mediated plasticity in nanocrystalline nickel”, Science, Volume 308 (2005), p. 356c
[39] Web site: hysitron.com.
[40] In situ nanoindentation in the TEM, Mater. Today, Volume 10 (2007), pp. 59-60
[41] et al. A new view of the onset of plasticity during the nanoindentation of aluminium, Nat. Mater., Volume 5 (2006), pp. 697-702
[42] Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion, Rev. Sci. Instrum., Volume 74 (2003), pp. 4945-4947
[43] A micromachined nanoindentation force sensor, Eurosensors XVIII 2004 the 18th European Conference on Solid-State Transducers, 2005, pp. 44-49 (123–124)
[44] A miniaturized TEM nanoindenter for studying material deformation in situ, Meas. Sci. Technol., Volume 17 (2006), pp. 1324-1329
[45] Web site, Nanofactory User Group, Nanofactory-User-Group.org.
[46] Web site: News 8, Pmvz-Esteem.Cemes.Fr.
[47] Quantitative in situ nanoindentation in an electron microscope, Appl. Phys. Lett., Volume 79 (2001), pp. 1625-1627
[48] An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., Volume 7 (1992), pp. 1564-1583
[49] Source-controlled yield and hardening of Cu (100) studied by in situ transmission electron microscopy, Acta Mater., Volume 59 (2011), pp. 1328-1337
[50] Absorption of crystal/amorphous interfacial dislocations during in situ TEM nanoindentation of an Al thin film on Si, Scr. Mater., Volume 74 (2014), pp. 44-47
[51] et al. Real time TEM observation of alumina ceramic nano-particles during compression, J. Eur. Ceram. Soc., Volume 32 (2012), pp. 2067-2071
[52] In situ deformation of silicon nanospheres, J. Mater. Sci., Volume 41 (2006), pp. 4477-4483
[53] Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nat. Mater., Volume 7 (2008), pp. 115-119
[54] Sample dimensions influence strength and crystal plasticity, Science, Volume 305 (2004), pp. 986-989
[55] Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Prog. Mater. Sci., Volume 56 (2011), pp. 654-724
[56] Focused ion beam microscopy and micromachining, Mater. Res. Soc. Bull., Volume 32 (2007), pp. 389-395
[57] Micro-compression testing of fcc metals: A selected overview of experiments and simulations, JOM, Volume 61 (2009), pp. 36-41
[58] Plasticity of micrometer-scale single crystals in compression, Annu. Rev. Mater. Res., Volume 39 (2009), pp. 361-386
[59] Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal, Appl. Phys. Lett., Volume 91 (2007), p. 111915
[60] Microstructure versus size: mechanical properties of electroplated single crystalline CU nanopillars, Phys. Rev. Lett., Volume 104 (2010), p. 135503-1-4
[61] Source-based strengthening of sub-micrometer Al fibers, Acta Mater., Volume 60 (2012), pp. 977-983
[62] Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers, Acta Mater., Volume 59 (2011), pp. 2172-2179
[63] Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B, Volume 73 (2006), p. 245410
[64] et al. Achieving the ideal strength in annealed molybdenum nanopillars, Acta Mater., Volume 58 (2010), pp. 5160-5167
[65] In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal, Nat. Mater., Volume 8 (2009), pp. 95-100
[66] Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing, Nano Lett., Volume 11 (2011), pp. 3816-3820
[67] et al. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers, Acta Mater., Volume 60 (2012), pp. 2258-2264
[68] et al. Influence of bulk pre-straining on the size effect in nickel compression pillars, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 559 (2013), pp. 147-158
[69] A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples, Acta Mater., Volume 56 (2008), pp. 580-592
[70] Tensile deformation of electroplated copper nanopillars, Philos. Mag., Volume 91 (2011), pp. 1108-1120
[71] A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device, Exp. Mech., Volume 50 (2009), pp. 47-54
[72] Quantitative in situTEM tensile testing of an individual nickel nanowire, Nanotechnology, Volume 22 (2011), p. 355702
[73] Web site: G. Fried, J. Wozniak, Imaging technology group: http://itg.beckman.illinois.edu/communications/iotw/2002-08-01/, August 1, 2002.
[74] Web site: I.M. Robertson, IMR Group – Facilities, Robertson.Matse.Illinois.Edu.
