Comptes Rendus
Prix Leconte 2015 de l'Académie des sciences
Quantum simulation of disordered systems with cold atoms
[Simulation quantique de systèmes désordonnés avec des atomes froids]
Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 31-46.

Cet article discute la physique du désordre quantique en relation avec une série d'expériences utilisant des atomes refroidis par laser soumis à des pulses d'une onde stationnaire. On réalise ainsi un modèle paradigmatique du chaos quantique, le « rotateur frappé » (kicked rotor en anglais). Ce système dynamique peut être mappé sur un Hamiltonien de type « liaisons fortes » avec pseudo-désordre, qui s'avère être formellement équivalent au modèle d'Anderson du désordre quantique, où le chaos quantique joue le rôle du désordre. On obtient un très bon simulateur quantique de la physique décrite par le modèle d'Anderson.

This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to “kicks” of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics.

Publié le :
DOI : 10.1016/j.crhy.2016.09.002
Keywords: Anderson localization, Kicked rotor, Quantum chaos, Ultracold atoms, Quantum simulation
Mot clés : Localisation d'Anderson, Rotateur frappé, Chaos quantique, Atomes ultra-froids, Simulation quantique

Jean-Claude Garreau 1

1 Université de Lille, CNRS, UMR 8523, PhLAM – Laboratoire de physique des lasers, atomes et molécules, 59000 Lille, France
@article{CRPHYS_2017__18_1_31_0,
     author = {Jean-Claude Garreau},
     title = {Quantum simulation of disordered systems with cold atoms},
     journal = {Comptes Rendus. Physique},
     pages = {31--46},
     publisher = {Elsevier},
     volume = {18},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crhy.2016.09.002},
     language = {en},
}
TY  - JOUR
AU  - Jean-Claude Garreau
TI  - Quantum simulation of disordered systems with cold atoms
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 31
EP  - 46
VL  - 18
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.09.002
LA  - en
ID  - CRPHYS_2017__18_1_31_0
ER  - 
%0 Journal Article
%A Jean-Claude Garreau
%T Quantum simulation of disordered systems with cold atoms
%J Comptes Rendus. Physique
%D 2017
%P 31-46
%V 18
%N 1
%I Elsevier
%R 10.1016/j.crhy.2016.09.002
%G en
%F CRPHYS_2017__18_1_31_0
Jean-Claude Garreau. Quantum simulation of disordered systems with cold atoms. Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 31-46. doi : 10.1016/j.crhy.2016.09.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.09.002/

[1] F. Haake Quantum Signatures of Chaos, Springer-Verlag, Berlin, Germany, 2001

[2] P.W. Anderson Absence of diffusion in certain random lattices, Phys. Rev., Volume 109 (1958) no. 5, pp. 1492-1505 | DOI

[3] G. Casati; B.V. Chirikov; J. Ford; F.M. Izrailev (Lect. Notes Phys.), Volume vol. 93, Springer-Verlag, Berlin, Germany (1979), pp. 334-352 | DOI

[4] D.R. Grempel; R.E. Prange; S. Fishman Quantum dynamics of a nonintegrable system, Phys. Rev. A, Volume 29 (1984) no. 4, pp. 1639-1647 | DOI

[5] R.P. Feynman Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982), pp. 467-488

[6] M. Greiner; O. Mandel; T. Esslinger; T.W. Hänsch; I. Bloch Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature (London), Volume 415 (2002) no. 6867, pp. 39-44 | DOI

[7] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, pp. 885-964 | DOI

[8] I.M. Georgescu; S. Ashhab; F. Nori Quantum simulation, Rev. Mod. Phys., Volume 86 (2014) no. 1, pp. 153-185 | DOI

[9] J. Dalibard Réseaux optiques dans le régime des liaisons fortes, Lecture, Collège de France, 2013 http://www.phys.ens.fr/~dalibard/CdF/2013/cours3.pdf

[10] G.H. Wannier The structure of electronic excitation levels in insulating crystals, Phys. Rev., Volume 52 (1937) no. 3, pp. 191-197 | DOI

