[Simulation quantique de systèmes désordonnés avec des atomes froids]
Cet article discute la physique du désordre quantique en relation avec une série d'expériences utilisant des atomes refroidis par laser soumis à des pulses d'une onde stationnaire. On réalise ainsi un modèle paradigmatique du chaos quantique, le « rotateur frappé » (kicked rotor en anglais). Ce système dynamique peut être mappé sur un Hamiltonien de type « liaisons fortes » avec pseudo-désordre, qui s'avère être formellement équivalent au modèle d'Anderson du désordre quantique, où le chaos quantique joue le rôle du désordre. On obtient un très bon simulateur quantique de la physique décrite par le modèle d'Anderson.
This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to “kicks” of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics.
Mot clés : Localisation d'Anderson, Rotateur frappé, Chaos quantique, Atomes ultra-froids, Simulation quantique
Jean-Claude Garreau 1
@article{CRPHYS_2017__18_1_31_0, author = {Jean-Claude Garreau}, title = {Quantum simulation of disordered systems with cold atoms}, journal = {Comptes Rendus. Physique}, pages = {31--46}, publisher = {Elsevier}, volume = {18}, number = {1}, year = {2017}, doi = {10.1016/j.crhy.2016.09.002}, language = {en}, }
Jean-Claude Garreau. Quantum simulation of disordered systems with cold atoms. Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 31-46. doi : 10.1016/j.crhy.2016.09.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.09.002/
[1] Quantum Signatures of Chaos, Springer-Verlag, Berlin, Germany, 2001
[2] Absence of diffusion in certain random lattices, Phys. Rev., Volume 109 (1958) no. 5, pp. 1492-1505 | DOI
[3] (Lect. Notes Phys.), Volume vol. 93, Springer-Verlag, Berlin, Germany (1979), pp. 334-352 | DOI
[4] Quantum dynamics of a nonintegrable system, Phys. Rev. A, Volume 29 (1984) no. 4, pp. 1639-1647 | DOI
[5] Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982), pp. 467-488
[6] Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature (London), Volume 415 (2002) no. 6867, pp. 39-44 | DOI
[7] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, pp. 885-964 | DOI
[8] Quantum simulation, Rev. Mod. Phys., Volume 86 (2014) no. 1, pp. 153-185 | DOI
[9] Réseaux optiques dans le régime des liaisons fortes, Lecture, Collège de France, 2013 http://www.phys.ens.fr/~dalibard/CdF/2013/cours3.pdf
[10] The structure of electronic excitation levels in insulating crystals, Phys. Rev., Volume 52 (1937) no. 3, pp. 191-197 | DOI
[11] Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett., Volume 42 (1979) no. 10, pp. 673-676 (link.aps.org/abstract/PRL/v42/p673) | DOI
[12] Systèmes désordonnés unidimensionnels, Aléa Sacaly, Gif sur Yvette, France, 1992
[13] Disorder and interference: localization phenomena, 2010 | arXiv
[14] Self-consistent theory of Anderson localization for the tight-binding model with site-diagonal disorder, Phys. Rev. B, Volume 41 (1990) no. 1, pp. 888-891 | DOI
[15] Electrons in disordered systems. Scaling near the mobility edge, Z. Phys. B, Volume 25 (1976) no. 4, pp. 327-337 | DOI
[16] Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class, New J. Phys., Volume 16 (2014) no. 1 stacks.iop.org/1367-2630/16/i=1/a=015012 (URL)
[17] Observation of the critical regime near Anderson localization of light, Phys. Rev. Lett., Volume 96 (2006) no. 6 | DOI
[18] Localization of light in a disordered medium, Nature (London), Volume 390 (1997), pp. 671-673 | DOI
[19] Transport and Anderson localization in disordered two-dimensional photonic lattices, Nature (London), Volume 446 (2015) no. 7131, pp. 52-55 | DOI
[20] Observation of multifractality in Anderson localization of ultrasound, Phys. Rev. Lett., Volume 103 (2009) no. 15 | DOI