[75] Discerning size effect strengthening in ultrafine-grained Mg thin films, Scr. Mater., Volume 75 (2013), pp. 10-13
[76] Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension, Scr. Mater., Volume 47 (2002), pp. 863-867
[77] In situ microtensile stage for electromechanical characterization of nanoscale freestanding films, Rev. Sci. Instrum., Volume 77 (2006), p. 045102-8
[78] In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope, J. Mater. Res., Volume 20 (2005), pp. 1769-1777
[79] Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films, Science, Volume 315 (2007), pp. 1831-1834
[80] In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals, Acta Mater., Volume 58 (2010), pp. 4772-4782
[81] Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study, Proc. Natl. Acad. Sci. USA, Volume 101 (2004), pp. 6335-6340
[82] An electromechanical material testing system for in situ electron microscopy and applications, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 14503-14508
[83] Design and operation of a MEMS-based material testing system for nanomechanical characterization, J. Microelectromech. Syst., Volume 16 (2007), pp. 1219-1231
[84] In Situ TEM electromechanical testing of nanowires and nanotubes, Small, Volume 8 (2012), pp. 3233-3252
[85] Elasticity size effects in ZnO nanowires – a combined experimental-computational approach, Nano Lett., Volume 8 (2008), pp. 3668-3674
[86] A versatile microelectromechanical system for nanomechanical testing, Appl. Phys. Lett., Volume 98 (2011) (053506–053503)
[87] Design and fabrication of MEMS-controlled probes for studying the nano-interface under in situ TEM observation, J. Micromech. Microeng., Volume 20 (2010), p. 075011
[88] Real-time transmission electron microscope observation of nanofriction at a single Ag asperity, Nanotechnology, Volume 23 (2012), p. 505701
[89] Development of MEMS integrated into TEM setup to monitor shear deformation, force and stress for nanotribology, Microelectron. Eng., Volume 112 (2013), pp. 269-272
[90] Selected failure mechanisms of modern power modules, Microelectron. Reliab., Volume 42 (2002), pp. 653-667
[91] Strain dependence of the performance enhancement in strained-Si n-MOSFETs, IEDM '94, Technical Digest. (1994), pp. 373-376
[92] Defects in epitaxial multilayers: I. Misfit dislocations, J. Cryst. Growth, Volume 27 (1974), pp. 118-125
[93] Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks, J. Cryst. Growth, Volume 29 (1975), pp. 273-280
[94] Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system, Appl. Phys. Lett., Volume 54 (1989), pp. 925-927
[95] Nanoscale holographic interferometry for strain measurements in electronic devices, Nature, Volume 453 (2008), pp. 1086-1089
[96] Mechanical properties of thin films, Metall. Trans. A, Volume 20A (1989), pp. 2217-2245
[97] Yielding and strain hardening of thin metal films on substrates, Scr. Mater., Volume 39 (1998), pp. 545-554
[98] Measurements and interpretation of stress in aluminum-based metallization as a function of thermal history, IEEE Trans. Electron Devices, Volume 34 (1987), pp. 689-699
[99] Measurements and interpretation of stress in copper films as a function of thermal history, J. Mater. Res., Volume 6 (1991), pp. 1498-1501
[100] The strength limits of ultra-thin copper films, University of Stuttgart, Germany, 2007 (Ph.D. dissert.)
[101] Observation of dislocation disappearance in aluminum thin films and consequences for thin film properties, Warrendale, PA, Boston, MA (Mater. Res. Soc.) (1998), p. 149
[102] Dynamic observation of Al thin films plastically strained in a TEM, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 309–310 (2001), pp. 463-467
[103] In situ TEM investigation during thermal cycling of thin copper films, MRS Proc., Volume 436 (1996)
[104] Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation, J. Mater. Res., Volume 13 (1998), pp. 1307-1317
[105] et al. In situ transmission electron microscopy investigation of threading dislocation motion in passivated thin aluminum films, J. Mater. Res., Volume 14 (1999), pp. 4673-4676
[106] Small-scale plasticity, Mechanics of Nano-Objects, École des Mines de Paris Éditions, Paris, 2011
[107] Relaxation plastique des couches métalliques par dislocations et défauts étendus, Contraintes mécaniques en micro, nano Et optoélectronique (Traité EGEM, Série Électronique Et Micro-Électronique), Hermes Science Publications, Paris, 2006
[108] In situ TEM observation of dislocation motion in thermally strained Al nanowires, Acta Mater., Volume 50 (2002), pp. 5033-5047
[109] In situ TEM study of plastic stress relaxation mechanisms and interface effects in metallic films, San Francisco (T. Buchheit; A. Minor; R. Spolenak; K. Takashima, eds.) (MRS Proc.), Volume 875 (2005), pp. 237-247