[11] E. Abrahams; P.W. Anderson; D.C. Licciardello; T.V. Ramakrishnan Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett., Volume 42 (1979) no. 10, pp. 673-676 (link.aps.org/abstract/PRL/v42/p673) | DOI

[12] J.M. Luck Systèmes désordonnés unidimensionnels, Aléa Sacaly, Gif sur Yvette, France, 1992

[13] C.A. Mueller; D. Delande; C.A. Müller; D. Delande Disorder and interference: localization phenomena, 2010 | arXiv

[14] J. Kroha; T. Kopp; P. Wölfle Self-consistent theory of Anderson localization for the tight-binding model with site-diagonal disorder, Phys. Rev. B, Volume 41 (1990) no. 1, pp. 888-891 | DOI

[15] F.J. Wegner Electrons in disordered systems. Scaling near the mobility edge, Z. Phys. B, Volume 25 (1976) no. 4, pp. 327-337 | DOI

[16] K. Slevin; T. Ohtsuki Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class, New J. Phys., Volume 16 (2014) no. 1 stacks.iop.org/1367-2630/16/i=1/a=015012 (URL)

[17] M. Störzer; P. Gross; C.M. Aegerter; G. Maret Observation of the critical regime near Anderson localization of light, Phys. Rev. Lett., Volume 96 (2006) no. 6 | DOI

[18] D.S. Wiersma; P. Bartolini; A. Lagendijk; R. Righini Localization of light in a disordered medium, Nature (London), Volume 390 (1997), pp. 671-673 | DOI

[19] T. Schwartz; G. Bartal; S. Fishman; M. Segev Transport and Anderson localization in disordered two-dimensional photonic lattices, Nature (London), Volume 446 (2015) no. 7131, pp. 52-55 | DOI

[20] S. Faez; A. Strybulevych; J.H. Page; A. Lagendijk; B.A. van Tiggelen Observation of multifractality in Anderson localization of ultrasound, Phys. Rev. Lett., Volume 103 (2009) no. 15 | DOI

[21] T. Sperling; L. Schertel; M. Ackermann; G.J. Aubry; C.M. Aegerter; G. Maret Can 3D light localization be reached in “white paint”?, New J. Phys., Volume 18 (2016) no. 1 stacks.iop.org/1367-2630/18/i=1/a=013039 (URL)

[22] J. Billy; V. Josse; Z. Zuo; A. Bernard; B. Hambrecht; P. Lugan; D. Clément; L. Sanchez-Palencia; P. Bouyer; A. Aspect Direct observation of Anderson localization of matter-waves in a controlled disorder, Nature (London), Volume 453 (2008), pp. 891-894 | DOI

[23] G. Roati; C. d'Errico; L. Fallani; M. Fattori; C. Fort; M. Zaccanti; G. Modugno; M. Modugno; M. Inguscio Anderson localization of a non-interacting Bose-Einstein condensate, Nature (London), Volume 453 (2008), pp. 895-898 | DOI

[24] F. Jendrzejewski; A. Bernard; K. Müller; P. Cheinet; V. Josse; M. Piraud; L. Pezzè; L. Sanchez-Palencia; A. Aspect; P. Bouyer Three-dimensional localization of ultracold atoms in an optical disordered potential, Nat. Phys., Volume 8 (2012) no. 5, pp. 398-403 | DOI

[25] G. Semeghini; M. Landini; P. Castilho; S. Roy; G. Spagnolli; A. Trenkwalder; M. Fattori; M. Inguscio; G. Modugno Measurement of the mobility edge for 3D Anderson localization, Nat. Phys., Volume 11 (2015) no. 7, pp. 554-559 | DOI

[26] S.S. Kondov; W.R. McGehee; J.J. Zirbel; B. DeMarco Three-dimensional Anderson localization of ultracold matter, Science, Volume 334 (2011) no. 6052, pp. 66-68 http://www.sciencemag.org/content/334/6052/66.abstract | DOI

