Comptes Rendus
Testing quantum gravity with cosmology / Tester les théories de la gravitation quantique à l'aide de la cosmologie
Testing loop quantum cosmology
[Tester la cosmologie quantique à boucles]
Comptes Rendus. Physique, Volume 18 (2017) no. 3-4, pp. 207-225.

La cosmologie quantique à boucles prédit que les effets de la gravitation quantique résolvent la singularité du big-bang et la remplacent par un rebond cosmique. De plus, la cosmologie quantique à boucles peut aussi modifier la forme des perturbations cosmologiques primordiales, par exemple en réduisant l'énergie aux grandes échelles dans les modèles inflationnaires ou en diminuant le rapport tenseur/scalaire dans le scénario du matter bounce ; ces deux effets constituent des tests observationnels potentiels pour la cosmologie quantique à boucles. Dans cet article, je passe en revue ces prédictions, ainsi que d'autres, et aussi discute brièvement trois problèmes ouverts de la cosmologie quantique à boucles : sa relation avec la gravitation quantique à boucles, le problème trans-planckien et une possible transition d'un espace-temps lorentzien à un espace–temps euclidien autour du point de rebond.

Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I review these predictions and others, and also briefly discuss three open problems in loop quantum cosmology: its relation to loop quantum gravity, the trans-Planckian problem, and a possible transition from a Lorentzian to a Euclidean space–time around the bounce point.

Publié le :
DOI : 10.1016/j.crhy.2017.02.004
Keywords: Loop quantum gravity, Loop quantum cosmology, Observational tests
Mot clés : Gravité quantique à boucles, Cosmologie quantique à boucles, Tests observationnels

Edward Wilson-Ewing 1

1 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm, Germany
@article{CRPHYS_2017__18_3-4_207_0,
     author = {Edward Wilson-Ewing},
     title = {Testing loop quantum cosmology},
     journal = {Comptes Rendus. Physique},
     pages = {207--225},
     publisher = {Elsevier},
     volume = {18},
     number = {3-4},
     year = {2017},
     doi = {10.1016/j.crhy.2017.02.004},
     language = {en},
}
TY  - JOUR
AU  - Edward Wilson-Ewing
TI  - Testing loop quantum cosmology
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 207
EP  - 225
VL  - 18
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.02.004
LA  - en
ID  - CRPHYS_2017__18_3-4_207_0
ER  - 
%0 Journal Article
%A Edward Wilson-Ewing
%T Testing loop quantum cosmology
%J Comptes Rendus. Physique
%D 2017
%P 207-225
%V 18
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2017.02.004
%G en
%F CRPHYS_2017__18_3-4_207_0
Edward Wilson-Ewing. Testing loop quantum cosmology. Comptes Rendus. Physique, Volume 18 (2017) no. 3-4, pp. 207-225. doi : 10.1016/j.crhy.2017.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.02.004/

[1] WMAP Collaboration; G. Hinshaw et al. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl., Volume 208 (2013), p. 19 | arXiv

[2] Planck Collaboration; P.A.R. Ade et al. Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., Volume 594 (2016) | arXiv

[3] Planck Collaboration; P.A.R. Ade et al. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys., Volume 594 (2016) | arXiv

[4] M. Bojowald Absence of singularity in loop quantum cosmology, Phys. Rev. Lett., Volume 86 (2001), pp. 5227-5230 | arXiv

[5] A. Ashtekar; T. Pawłowski; P. Singh Quantum nature of the Big Bang: improved dynamics, Phys. Rev. D, Volume 74 (2006) | arXiv

[6] A. Ashtekar; M. Bojowald; J. Lewandowski Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys., Volume 7 (2003), pp. 233-268 | arXiv

[7] M. Bojowald Loop quantum cosmology, Living Rev. Relativ., Volume 11 (2008), p. 4

[8] A. Ashtekar; P. Singh Loop quantum cosmology: a status report, Class. Quantum Gravity, Volume 28 (2011), p. 213001 | arXiv

[9] K. Banerjee; G. Calcagni; M. Martín-Benito Introduction to loop quantum cosmology, SIGMA, Volume 8 (2012) | arXiv

[10] I. Agulló; P. Singh Loop quantum cosmology: a brief review | arXiv

[11] P. Singh; E. Wilson-Ewing Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology, Class. Quantum Gravity, Volume 31 (2014) | arXiv

[12] W. Kamiński; J. Lewandowski The flat FRW model in LQC: the self-adjointness, Class. Quantum Gravity, Volume 25 (2008) | arXiv

[13] A. Ashtekar; A. Corichi; P. Singh Robustness of key features of loop quantum cosmology, Phys. Rev. D, Volume 77 (2008) | arXiv

[14] M. Martín-Benito; G.A. Mena Marugán; J. Olmedo Further improvements in the understanding of isotropic loop quantum cosmology, Phys. Rev. D, Volume 80 (2009) | arXiv

[15] P. Diener; B. Gupt; P. Singh Chimera: a hybrid approach to numerical loop quantum cosmology, Class. Quantum Gravity, Volume 31 (2014) | arXiv

[16] P. Diener; B. Gupt; P. Singh Numerical simulations of a loop quantum cosmos: robustness of the quantum bounce and the validity of effective dynamics, Class. Quantum Gravity, Volume 31 (2014), p. 105015 | arXiv

[17] P. Diener; B. Gupt; M. Megevand; P. Singh Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology, Class. Quantum Gravity, Volume 31 (2014), p. 165006 | arXiv

[18] G.A. Mena Marugán; J. Olmedo; T. Pawłowski Prescriptions in loop quantum cosmology: a comparative analysis, Phys. Rev. D, Volume 84 (2011) | arXiv

[19] C. Rovelli; E. Wilson-Ewing Why are the effective equations of loop quantum cosmology so accurate?, Phys. Rev. D, Volume 90 (2014) | arXiv

[20] V. Taveras Corrections to the Friedmann equations from LQG for a universe with a free scalar field, Phys. Rev. D, Volume 78 (2008) | arXiv

[21] A. Ashtekar; T. Pawłowski; P. Singh; K. Vandersloot Loop quantum cosmology of k=1 FRW models, Phys. Rev. D, Volume 75 (2007) | arXiv

[22] Ł. Szulc; W. Kamiński; J. Lewandowski Closed FRW model in loop quantum cosmology, Class. Quantum Gravity, Volume 24 (2007), pp. 2621-2636 | arXiv

[23] K. Vandersloot Loop quantum cosmology and the k=1 RW model, Phys. Rev. D, Volume 75 (2007) | arXiv

[24] A. Ashtekar; E. Wilson-Ewing Loop quantum cosmology of Bianchi I models, Phys. Rev. D, Volume 79 (2009) | arXiv

[25] A. Ashtekar; E. Wilson-Ewing Loop quantum cosmology of Bianchi type II models, Phys. Rev. D, Volume 80 (2009) | arXiv

[26] E. Wilson-Ewing Loop quantum cosmology of Bianchi type IX models, Phys. Rev. D, Volume 82 (2010) | arXiv

[27] C.G. Böhmer; K. Vandersloot Loop quantum dynamics of the Schwarzschild interior, Phys. Rev. D, Volume 76 (2007) | arXiv

[28] A. Corichi; P. Singh Loop quantization of the Schwarzschild interior revisited, Class. Quantum Gravity, Volume 33 (2016) | arXiv

[29] T. Pawłowski; R. Pierini; E. Wilson-Ewing Loop quantum cosmology of a radiation-dominated flat FLRW universe, Phys. Rev. D, Volume 90 (2014) | arXiv

[30] A. Ashtekar, T. Pawłowski, P. Singh, unpublished.

[31] W. Kamiński; T. Pawłowski The LQC evolution operator of FRW universe with positive cosmological constant, Phys. Rev. D, Volume 81 (2010) | arXiv

[32] T. Pawłowski; A. Ashtekar Positive cosmological constant in loop quantum cosmology, Phys. Rev. D, Volume 85 (2012) | arXiv

[33] E. Bentivegna; T. Pawłowski Anti-deSitter universe dynamics in LQC, Phys. Rev. D, Volume 77 (2008) | arXiv

[34] A. Corichi; P. Singh A geometric perspective on singularity resolution and uniqueness in loop quantum cosmology, Phys. Rev. D, Volume 80 (2009) | arXiv

[35] B. Gupt; P. Singh Contrasting features of anisotropic loop quantum cosmologies: the role of spatial curvature, Phys. Rev. D, Volume 85 (2012) | arXiv

[36] B. Gupt; P. Singh Quantum gravitational Kasner transitions in Bianchi-I spacetime, Phys. Rev. D, Volume 86 (2012) | arXiv

[37] A. Corichi; E. Montoya Effective dynamics in Bianchi type II loop quantum cosmology, Phys. Rev. D, Volume 85 (2012) | arXiv

[38] A. Corichi; E. Montoya Loop quantum cosmology of Bianchi IX: effective dynamics | arXiv

[39] D.-W. Chiou Phenomenological dynamics of loop quantum cosmology in Kantowski–Sachs spacetime, Phys. Rev. D, Volume 78 (2008) | arXiv

[40] P. Singh Are loop quantum cosmos never singular?, Class. Quantum Gravity, Volume 26 (2009), p. 125005 | arXiv

[41] P. Singh; F. Vidotto Exotic singularities and spatially curved loop quantum cosmology, Phys. Rev. D, Volume 83 (2011) | arXiv

[42] P. Singh Curvature invariants, geodesics and the strength of singularities in Bianchi-I loop quantum cosmology, Phys. Rev. D, Volume 85 (2012) | arXiv

[43] S. Saini; P. Singh Geodesic completeness and the lack of strong singularities in effective loop quantum Kantowski–Sachs spacetime | arXiv

[44] A. Corichi; A. Karami Loop quantum cosmology of k=1 FRW: a tale of two bounces, Phys. Rev. D, Volume 84 (2011) | arXiv

[45] J. Ben Achour; J. Grain; K. Noui Loop quantum cosmology with complex Ashtekar variables, Class. Quantum Gravity, Volume 32 (2015) | arXiv

[46] E. Wilson-Ewing Loop quantum cosmology with self-dual variables, Phys. Rev. D, Volume 92 (2015) | arXiv

[47] E. Wilson-Ewing Anisotropic loop quantum cosmology with self-dual variables, Phys. Rev. D, Volume 93 (2016) | arXiv

[48] V.F. Mukhanov; H. Feldman; R.H. Brandenberger Theory of cosmological perturbations, Phys. Rep., Volume 215 (1992), pp. 203-333

[49] A. Barrau; T. Cailleteau; J. Grain; J. Mielczarek Observational issues in loop quantum cosmology, Class. Quantum Gravity, Volume 31 (2014) | arXiv

[50] A. Ashtekar; A. Barrau Loop quantum cosmology: from pre-inflationary dynamics to observations, Class. Quantum Gravity, Volume 32 (2015), p. 234001 | arXiv

[51] E. Wilson-Ewing Separate universes in loop quantum cosmology: framework and applications, Int. J. Mod. Phys. D, Volume 25 (2016), p. 1642002 | arXiv

[52] M. Bojowald; H.H. Hernandez; M. Kagan; P. Singh; A. Skirzewski Hamiltonian cosmological perturbation theory with loop quantum gravity corrections, Phys. Rev. D, Volume 74 (2006) | arXiv

[53] M. Bojowald; G.M. Hossain; M. Kagan; S. Shankaranarayanan Anomaly freedom in perturbative loop quantum gravity, Phys. Rev. D, Volume 78 (2008) | arXiv

[54] M. Bojowald; G.M. Hossain; M. Kagan; S. Shankaranarayanan Gauge invariant cosmological perturbation equations with corrections from loop quantum gravity, Phys. Rev. D, Volume 79 (2009) | arXiv

[55] T. Cailleteau; J. Mielczarek; A. Barrau; J. Grain Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology, Class. Quantum Gravity, Volume 29 (2012) | arXiv

[56] T. Cailleteau; A. Barrau; J. Grain; F. Vidotto Consistency of holonomy-corrected scalar, vector and tensor perturbations in loop quantum cosmology, Phys. Rev. D, Volume 86 (2012) | arXiv

[57] T. Cailleteau; L. Linsefors; A. Barrau Anomaly-free perturbations with inverse-volume and holonomy corrections in loop quantum cosmology, Class. Quantum Gravity, Volume 31 (2014), p. 125011 | arXiv

[58] T. Cailleteau; A. Barrau Gauge invariance in loop quantum cosmology: Hamilton–Jacobi and Mukhanov–Sasaki equations for scalar perturbations, Phys. Rev. D, Volume 85 (2012) | arXiv