[21] Can 3D light localization be reached in “white paint”?, New J. Phys., Volume 18 (2016) no. 1 stacks.iop.org/1367-2630/18/i=1/a=013039 (URL)
[22] Direct observation of Anderson localization of matter-waves in a controlled disorder, Nature (London), Volume 453 (2008), pp. 891-894 | DOI
[23] Anderson localization of a non-interacting Bose-Einstein condensate, Nature (London), Volume 453 (2008), pp. 895-898 | DOI
[24] Three-dimensional localization of ultracold atoms in an optical disordered potential, Nat. Phys., Volume 8 (2012) no. 5, pp. 398-403 | DOI
[25] Measurement of the mobility edge for 3D Anderson localization, Nat. Phys., Volume 11 (2015) no. 7, pp. 554-559 | DOI
[26] Three-dimensional Anderson localization of ultracold matter, Science, Volume 334 (2011) no. 6052, pp. 66-68 http://www.sciencemag.org/content/334/6052/66.abstract | DOI
[27] A universal instability of many-dimensional oscillator systems, Phys. Rep., Volume 52 (1979) no. 5, pp. 263-379 | DOI
[28] Dynamical localization of atomic-beam deflection by a modulated standing light wave, Phys. Rev. A, Volume 45 (1992) no. 1, p. R19-R22 | DOI
[29] Observation of dynamical localization in atomic momentum transfer: a new testing ground for quantum chaos, Phys. Rev. Lett., Volume 73 (1994) no. 22, pp. 2974-2977 | DOI
[30] Atom optics realization of the quantum δ-kicked rotor, Phys. Rev. Lett., Volume 75 (1995) no. 25, pp. 4598-4601 | DOI
[31] Delocalization of ultracold atoms in a disordered potential due to light scattering, Phys. Rev. A, Volume 86 (2012) no. 4 | DOI
[32] Quantum chaos, dynamical correlations, and the effect of noise on localization, Phys. Rev. A, Volume 44 (1991), pp. 2292-2313 link.aps.org/abstract/PRA/v44/p2292 (URL)
[33] Experimental observation of two-dimensional Anderson localization with the atomic kicked rotor, Phys. Rev. Lett., Volume 115 (2015) no. 24 | DOI
[34] Subrecoil Raman spectroscopy of cold cesium atoms, Phys. Rev. A, Volume 65 (2001) no. 1 | DOI
[35] Improving Raman velocimetry of laser-cooled cesium atoms by spin-polarization, Opt. Commun., Volume 274 (2007), pp. 254-259 | DOI
[36] Chaos, quantum recurrences, and Anderson localization, Phys. Rev. Lett., Volume 49 (1982) no. 8, pp. 509-512 | DOI
[37] Anderson transition in a three-dimensional kicked rotor, Phys. Rev. E, Volume 79 (2009) no. 3 | DOI
[38] Localization of diffusive excitation in multi-level systems, Physica D, Volume 28 (1987) no. 1–2, pp. 103-114 | DOI
[39] Anderson transition in a one-dimensional system with three incommensurate frequencies, Phys. Rev. Lett., Volume 62 (1989) no. 4, pp. 345-348 | DOI
[40] Experimental observation of the Anderson metal–insulator transition with atomic matter waves, Phys. Rev. Lett., Volume 101 (2008) no. 25 | DOI
[41] Mesoscopic Physics of Electrons and Photons, Cambridge University Press, Cambridge, UK, 2011
[42] Quantum Transport Theory, Westview Press, Boulder, USA, 2004
[43] Universality of the Anderson transition with the quasiperiodic kicked rotor, Europhys. Lett., Volume 87 (2009), p. 37007 | DOI
[44] Transition d'Anderson avec des ondes de matière atomiques, Université Pierre-et-Marie-Curie, Paris, 2009 tel.archives-ouvertes.fr/tel-00424399/fr/ (Ph.D. thesis URL)
[45] How nonlinear interactions challenge the three-dimensional Anderson transition, Phys. Rev. Lett., Volume 112 (2014) no. 17 | DOI
[46] Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, UK, 1997
[47] Field theory of the quantum kicked rotor, Phys. Rev. Lett., Volume 77 (1996) no. 22, pp. 4536-4539 | DOI
[48] Theory of the Anderson transition in the quasiperiodic kicked rotor, Phys. Rev. Lett., Volume 107 (2011) no. 7 | DOI
[49] Planck's quantum-driven integer quantum hall effect in chaos, Phys. Rev. Lett., Volume 113 (2014) no. 21 | DOI
