[Fourier serait un data scientist : de la transformée de Fourier sur graphe au traitement du signal sur graphe]
Les travaux de Joseph Fourier se sont avérés extrêmement féconds, et la transformée portant son nom est, aujourd'hui encore, incontournable. La souplesse de cette analyse, son efficacité calculatoire et l'interprétation physique qu'elle offre la met au cœur de nombreux domaines scientifiques. Avec l'explosion du nombre et de la diversité des données numériques, la généralisation des outils d'analyse s'appuyant sur la transformation de Fourier est plus que jamais nécessaire. C'est en particulier le cas en science des données, et spécifiquement en science des réseaux. De nouveaux problèmes se posent quant à l'extraction d'information à partir de données qui ont des structures irrégulières, comme des réseaux sociaux, biologiques ou autres données sur des graphes potentiellement arbitraires. Le traitement du signal sur graphe est une des directions prometteuses dédiées à ce type de données. Ce texte présente un état de l'art du domaine, en se concentrant d'abord sur la façon de définir une transformée de Fourier pour des données sur graphes, comment l'interpréter et enfin comment l'utiliser pour étudier ces données. Il se termine par une discussion sur de possibles utilisations. Ce faisant, ce travail illustre en quoi la démarche de Fourier reste moderne et universelle et montre comment ses idées, essentiellement issues de la physique, puis enrichies par les mathématiques, l'informatique et la théorie du signal, demeurent essentielles pour répondre aux défis actuels en science des données.
The legacy of Joseph Fourier in science is vast, especially thanks to the essential tool that the Fourier transform is. The flexibility of this analysis, its computational efficiency and the physical interpretation it offers makes it a cornerstone in many scientific domains. With the explosion of digital data, both in quantity and diversity, the generalization of the tools based on Fourier transform is mandatory. In data science, new problems arose for the processing of irregular data such as social networks, biological networks or other data on networks. Graph signal processing is a promising approach to deal with those. The present text is an overview of the state of the art in graph signal processing, focusing on how to define a Fourier transform for data on graphs, how to interpret it and how to use it to process such data. It closes showing some examples of use. Along the way, the review reveals how Fourier's work remains modern and universal, and how his concepts, coming from physics and blended with mathematics, computer science, and signal processing, play a key role in answering the modern challenges in data science.
Mots-clés : Traitement du signal sur graphe, Transformée de Fourier, Ondelettes, Science des données, Apprentissage machine
Benjamin Ricaud 1 ; Pierre Borgnat 2 ; Nicolas Tremblay 3 ; Paulo Gonçalves 4 ; Pierre Vandergheynst 1
@article{CRPHYS_2019__20_5_474_0, author = {Benjamin Ricaud and Pierre Borgnat and Nicolas Tremblay and Paulo Gon\c{c}alves and Pierre Vandergheynst}, title = {Fourier could be a data scientist: {From} graph {Fourier} transform to signal processing on graphs}, journal = {Comptes Rendus. Physique}, pages = {474--488}, publisher = {Elsevier}, volume = {20}, number = {5}, year = {2019}, doi = {10.1016/j.crhy.2019.08.003}, language = {en}, }
TY - JOUR AU - Benjamin Ricaud AU - Pierre Borgnat AU - Nicolas Tremblay AU - Paulo Gonçalves AU - Pierre Vandergheynst TI - Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs JO - Comptes Rendus. Physique PY - 2019 SP - 474 EP - 488 VL - 20 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2019.08.003 LA - en ID - CRPHYS_2019__20_5_474_0 ER -
%0 Journal Article %A Benjamin Ricaud %A Pierre Borgnat %A Nicolas Tremblay %A Paulo Gonçalves %A Pierre Vandergheynst %T Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs %J Comptes Rendus. Physique %D 2019 %P 474-488 %V 20 %N 5 %I Elsevier %R 10.1016/j.crhy.2019.08.003 %G en %F CRPHYS_2019__20_5_474_0
Benjamin Ricaud; Pierre Borgnat; Nicolas Tremblay; Paulo Gonçalves; Pierre Vandergheynst. Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs. Comptes Rendus. Physique, Fourier and the science of today / Fourier et la science d’aujourd’hui, Volume 20 (2019) no. 5, pp. 474-488. doi : 10.1016/j.crhy.2019.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.08.003/