[59] M. Bojowald Quantum cosmology: effective theory, Class. Quantum Gravity, Volume 29 (2012), p. 213001 | arXiv

[60] B. Bolliet; A. Barrau; J. Grain; S. Schander Observational exclusion of a consistent loop quantum cosmology scenario, Phys. Rev. D, Volume 93 (2016) | arXiv

[61] M. Fernández-Méndez; G.A. Mena Marugán; J. Olmedo Hybrid quantization of an inflationary universe, Phys. Rev. D, Volume 86 (2012) | arXiv

[62] M. Fernández-Méndez; G.A. Mena Marugán; J. Olmedo Hybrid quantization of an inflationary model: the flat case, Phys. Rev. D, Volume 88 (2013) | arXiv

[63] L.C. Gomar; M. Fernández-Méndez; G.A. Mena Marugán; J. Olmedo Cosmological perturbations in hybrid loop quantum cosmology: Mukhanov–Sasaki variables, Phys. Rev. D, Volume 90 (2014) | arXiv

[64] L. Castelló Gomar; M. Martín-Benito; G.A. Mena Marugán Quantum corrections to the Mukhanov–Sasaki equations, Phys. Rev. D, Volume 93 (2016) | arXiv

[65] I. Agulló; A. Ashtekar; W. Nelson Extension of the quantum theory of cosmological perturbations to the Planck era, Phys. Rev. D, Volume 87 (2013) | arXiv

[66] I. Agulló; A. Ashtekar; W. Nelson The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations, Class. Quantum Gravity, Volume 30 (2013) | arXiv

[67] I. Agulló; A. Ashtekar; B. Gupt Phenomenology with fluctuating quantum geometries in loop quantum cosmology | arXiv

[68] D. Martín-de Blas; J. Olmedo Primordial power spectra for scalar perturbations in loop quantum cosmology, J. Cosmol. Astropart. Phys., Volume 1606 (2016) | arXiv

[69] M. Martín-Benito; L.J. Garay; G.A. Mena Marugán Hybrid quantum Gowdy cosmology: combining loop and Fock quantizations, Phys. Rev. D, Volume 78 (2008) | arXiv

[70] L.J. Garay; M. Martín-Benito; G.A. Mena Marugán Inhomogeneous loop quantum cosmology: hybrid quantization of the Gowdy model, Phys. Rev. D, Volume 82 (2010) | arXiv

[71] M. Martín-Benito; G.A. Mena Marugán; E. Wilson-Ewing Hybrid quantization: from Bianchi I to the Gowdy model, Phys. Rev. D, Volume 82 (2010) | arXiv

[72] M. Martín-Benito; D. Martín-de Blas; G.A. Mena Marugán Matter in inhomogeneous loop quantum cosmology: the Gowdy T3 model, Phys. Rev. D, Volume 83 (2011) | arXiv

[73] A. Ashtekar; W. Kamiński; J. Lewandowski Quantum field theory on a cosmological, quantum space–time, Phys. Rev. D, Volume 79 (2009) | arXiv

[74] T. Thiemann A length operator for canonical quantum gravity, J. Math. Phys., Volume 39 (1998), pp. 3372-3392 | arXiv

[75] E. Bianchi The length operator in loop quantum gravity, Nucl. Phys. B, Volume 807 (2009), pp. 591-624 | arXiv

[76] Y. Ma; C. Soo; J. Yang New length operator for loop quantum gravity, Phys. Rev. D, Volume 81 (2010) | arXiv

[77] D. Salopek; J. Bond Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D, Volume 42 (1990), pp. 3936-3962

[78] D. Wands; K.A. Malik; D.H. Lyth; A.R. Liddle A new approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D, Volume 62 (2000) | arXiv

[79] M. Bojowald Loop quantum cosmology and inhomogeneities, Gen. Relativ. Gravit., Volume 38 (2006), pp. 1771-1795 | arXiv

[80] M. Artymowski; Z. Lalak; Ł. Szulc Loop quantum cosmology: holonomy corrections to inflationary models, J. Cosmol. Astropart. Phys., Volume 0901 (2009) | arXiv

[81] E. Wilson-Ewing Holonomy corrections in the effective equations for scalar mode perturbations in loop quantum cosmology, Class. Quantum Gravity, Volume 29 (2012) | arXiv

[82] E. Wilson-Ewing Lattice loop quantum cosmology: scalar perturbations, Class. Quantum Gravity, Volume 29 (2012), p. 215013 | arXiv

[83] V.G. Gurzadyan; R. Penrose Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity | arXiv

[84] W. Nelson; E. Wilson-Ewing Pre-Big-Bang cosmology and circles in the cosmic microwave background, Phys. Rev. D, Volume 84 (2011) | arXiv

[85] I.K. Wehus; H.K. Eriksen A search for concentric circles in the 7-year WMAP temperature sky maps, Astrophys. J., Volume 733 (2011) | arXiv

[86] A. Moss; D. Scott; J.P. Zibin No evidence for anomalously low variance circles on the sky, J. Cosmol. Astropart. Phys., Volume 1104 (2011) | arXiv

[87] A. Hajian Are there echoes from the pre-Big Bang universe? A search for low variance circles in the CMB sky, Astrophys. J., Volume 740 (2011), p. 52 | arXiv

[88] S. Tsujikawa; P. Singh; R. Maartens Loop quantum gravity effects on inflation and the CMB, Class. Quantum Gravity, Volume 21 (2004), pp. 5767-5775 | arXiv

[89] X. Zhang; Y. Ling Inflationary universe in loop quantum cosmology, J. Cosmol. Astropart. Phys., Volume 0708 (2007) | arXiv

[90] M. Bojowald; G.M. Hossain Loop quantum gravity corrections to gravitational wave dispersion, Phys. Rev. D, Volume 77 (2008) | arXiv

[91] J. Mielczarek Gravitational waves from the big bounce, J. Cosmol. Astropart. Phys., Volume 0811 (2008) | arXiv

[92] E. Copeland; D. Mulryne; N. Nunes; M. Shaeri The gravitational wave background from super-inflation in loop quantum cosmology, Phys. Rev. D, Volume 79 (2009) | arXiv

[93] J. Grain; A. Barrau Cosmological footprints of loop quantum gravity, Phys. Rev. Lett., Volume 102 (2009) | arXiv

[94] D. Baumann TASI lectures on inflation | arXiv

[95] A. Ashtekar; D. Sloan Loop quantum cosmology and slow roll inflation, Phys. Lett. B, Volume 694 (2011), pp. 108-112 | arXiv

[96] A. Corichi; A. Karami On the measure problem in slow roll inflation and loop quantum cosmology, Phys. Rev. D, Volume 83 (2011) | arXiv

[97] L. Linsefors; A. Barrau Duration of inflation and conditions at the bounce as a prediction of effective isotropic loop quantum cosmology, Phys. Rev. D, Volume 87 (2013) | arXiv

[98] B. Bonga; B. Gupt Phenomenological investigation of a quantum gravity extension of inflation with the Starobinsky potential, Phys. Rev. D, Volume 93 (2016) | arXiv

[99] R. Penrose Singularities and time-asymmetry (S.W. Hawking; W. Israel, eds.), General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge, 1979

[100] A. Ashtekar; B. Gupt Initial conditions for cosmological perturbations | arXiv

[101] I. Agulló; N.A. Morris Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra, Phys. Rev. D, Volume 92 (2015) | arXiv

[102] WMAP Collaboration; C.L. Bennett et al. First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results, Astrophys. J. Suppl., Volume 148 (2003), pp. 1-27 | arXiv

[103] Planck Collaboration; P.A.R. Ade et al. Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., Volume 571 (2014) | arXiv

[104] I. Agulló Loop quantum cosmology, non-Gaussianity, and CMB power asymmetry, Phys. Rev. D, Volume 92 (2015) | arXiv

[105] Planck Collaboration; P.A.R. Ade et al. Planck 2015 results. XVI. Isotropy and statistics of the CMB, Astron. Astrophys., Volume 594 (2016) | arXiv

[106] A. Ashtekar; B. Gupt Quantum gravity in the sky: interplay between fundamental theory and observations | arXiv

[107] L. Linsefors; T. Cailleteau; A. Barrau; J. Grain Primordial tensor power spectrum in holonomy corrected Ω loop quantum cosmology, Phys. Rev. D, Volume 87 (2013) | arXiv

[108] B. Bolliet; J. Grain; C. Stahl; L. Linsefors; A. Barrau Comparison of primordial tensor power spectra from the deformed algebra and dressed metric approaches in loop quantum cosmology, Phys. Rev. D, Volume 91 (2015) | arXiv

[109] J. Grain; A. Barrau; A. Gorecki Inverse volume corrections from loop quantum gravity and the primordial tensor power spectrum in slow-roll inflation, Phys. Rev. D, Volume 79 (2009) | arXiv

[110] M. Bojowald; G. Calcagni Inflationary observables in loop quantum cosmology, J. Cosmol. Astropart. Phys., Volume 1103 (2011) | arXiv

[111] M. Bojowald; G. Calcagni; S. Tsujikawa Observational test of inflation in loop quantum cosmology, J. Cosmol. Astropart. Phys., Volume 1111 (2011) | arXiv

[112] R.H. Brandenberger The matter bounce alternative to inflationary cosmology | arXiv

[113] Y.-F. Cai; A. Marciano; D.-G. Wang; E. Wilson-Ewing Bouncing cosmologies with dark matter and dark energy | arXiv

[114] E. Wilson-Ewing The matter bounce scenario in loop quantum cosmology, J. Cosmol. Astropart. Phys., Volume 1303 (2013) | arXiv

[115] Y.-F. Cai; E. Wilson-Ewing A ΛCDM bounce scenario, J. Cosmol. Astropart. Phys., Volume 1503 (2015) | arXiv

[116] J.-L. Lehners Ekpyrotic and cyclic cosmology, Phys. Rep., Volume 465 (2008), pp. 223-263 | arXiv

[117] T. Cailleteau; P. Singh; K. Vandersloot Non-singular ekpyrotic/cyclic model in loop quantum cosmology, Phys. Rev. D, Volume 80 (2009) | arXiv

[118] E. Wilson-Ewing Ekpyrotic loop quantum cosmology, J. Cosmol. Astropart. Phys., Volume 1308 (2013) | arXiv

[119] E. Bianchi; C. Rovelli Why all these prejudices against a constant? | arXiv

[120] E. Bianchi; C. Rovelli; R. Kolb Cosmology forum: is dark energy really a mystery?, Nature, Volume 466 (2010), pp. 321-322

[121] M. Niedermaier; M. Reuter The asymptotic safety scenario in quantum gravity, Living Rev. Relativ., Volume 9 (2006), pp. 5-173

[122] J. Engle Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings, Class. Quantum Gravity, Volume 24 (2007), pp. 5777-5802 | arXiv

[123] J. Brunnemann; C. Fleischhack On the configuration spaces of homogeneous loop quantum cosmology and loop quantum gravity | arXiv

[124] J. Engle Embedding loop quantum cosmology without piecewise linearity, Class. Quantum Gravity, Volume 30 (2013) | arXiv

[125] A. Ashtekar; M. Campiglia On the uniqueness of kinematics of loop quantum cosmology, Class. Quantum Gravity, Volume 29 (2012), p. 242001 | arXiv

[126] J. Engle; M. Hanusch Kinematical uniqueness of homogeneous isotropic LQC | arXiv

[127] J. Engle; M. Hanusch; T. Thiemann Uniqueness of the representation in homogeneous isotropic LQC | arXiv

[128] E. Bianchi; C. Rovelli; F. Vidotto Towards spinfoam cosmology, Phys. Rev. D, Volume 82 (2010) | arXiv

[129] E. Bianchi; T. Krajewski; C. Rovelli; F. Vidotto Cosmological constant in spinfoam cosmology, Phys. Rev. D, Volume 83 (2011) | arXiv

[130] J. Rennert; D. Sloan A homogeneous model of spinfoam cosmology, Class. Quantum Gravity, Volume 30 (2013), p. 235019 | arXiv

[131] J. Rennert; D. Sloan Anisotropic spinfoam cosmology, Class. Quantum Gravity, Volume 31 (2014) | arXiv

[132] I. Vilensky Spinfoam cosmology with the proper vertex amplitude | arXiv

[133] N. Bodendorfer Quantum reduction to Bianchi I models in loop quantum gravity, Phys. Rev. D, Volume 91 (2015) | arXiv

[134] N. Bodendorfer An embedding of loop quantum cosmology in (b,v) variables into a full theory context, Class. Quantum Gravity, Volume 33 (2016), p. 125014 | arXiv