[27] B.V. Chirikov A universal instability of many-dimensional oscillator systems, Phys. Rep., Volume 52 (1979) no. 5, pp. 263-379 | DOI

[28] R. Graham; M. Schlautmann; P. Zoller Dynamical localization of atomic-beam deflection by a modulated standing light wave, Phys. Rev. A, Volume 45 (1992) no. 1, p. R19-R22 | DOI

[29] F.L. Moore; J.C. Robinson; C. Bharucha; P.E. Williams; M.G. Raizen Observation of dynamical localization in atomic momentum transfer: a new testing ground for quantum chaos, Phys. Rev. Lett., Volume 73 (1994) no. 22, pp. 2974-2977 | DOI

[30] F.L. Moore; J.C. Robinson; C.F. Bharucha; B. Sundaram; M.G. Raizen Atom optics realization of the quantum δ-kicked rotor, Phys. Rev. Lett., Volume 75 (1995) no. 25, pp. 4598-4601 | DOI

[31] B. Nowak; J.J. Kinnunen; M.J. Holland; P. Schlagheck Delocalization of ultracold atoms in a disordered potential due to light scattering, Phys. Rev. A, Volume 86 (2012) no. 4 | DOI

[32] D. Cohen Quantum chaos, dynamical correlations, and the effect of noise on localization, Phys. Rev. A, Volume 44 (1991), pp. 2292-2313 link.aps.org/abstract/PRA/v44/p2292 (URL)

[33] I. Manai; J.-F. Clément; R. Chicireanu; C. Hainaut; J.-C. Garreau; P. Szriftgiser; D. Delande Experimental observation of two-dimensional Anderson localization with the atomic kicked rotor, Phys. Rev. Lett., Volume 115 (2015) no. 24 | DOI

[34] J. Ringot; P. Szriftgiser; J.-C. Garreau Subrecoil Raman spectroscopy of cold cesium atoms, Phys. Rev. A, Volume 65 (2001) no. 1 | DOI

[35] J. Chabé; H. Lignier; P. Szriftgiser; J.-C. Garreau Improving Raman velocimetry of laser-cooled cesium atoms by spin-polarization, Opt. Commun., Volume 274 (2007), pp. 254-259 | DOI

[36] S. Fishman; D.R. Grempel; R.E. Prange Chaos, quantum recurrences, and Anderson localization, Phys. Rev. Lett., Volume 49 (1982) no. 8, pp. 509-512 | DOI

[37] J. Wang; A.M. García-García Anderson transition in a three-dimensional kicked rotor, Phys. Rev. E, Volume 79 (2009) no. 3 | DOI

[38] D.L. Shepelyansky Localization of diffusive excitation in multi-level systems, Physica D, Volume 28 (1987) no. 1–2, pp. 103-114 | DOI

[39] G. Casati; I. Guarneri; D.L. Shepelyansky Anderson transition in a one-dimensional system with three incommensurate frequencies, Phys. Rev. Lett., Volume 62 (1989) no. 4, pp. 345-348 | DOI

[40] J. Chabé; G. Lemarié; B. Grémaud; D. Delande; P. Szriftgiser; J.-C. Garreau Experimental observation of the Anderson metal–insulator transition with atomic matter waves, Phys. Rev. Lett., Volume 101 (2008) no. 25 | DOI

[41] E. Akkermans; G. Montambaux Mesoscopic Physics of Electrons and Photons, Cambridge University Press, Cambridge, UK, 2011

[42] J. Rammer Quantum Transport Theory, Westview Press, Boulder, USA, 2004

[43] G. Lemarié; B. Grémaud; D. Delande Universality of the Anderson transition with the quasiperiodic kicked rotor, Europhys. Lett., Volume 87 (2009), p. 37007 | DOI

[44] G. Lemarié Transition d'Anderson avec des ondes de matière atomiques, Université Pierre-et-Marie-Curie, Paris, 2009 tel.archives-ouvertes.fr/tel-00424399/fr/ (Ph.D. thesis URL)