[1] Théorie analytique de la chaleur, Chez Firmin Didot, père et fils, 1822
[2] The future of data analysis, Ann. Math. Stat., Volume 33 (1962) no. 1, pp. 1-67
[3] 50 years of data science, J. Comput. Graph. Stat., Volume 26 (2017) no. 4, pp. 745-766
[4] Statistical Analysis of Network Data: Methods and Models, Springer, 2009
[5] Networks: An Introduction, Oxford University Press, 2010
[6] Dynamical Processes on Complex Networks, Cambridge University Press, 2008
[7] The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., Volume 30 (2013) no. 3, pp. 83-98
[8] Wavelets on graphs via spectral graph theory, Appl. Comput. Harmon. Anal., Volume 30 (2011) no. 2, pp. 129-150
[9] Perfect reconstruction two-channel wavelet filter banks for graph structured data, IEEE Trans. Signal Process., Volume 60 (2012) no. 6, pp. 2786-2799
[10] Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs, IEEE Trans. Signal Process., Volume 61 (2013) no. 19, pp. 4673-4685
[11] A spectral graph uncertainty principle, IEEE Trans. Inf. Theory, Volume 59 (2013) no. 7, pp. 4338-4356
[12] Discrete signal processing on graphs, IEEE Trans. Signal Process., Volume 61 (2013) no. 7, pp. 1644-1656
[13] Graph signal processing: overview, challenges, and applications, Proc. IEEE, Volume 106 ( May 2018 ) no. 5, pp. 808-828
[14] Cooperative and Graph Signal Processing (P.M. Djurić; C. Richard, eds.), Elsevier, 2018
[15] Image Processing and Analysis with Graphs. Theory and Practice (O. Lezoray; L. Grady, eds.), CRC Press, 2012
[16] Vertex-Frequency Analysis of Graph Signals (L. Stanković; E. Sejdi, eds.), Springer, 2019
[17] Time-Frequency/Time-Scale Analysis, Academic Press, 1999
[18] The discrete cosine transform, SIAM Rev., Volume 41 (1999) no. 1, pp. 135-147
[19] Spectral Graph Theory, Regional Conference Series in Mathematics, vol. 92, American Mathematical Society, Providence, RI, USA, 1997
[20] Laplacians and the Cheeger inequality for directed graphs, Ann. Comb., Volume 9 (2005) no. 1, pp. 1-19
[21] Harmonic analysis on directed graphs and applications: from Fourier analysis to wavelets, 2018 (arXiv preprint) | arXiv
[22] Discrete Calculus: Applied Analysis on Graphs for Computational Science, Springer, 2010
[23] A tutorial on spectral clustering, Stat. Comput., Volume 17 (2007) no. 4, pp. 395-416
[24] Uncertainty principles and signal recovery, SIAM J. Appl. Math., Volume 49 (1989) no. 3, pp. 906-931
[25] A survey of uncertainty principles and some signal processing applications, Adv. Comput. Math., Volume 40 (2014) no. 3, pp. 629-650
[26] Refined support and entropic uncertainty inequalities, IEEE Trans. Inf. Theory, Volume 59 (2013) no. 7, pp. 4272-4279
[27] Global and local uncertainty principles for signals on graphs, APSIPA Trans. Signal Inf. Process., Volume 7 (2018)
[28] Efficient sampling set selection for bandlimited graph signals using graph spectral proxies, IEEE Trans. Signal Process., Volume 64 (2016) no. 14, pp. 3775-3789
[29] Design of graph filters and filterbanks (P.M. Djurić; C. Richard, eds.), Cooperative and Graph Signal Processing, Elsevier, 2018, pp. 299-324
[30] On the graph Fourier transform for directed graphs, IEEE J. Sel. Top. Signal Process., Volume 11 (2017) no. 6, pp. 796-811
[31] A digraph Fourier transform with spread frequency components, 2017 (arXiv preprint) | arXiv
[32] Autoregressive moving average graph filtering, IEEE Trans. Signal Process., Volume 65 (2017) no. 2, pp. 274-288
[33] J. Liu, E. Isufi, G. Leus, Autoregressive moving average graph filter design, in: Proc. 6th Joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Louvain-la-Neuve, Belgium, 19–20 May 2016.
[34] N. Tremblay, P. Borgnat, P. Flandrin, Graph empirical mode decomposition, in: Proc. European Signal Processing Conference (EUSIPCO 2014), Lisbon, Portugal, 1–5 September 2014, pp. 2350–2354.
[35] Vertex-frequency analysis on graphs, Appl. Comput. Harmon. Anal., Volume 40 (2016) no. 2, pp. 260-291
[36] Translation on graphs: an isometric shift operator, IEEE Signal Process. Lett., Volume 22 (2015) no. 12
[37] N. Grelier, B. Pasdeloup, J. Vialatte, V. Gripon, Neighborhood-preserving translations on graphs, in: 2016 Proc. IEEE Global Conference on Signal and Information Processing, Greater Washington, D.C., USA, 7–9 December 2016, pp. 410–414.