[110] Small-scale plasticity in thin Cu and Al films, Microelectron. Eng., Volume 70 (2003), pp. 412-424
[111] Parallel glide: unexpected dislocation motion parallel to the substrate in ultrathin copper films, Acta Mater., Volume 51 (2003), pp. 4471-4485
[112] A discrete dislocation plasticity model of creep in polycrystalline thin films, Defect Diffus. Forum (2003), pp. 107-126 (224-225)
[113] Atomistic and continuum studies of crack-like diffusion wedges and associated dislocation mechanisms in thin films on substrates, J. Mech. Phys. Solids, Volume 51 (2003), pp. 2105-2125
[114] L. J, Theory of Dislocations, John Wiley and Sons, New York, 1982
[115] Dislocations, Dislocations, Pergamon Press, Oxford, 1967, pp. 45-46
[116] Plasticity mechanisms in sub-micron Al fiber investigated by in situ TEM, Adv. Eng. Mater., Volume 14 (2012), pp. 955-959
[117] On the stress discrepancy at low-temperatures in pure iron, Acta Mater., Volume 62 (2014), pp. 267-275
[118] In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium, Acta Mater., Volume 60 (2012), pp. 3402-3414
[119] An in situ study of prismatic glide in α titanium at low temperatures, Acta Metall. Mater., Volume 41 (1993), pp. 2701-2709
[120] Prismatic and basal slip in Ti3Al. II. Dislocation interactions and cross-slip processes, Philos. Mag. A, Volume 73 (1996), pp. 81-99
[121] Pinning points anchoring ordinary and Shockley dislocations in TiAl alloys, Acta Mater., Volume 46 (1998), pp. 5899-5905
[122] Experimental study of dislocation mobility in a Ti–6Al–4V alloy, Acta Mater., Volume 18 (2007), pp. 6284-6291
[123] Dissociated dislocations in confined plasticity, Acta Mater., Volume 55 (2007), pp. 6453-6458
[124] Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Press, Cambridge, 2003
[125] Observation of giant diffusivity along dislocation cores, Science, Volume 319 (2008), pp. 1646-1649
[126] Quantitative analysis of dislocation pile-ups in thin foils compared to bulk, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 387–389 (2004), pp. 109-114
[127] Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni, Acta Mater., Volume 59 (2011), pp. 1456-1463
[128] Pile-ups in thin foils: application to transmission electron microscopy analysis of short-range-order, Philos. Mag., Volume 84 (2006), pp. 807-824
[129] et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas. Sci. Technol., Volume 20 (2009), p. 062001
[130] Digital Image Correlation and Tracking, The Mathworks, Inc., 2006
[131] Experimental techniques for uncovering deformation mechanisms in nanocrystalline Al thin films, TMS Lett. (2004), pp. 149-150
[132] et al. In situ nanomechanical testing in focused ion beam and scanning electron microscopes, Rev. Sci. Instrum., Volume 82 (2011), pp. 063901-063912
[133] Grain-boundary mediated plasticity in nanocrystalline Al films, San Francisco (2008)
[134] Direct observation and quantification of grain boundary shear-migration coupling in polycrystalline Al, J. Mater. Sci., Volume 46 (2011), pp. 4308-4313
[135] Grain boundary shear-migration coupling–I. In situ TEM straining experiments in Al polycrystals, Acta Mater., Volume 57 (2009), pp. 2198-2209
[136] A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation, Acta Mater., Volume 52 (2004), pp. 4887-4898
[137] Coupling grain boundary motion to shear deformation, Acta Mater., Volume 54 (2006), pp. 4953-4975
[138] Elementary mechanisms of shear-coupled grain boundary migration, Phys. Rev. Lett. (2013), p. 265507
[139] Grain boundary migration: misorientation dependence, Curr. Opin. Solid State Mater. Sci., Volume 5 (2001), p. 9
[140] Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration, Philos. Mag., Volume 93 (2013), pp. 1299-1316
[141] Grain-boundary shear-migration coupling. II: Geometrical model for general boundaries, Acta Mater., Volume 57 (2009), pp. 2390-2402
[142] High-resolution strain measurement in shallow trench isolation structures using dynamic electron diffraction, Appl. Phys. Lett., Volume 84 (2004), pp. 2181-2183
[143] Fatigue of single crystalline silicon: Mechanical behaviour and TEM observations, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 483–484 (2008), pp. 353-364
[144] Measurement of the displacement field of dislocations to 0.03 A by electron microscopy, Nature, Volume 425 (2003), pp. 270-273
[145] Direct mapping of strain in a strained silicon transistor by high-resolution electron microscopy, Phys. Rev. Lett., Volume 100 (2008), p. 156602
[146] In Situ dark field electron holography with a double tilt nano-indentation holder, Rio de Janeiro (2010)
[147] Web site, K. Ishizuka, GPA for DigitalMicrograph, www.hremresearch.com.
[148] et al. Exploiting a direct detection camera for in situ microscopy, Microsc. Microanal., Volume 19 (2013), pp. 392-393
Cité par Sources :
Commentaires - Politique