[50] Emergence of integer quantum Hall effect from chaos, Phys. Rev. B, Volume 93 (2016) no. 7 | DOI
[51] Experimental evidence of dynamical localization and delocalization in a quasiperiodic driven system, Phys. Rev. Lett., Volume 85 (2000) no. 13, pp. 2741-2744 | DOI
[52] Observation of sub-Fourier resonances in a quantum-chaotic system, Phys. Rev. Lett., Volume 89 (2002) no. 22 | DOI
[53] Reversible destruction of dynamical localization, Phys. Rev. Lett., Volume 95 (2005) no. 23 | DOI
[54] Quantum scaling laws in the onset of dynamical delocalization, Phys. Rev. Lett., Volume 97 (2006) no. 26 | DOI
[55] One-parameter scaling of localization length and conductance in disordered systems, Phys. Rev. Lett., Volume 47 (1981) no. 21, pp. 1546-1549 | DOI
[56] Finite size scaling approach to Anderson localisation, J. Phys. C, Solid State Phys., Volume 14 (1981) no. 6, p. L127-L132 | DOI
[57] Observation of the Anderson metal–insulator transition with atomic matter waves: theory and experiment, Phys. Rev. A, Volume 80 (2009) no. 4 | DOI
[58] Experimental test of universality of the Anderson transition, Phys. Rev. Lett., Volume 108 (2012) no. 9 | DOI
[59] Critical State of the Anderson transition: between a metal and an insulator, Phys. Rev. Lett., Volume 105 (2010) no. 9 | DOI
[60] Weak localization and coherent backscattering of photons in disordered media, Phys. Rev. Lett., Volume 55 (1985) no. 24, pp. 2696-2699 | DOI
[61] Observation of weak localization of light in a random medium, Phys. Rev. Lett., Volume 55 (1985) no. 24, pp. 2692-2695 | DOI
[62] Coherent backscattering of light by cold atoms, Phys. Rev. Lett., Volume 83 (1999), pp. 5266-5269 link.aps.org/abstract/PRL/v83/p5266 (URL)
[63] Coherent backscattering of ultracold atoms, Phys. Rev. Lett., Volume 109 (2012) no. 19 | DOI
[64] Coherent backscattering of ultracold matter waves: momentum space signatures, Phys. Rev. A, Volume 85 (2012) no. 1 | DOI
[65] Return to the origin as a probe of atomic phase coherence, 2016 | arXiv
[66] Estimate of the critical exponent of the Anderson transition in the three and four dimensional unitary universality classes, 2016 | arXiv
[67] Kicked rotator for a spin-1/2 particle, J. Phys. A, Math. Theor., Volume 22 (1989) no. 19, pp. 4223-4242 stacks.iop.org/0305-4470/22/i=19/a=016 (URL)
[68] Quantum Hall effect in a one-dimensional dynamical system, Phys. Rev. B, Volume 84 (2011) no. 11 | DOI
[69] Metal–topological insulator transition in the quantum kicked rotator with symmetry, Phys. Rev. B, Volume 85 (2012) no. 16 | DOI
[70] Dimensional dependence of critical exponent of the Anderson transition in the orthogonal universality class, J. Phys. Soc. Jpn., Volume 83 (2014) no. 8 | DOI
[71] Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010) no. 2, pp. 1225-1286 | DOI
[72] Observation of many-body localization of interacting fermions in a quasirandom optical lattice, Science, Volume 349 (2015) no. 6250, pp. 842-845 | DOI
[73] Delocalization of quantum chaos by weak nonlinearity, Phys. Rev. Lett., Volume 70 (1993) no. 12, pp. 1787-1790 | DOI
[74] Interactions destroy dynamical localization with strong and weak chaos, Europhys. Lett., Volume 96 (2011) no. 3, p. 30004 stacks.iop.org/0295-5075/96/i=3/a=30004 (URL)
[75] Destruction of Anderson localization by a weak nonlinearity, Phys. Rev. Lett., Volume 100 (2008) no. 9 | DOI
[76] Universal spreading of wave packets in disordered nonlinear systems, Phys. Rev. Lett., Volume 102 (2009) no. 2 | DOI
[77] Observation of subdiffusion in a disordered interacting system, Phys. Rev. Lett., Volume 106 (2011) no. 23 | DOI
[78] Proposal of a cold-atom realization of quantum maps with Hofstadter's butterfly spectrum, Phys. Rev. A, Volume 77 (2008) no. 3 | DOI
Cité par Sources :
Commentaires - Politique