[45] N. Cherroret; B. Vermersch; J.-C. Garreau; D. Delande How nonlinear interactions challenge the three-dimensional Anderson transition, Phys. Rev. Lett., Volume 112 (2014) no. 17 | DOI

[46] K. Efetov Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, UK, 1997

[47] A. Altland; M.R. Zirnbauer Field theory of the quantum kicked rotor, Phys. Rev. Lett., Volume 77 (1996) no. 22, pp. 4536-4539 | DOI

[48] C. Tian; A. Altland; M. Garst Theory of the Anderson transition in the quasiperiodic kicked rotor, Phys. Rev. Lett., Volume 107 (2011) no. 7 | DOI

[49] Y. Chen; C. Tian Planck's quantum-driven integer quantum hall effect in chaos, Phys. Rev. Lett., Volume 113 (2014) no. 21 | DOI

[50] C. Tian; Y. Chen; J. Wang Emergence of integer quantum Hall effect from chaos, Phys. Rev. B, Volume 93 (2016) no. 7 | DOI

[51] J. Ringot; P. Szriftgiser; J.-C. Garreau; D. Delande Experimental evidence of dynamical localization and delocalization in a quasiperiodic driven system, Phys. Rev. Lett., Volume 85 (2000) no. 13, pp. 2741-2744 | DOI

[52] P. Szriftgiser; J. Ringot; D. Delande; J.-C. Garreau Observation of sub-Fourier resonances in a quantum-chaotic system, Phys. Rev. Lett., Volume 89 (2002) no. 22 | DOI

[53] H. Lignier; J. Chabé; D. Delande; J.-C. Garreau; P. Szriftgiser Reversible destruction of dynamical localization, Phys. Rev. Lett., Volume 95 (2005) no. 23 | DOI

[54] J. Chabé; H. Lignier; H. Cavalcante; D. Delande; P. Szriftgiser; J.-C. Garreau Quantum scaling laws in the onset of dynamical delocalization, Phys. Rev. Lett., Volume 97 (2006) no. 26 | DOI

[55] A. MacKinnon; B. Kramer One-parameter scaling of localization length and conductance in disordered systems, Phys. Rev. Lett., Volume 47 (1981) no. 21, pp. 1546-1549 | DOI

[56] J.L. Pichard; G. Sarma Finite size scaling approach to Anderson localisation, J. Phys. C, Solid State Phys., Volume 14 (1981) no. 6, p. L127-L132 | DOI

[57] G. Lemarié; J. Chabé; P. Szriftgiser; J.-C. Garreau; B. Grémaud; D. Delande Observation of the Anderson metal–insulator transition with atomic matter waves: theory and experiment, Phys. Rev. A, Volume 80 (2009) no. 4 | DOI

[58] M. Lopez; J.-F. Clément; P. Szriftgiser; J.-C. Garreau; D. Delande Experimental test of universality of the Anderson transition, Phys. Rev. Lett., Volume 108 (2012) no. 9 | DOI

[59] G. Lemarié; H. Lignier; D. Delande; P. Szriftgiser; J.-C. Garreau Critical State of the Anderson transition: between a metal and an insulator, Phys. Rev. Lett., Volume 105 (2010) no. 9 | DOI

[60] P.-E. Wolf; G. Maret Weak localization and coherent backscattering of photons in disordered media, Phys. Rev. Lett., Volume 55 (1985) no. 24, pp. 2696-2699 | DOI

[61] M.P.V. Albada; A. Lagendijk Observation of weak localization of light in a random medium, Phys. Rev. Lett., Volume 55 (1985) no. 24, pp. 2692-2695 | DOI

[62] G. Labeyrie; F. Tomasi; J.C. Bernard; C.A. Müller; C. Miniatura; R. Kaiser Coherent backscattering of light by cold atoms, Phys. Rev. Lett., Volume 83 (1999), pp. 5266-5269 link.aps.org/abstract/PRL/v83/p5266 (URL)

