[Sur l'universalité (ou non) des beaux pingouins]
Malgré la solidité du modèle standard de la physique des particules, il a y de bonnes raisons de penser que ce n'est pas la théorie « ultime ». En particulier, le modèle standard ne peut expliquer, ni la matière noire, ni l'asymétrie matière–antimatière dans l'Univers. LHCb est un spectromètre du LHC (Large Hadron Collider) consacré à des mesures de précision des particules de saveurs lourdes. Comme des particules de nouvelle physique peuvent contribuer de manière virtuelle aux désintégrations de particules de saveurs lourdes et ainsi modifier leurs propriétés, de telles mesures sont sensibles à des masses bien plus élevées que celles accessibles grâce aux mesures directes. Dans le présent article, nous expliquons comment la présence de particules nouvelles peut être détectée en testant l'universalité du couplage aux leptons dans les désintégrations de hadrons contenant un quark b.
Despite the enduring resilience of the Standard Model of particle physics, there remain reasons to expect that it is not a “final” theory. In particular, the Standard Model can not explain either dark matter or the observed matter–antimatter asymmetry of the universe. LHCb is a forward acceptance spectrometer at the Large Hadron Collider, dedicated to precision measurements of heavy flavour particles. Because new particles can appear virtually in the decays of heavy flavour particles, and thus alter their properties, such measurements are inherently sensitive to much higher mass scales that direct searches. We present in this article how the presence of new particles can be probed by testing Lepton Universality in the decay of hadrons containing a b-quark.
Mots-clés : LHCb, Modèle standard, Recherche indirecte
Yasmine Amhis 1
@article{CRPHYS_2017__18_5-6_358_0, author = {Yasmine Amhis}, title = {On the universality (or not) of beautiful penguins}, journal = {Comptes Rendus. Physique}, pages = {358--364}, publisher = {Elsevier}, volume = {18}, number = {5-6}, year = {2017}, doi = {10.1016/j.crhy.2017.09.010}, language = {en}, }
Yasmine Amhis. On the universality (or not) of beautiful penguins. Comptes Rendus. Physique, 2016 Prizes of the French Academy of Sciences /Prix 2016 de l’Académie des sciences, Volume 18 (2017) no. 5-6, pp. 358-364. doi : 10.1016/j.crhy.2017.09.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.010/
[1] et al. Review of particle physics, Chin. Phys. C, Volume 40 (2016) no. 10
[2] et al. Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., Volume 594 (2016), p. A13 | arXiv
[3] et al. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at
[4] et al. LHCb detector performance, Int. J. Mod. Phys. A, Volume 30 (2015) no. 07 | arXiv
[5] Weak decays beyond leading logarithms, Rev. Mod. Phys., Volume 68 (1996), p. 1125 (For example) | arXiv
[6] et al. Semileptonic decays of d mesons in three-flavor lattice QCD, Phys. Rev. Lett., Volume 94 (2005) (See for example)
[7] Photonic penguins at two loops and
[8] et al. Measurement of the
[9] et al. Precision measurement of CP violation in
[10] On the Standard Model predictions for
[11] Hadronic uncertainties in
[12] Measuring the breaking of lepton flavor universality in
[13] Status of the
[14] Reassessing the discovery potential of the
[15] et al. Test of lepton universality using
[16] et al. Test of lepton universality with
[17] et al. Measurement of branching fractions and rate asymmetries in the rare decays
[18] et al. Measurement of the differential branching fraction and forward–backword asymmetry for
[19] A leptoquark model to accommodate
[20] Vector leptoquark resolution of
[21]
[22] et al. Flavour anomalies after the
[23] Lepton flavor universality violation without new sources of quark flavor violation | arXiv
[24] Interpreting hints for lepton flavor universality violation | arXiv
[25] et al. Patterns of New Physics in
[26] Experimental status of supersymmetry after the LHC Run-I, Prog. Part. Nucl. Phys., Volume 90 (2016), p. 125 | arXiv
[27] et al. Framework TDR for the LHCb Upgrade: Technical Design Report, April 2012 (Tech. Rep. CERN-LHCC-2012-007, LHCb-TDR-12)
[28] et al. Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in Flavour Physics, and Beyond, in the HL-LHC Era, CERN, Geneva, Switzerland, February 2017 (Tech. Rep. CERN-LHCC-2017-003)
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier