[Sur l'universalité (ou non) des beaux pingouins]
Malgré la solidité du modèle standard de la physique des particules, il a y de bonnes raisons de penser que ce n'est pas la théorie « ultime ». En particulier, le modèle standard ne peut expliquer, ni la matière noire, ni l'asymétrie matière–antimatière dans l'Univers. LHCb est un spectromètre du LHC (Large Hadron Collider) consacré à des mesures de précision des particules de saveurs lourdes. Comme des particules de nouvelle physique peuvent contribuer de manière virtuelle aux désintégrations de particules de saveurs lourdes et ainsi modifier leurs propriétés, de telles mesures sont sensibles à des masses bien plus élevées que celles accessibles grâce aux mesures directes. Dans le présent article, nous expliquons comment la présence de particules nouvelles peut être détectée en testant l'universalité du couplage aux leptons dans les désintégrations de hadrons contenant un quark b.
Despite the enduring resilience of the Standard Model of particle physics, there remain reasons to expect that it is not a “final” theory. In particular, the Standard Model can not explain either dark matter or the observed matter–antimatter asymmetry of the universe. LHCb is a forward acceptance spectrometer at the Large Hadron Collider, dedicated to precision measurements of heavy flavour particles. Because new particles can appear virtually in the decays of heavy flavour particles, and thus alter their properties, such measurements are inherently sensitive to much higher mass scales that direct searches. We present in this article how the presence of new particles can be probed by testing Lepton Universality in the decay of hadrons containing a b-quark.
Mot clés : LHCb, Modèle standard, Recherche indirecte
Yasmine Amhis 1
@article{CRPHYS_2017__18_5-6_358_0, author = {Yasmine Amhis}, title = {On the universality (or not) of beautiful penguins}, journal = {Comptes Rendus. Physique}, pages = {358--364}, publisher = {Elsevier}, volume = {18}, number = {5-6}, year = {2017}, doi = {10.1016/j.crhy.2017.09.010}, language = {en}, }
Yasmine Amhis. On the universality (or not) of beautiful penguins. Comptes Rendus. Physique, Volume 18 (2017) no. 5-6, pp. 358-364. doi : 10.1016/j.crhy.2017.09.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.010/
[1] et al. Review of particle physics, Chin. Phys. C, Volume 40 (2016) no. 10
[2] et al. Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., Volume 594 (2016), p. A13 | arXiv
[3] et al. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at and 8 TeV, J. High Energy Phys., Volume 08 (2016) | arXiv
[4] et al. LHCb detector performance, Int. J. Mod. Phys. A, Volume 30 (2015) no. 07 | arXiv
[5] Weak decays beyond leading logarithms, Rev. Mod. Phys., Volume 68 (1996), p. 1125 (For example) | arXiv
[6] et al. Semileptonic decays of d mesons in three-flavor lattice QCD, Phys. Rev. Lett., Volume 94 (2005) (See for example)
[7] Photonic penguins at two loops and dependence of , Nucl. Phys. B, Volume 574 (2000), p. 291 | arXiv
[8] et al. Measurement of the branching fraction and effective lifetime and search for decays, Phys. Rev. Lett., Volume 118 (2017) no. 19 | arXiv
[9] et al. Precision measurement of CP violation in decays, Phys. Rev. Lett., Volume 114 (2015) no. 4 | arXiv
[10] On the Standard Model predictions for and , Eur. Phys. J. C, Volume 76 (2016) no. 8, p. 440 | arXiv
[11] Hadronic uncertainties in : a state-of-the-art analysis, J. High Energy Phys., Volume 04 (2017) | arXiv
[12] Measuring the breaking of lepton flavor universality in , Phys. Rev. D, Volume 95 (2017) no. 3 | arXiv
[13] Status of the anomaly after Moriond 2017, Eur. Phys. J. C, Volume 77 (2017) no. 6, p. 377 | arXiv
[14] Reassessing the discovery potential of the decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D, Volume 93 (2016) no. 1 | arXiv
[15] et al. Test of lepton universality using decays, Phys. Rev. Lett., Volume 113 (2014) | arXiv
[16] et al. Test of lepton universality with decays | arXiv
[17] et al. Measurement of branching fractions and rate asymmetries in the rare decays , Phys. Rev. D, Volume 86 (2012) | arXiv
[18] et al. Measurement of the differential branching fraction and forward–backword asymmetry for , Phys. Rev. Lett., Volume 103 (2009) | arXiv
[19] A leptoquark model to accommodate and | arXiv
[20] Vector leptoquark resolution of and puzzles, Phys. Lett. B, Volume 755 (2016), p. 270 | arXiv
[21] and beyond the Standard Model | arXiv
[22] et al. Flavour anomalies after the measurement | arXiv
[23] Lepton flavor universality violation without new sources of quark flavor violation | arXiv
[24] Interpreting hints for lepton flavor universality violation | arXiv
[25] et al. Patterns of New Physics in transitions in the light of recent data | arXiv
[26] Experimental status of supersymmetry after the LHC Run-I, Prog. Part. Nucl. Phys., Volume 90 (2016), p. 125 | arXiv
[27] et al. Framework TDR for the LHCb Upgrade: Technical Design Report, April 2012 (Tech. Rep. CERN-LHCC-2012-007, LHCb-TDR-12)
[28] et al. Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in Flavour Physics, and Beyond, in the HL-LHC Era, CERN, Geneva, Switzerland, February 2017 (Tech. Rep. CERN-LHCC-2017-003)
Cité par Sources :
Commentaires - Politique