[63] F. Jendrzejewski; K. Müller; J. Richard; A. Date; T. Plisson; P. Bouyer; A. Aspect; V. Josse Coherent backscattering of ultracold atoms, Phys. Rev. Lett., Volume 109 (2012) no. 19 | DOI

[64] N. Cherroret; T. Karpiuk; C.A. Müller; B. Grémaud; C. Miniatura Coherent backscattering of ultracold matter waves: momentum space signatures, Phys. Rev. A, Volume 85 (2012) no. 1 | DOI

[65] C. Hainaut; I. Manai; R. Chicireanu; J.-F. Clément; S. Zemmouri; J.-C. Garreau; P. Szriftgiser; G. Lemarié; N. Cherroret; D. Delande Return to the origin as a probe of atomic phase coherence, 2016 | arXiv

[66] K. Slevin; T. Ohtsuki Estimate of the critical exponent of the Anderson transition in the three and four dimensional unitary universality classes, 2016 | arXiv

[67] R. Scharf Kicked rotator for a spin-1/2 particle, J. Phys. A, Math. Theor., Volume 22 (1989) no. 19, pp. 4223-4242 stacks.iop.org/0305-4470/22/i=19/a=016 (URL)

[68] J.P. Dahlhaus; J.M. Edge; J. Tworzydło; C.W.J. Beenakker Quantum Hall effect in a one-dimensional dynamical system, Phys. Rev. B, Volume 84 (2011) no. 11 | DOI

[69] E.P.L. van Nieuwenburg; J.M. Edge; J.P. Dahlhaus; J. Tworzydło; C.W.J. Beenakker Metal–topological insulator transition in the quantum kicked rotator with Z2 symmetry, Phys. Rev. B, Volume 85 (2012) no. 16 | DOI

[70] Y. Ueoka; K. Slevin Dimensional dependence of critical exponent of the Anderson transition in the orthogonal universality class, J. Phys. Soc. Jpn., Volume 83 (2014) no. 8 | DOI

[71] C. Chin; R. Grimm; P. Julienne; E. Tiesinga Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010) no. 2, pp. 1225-1286 | DOI

[72] M. Schreiber; S.S. Hodgman; P. Bordia; H.P. Lüschen; M.H. Fischer; R. Vosk; E. Altman; U. Schneider; I. Bloch Observation of many-body localization of interacting fermions in a quasirandom optical lattice, Science, Volume 349 (2015) no. 6250, pp. 842-845 | DOI

[73] D.L. Shepelyansky Delocalization of quantum chaos by weak nonlinearity, Phys. Rev. Lett., Volume 70 (1993) no. 12, pp. 1787-1790 | DOI

[74] G. Gligoric; J.D. Bodyfelt; S. Flach Interactions destroy dynamical localization with strong and weak chaos, Europhys. Lett., Volume 96 (2011) no. 3, p. 30004 stacks.iop.org/0295-5075/96/i=3/a=30004 (URL)

[75] A.S. Pikovsky; D.L. Shepelyansky Destruction of Anderson localization by a weak nonlinearity, Phys. Rev. Lett., Volume 100 (2008) no. 9 | DOI

[76] S. Flach; D.O. Krimer; C. Skokos Universal spreading of wave packets in disordered nonlinear systems, Phys. Rev. Lett., Volume 102 (2009) no. 2 | DOI

[77] E. Lucioni; B. Deissler; L. Tanzi; G. Roati; M. Zaccanti; M. Modugno; M. Larcher; F. Dalfovo; M. Inguscio; G. Modugno Observation of subdiffusion in a disordered interacting system, Phys. Rev. Lett., Volume 106 (2011) no. 23 | DOI

[78] J. Wang; J. Gong Proposal of a cold-atom realization of quantum maps with Hofstadter's butterfly spectrum, Phys. Rev. A, Volume 77 (2008) no. 3 | DOI

Cité par Sources :

Commentaires - Politique