[135] C.-Y. Lin Emergence of loop quantum cosmology from loop quantum gravity: lowest order in h | arXiv

[136] E. Alesci; F. Cianfrani A new perspective on cosmology in loop quantum gravity, Europhys. Lett., Volume 104 (2013), p. 10001 | arXiv

[137] E. Alesci; F. Cianfrani Quantum-reduced loop gravity: cosmology, Phys. Rev. D, Volume 87 (2013) | arXiv

[138] E. Alesci; F. Cianfrani Improved regularization from quantum reduced loop gravity | arXiv

[139] N. Bodendorfer State refinements and coarse graining in a full theory embedding of loop quantum cosmology | arXiv

[140] S. Gielen; D. Oriti; L. Sindoni Homogeneous cosmologies as group field theory condensates, J. High Energy Phys., Volume 06 (2014) | arXiv

[141] D. Oriti; L. Sindoni; E. Wilson-Ewing Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates, Class. Quantum Gravity, Volume 33 (2016), p. 224001 | arXiv

[142] S. Gielen Emergence of a low spin phase in group field theory condensates | arXiv

[143] T. Pawłowski Observations on interfacing loop quantum gravity with cosmology, Phys. Rev. D, Volume 92 (2015) | arXiv

[144] M. de Cesare; A.G.A. Pithis; M. Sakellariadou Cosmological implications of interacting group field theory models: cyclic universe and accelerated expansion | arXiv

[145] S. Gielen; L. Sindoni Quantum cosmology from group field theory condensates: a review, SIGMA, Volume 12 (2016) | arXiv

[146] S.A. Hojman; K. Kuchař; C. Teitelboim Geometrodynamics regained, Ann. Phys., Volume 96 (1976), pp. 88-135

[147] N. Deruelle; M. Sasaki; Y. Sendouda; D. Yamauchi Hamiltonian formulation of f(Riemann) theories of gravity, Prog. Theor. Phys., Volume 123 (2010), pp. 169-185 | arXiv

[148] M. Bojowald; G.M. Paily Deformed general relativity and effective actions from loop quantum gravity, Phys. Rev. D, Volume 86 (2012) | arXiv

[149] J. Mielczarek Signature change in loop quantum cosmology, Springer Proc. Phys., Volume 157 (2014), pp. 555-562 | arXiv

[150] M. Bojowald; G.M. Paily Deformed general relativity, Phys. Rev. D, Volume 87 (2013) | arXiv

[151] M. Bojowald; J. Mielczarek Some implications of signature-change in cosmological models of loop quantum gravity, J. Cosmol. Astropart. Phys., Volume 1508 (2015) | arXiv

[152] A. Vilenkin Creation of universes from nothing, Phys. Lett. B, Volume 117 (1982), pp. 25-28

[153] J.B. Hartle; S.W. Hawking Wave function of the universe, Phys. Rev. D, Volume 28 (1983), pp. 2960-2975

[154] J. Mielczarek Asymptotic silence in loop quantum cosmology, AIP Conf. Proc., Volume 1514 (2012), p. 81 | arXiv

[155] L. Castelló Gomar; G.A. Mena Marugán Uniqueness of the Fock quantization of scalar fields and processes with signature change in cosmology, Phys. Rev. D, Volume 89 (2014) | arXiv

[156] J. Mielczarek; L. Linsefors; A. Barrau Silent initial conditions for cosmological perturbations with a change of space–time signature | arXiv

[157] S. Schander; A. Barrau; B. Bolliet; L. Linsefors; J. Mielczarek; J. Grain Primordial scalar power spectrum from the Euclidean big bounce, Phys. Rev. D, Volume 93 (2016) | arXiv

[158] A. Barrau; J. Grain Cosmology without time: what to do with a possible signature change from quantum gravitational origin? | arXiv

[159] Y.-F. Cai; D.A. Easson; R. Brandenberger Towards a nonsingular bouncing cosmology, J. Cosmol. Astropart. Phys., Volume 1208 (2012) | arXiv

[160] J. Ben Achour; S. Brahma; J. Grain; A. Marciano A new look at scalar perturbations in loop quantum cosmology: (un)deformed algebra approach using self dual variables | arXiv

Cité par Sources :

Commentaires - Politique