[38] Discrete signal processing on graphs: sampling theory, IEEE Trans. Signal Process., Volume 63 (2015) no. 24, pp. 6510-6523
[39] Greedy sampling of graph signals, IEEE Trans. Signal Process., Volume 66 (2018) no. 1, pp. 34-47
[40] Eigendecomposition-free sampling set selection for graph signals, IEEE Trans. Signal Process., Volume 67 (2019) no. 10, pp. 2679-2692
[41] Toward Optimal rate allocation to sampling sets for bandlimited graph signals, IEEE Signal Process. Lett., Volume 26 (2019) no. 9, pp. 3775-3789
[42] Signals on graphs: uncertainty principle and sampling, IEEE Trans. Signal Process., Volume 64 (2016) no. 18, pp. 4845-4860
[43] N. Tremblay, P.O. Amblard, S. Barthelmé, Graph sampling with determinantal processes, in: Proc. 25th European Signal Processing Conference (EUSIPCO 2017), Kos Island, Greece, 28 August–2 September 2017, pp. 1674–1678.
[44] Random sampling of bandlimited signals on graphs, Appl. Comput. Harmon. Anal., Volume 44 (2018) no. 2, pp. 446-475
[45] Sampling and recovery of graph signals (P. Djuric; C. Richard, eds.), Cooperative and Graph Signal Processing, Elsevier, 2018, pp. 261-282
[46] Time-Frequency Analysis, Prentice-Hall, 1995
[47] Explorations in Time-Frequency Analysis, Cambridge University Press, 2018
[48] Ten Lectures on Wavelets, SIAM, 1992
[49] A Wavelet Tour of Signal Processing, Academic Press, 1999
[50] A multiscale pyramid transform for graph signals, IEEE Trans. Signal Process., Volume 64 (2016) no. 8, pp. 2119-2134
[51] Subgraph-based filterbanks for graph signals, IEEE Trans. Signal Process., Volume 64 ( August 2016 ) no. 15
[52] Hierarchical graph Laplacian eigen transforms, JSIAM Lett., Volume 6 (2014), pp. 21-24
[53] Intertwining wavelets or multiresolution analysis on graphs through random forests, Appl. Comput. Harmon. Anal. (2018)
[54] Diffusion wavelets, Appl. Comput. Harmon. Anal., Volume 21 (2006) no. 1, pp. 53-94
[55] Learning parametric dictionaries for signals on graphs, IEEE Trans. Signal Process., Volume 62 (2014) no. 15, pp. 3849-3862
[56] X. Zhang, X. Dong, P. Frossard, Learning of structured graph dictionaries, in: Proc. 37th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2012), Kyoto, Japan, 25–30 March 2012, pp. 3373–3376.
[57] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., Volume 454 (1998) no. 1971, pp. 903-995
[58] Graph spectral image processing, Proc. IEEE, Volume 106 (2018) no. 5, pp. 907-930
[59] X. Zhu, M. Rabbat, Graph spectral compressed sensing for sensor networks, in: Proc. 37th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2012), Kyoto, Japan, 25–30 March 2012, pp. 2865–286.
[60] H.E. Egilmez, A. Ortega, Spectral anomaly detection using graph-based filtering for wireless sensor networks, in: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 4–9 May 2014, pp. 1085–1089.
[61] A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs, IEEE Trans. Signal Process., Volume 66 (2018) no. 3, pp. 817-829
[62] Graph wavelets for multiscale community mining, IEEE Trans. Signal Process., Volume 62 (2014) no. 20, pp. 5227-5239
[63] D.K. Hammond, Y. Gur, C.R. Johnson, Graph diffusion distance: a difference measure for weighted graphs based on the graph Laplacian exponential kernel, in: Proc. 1st IEEE Global Conference on Signal and Information Processing (GlobalSIP 2013), Austin, TX, USA, 3–5 December 2013, pp. 419–422.
[64] Network distance based on Laplacian flows on graphs, 2018 (CoRR) | arXiv
[65] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, E. Müller, NetLSD: hearing the shape of a graph, in: Proc. 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19–23 August 2018, pp. 2347–2356.
[66] R. Kondor, J.D. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proc. 19th International Conference on Machine Learning (ICML-2002), Sidney, 8–12 July 2002, pp. 315–322.
[67] N. Tremblay, G. Puy, R. Gribonval, P. Vandergheynst, Compressive spectral clustering, in: Proc. 33rd International Conference on Machine Learning (ICML 2016), New York, 19–24 June 2016, pp. 1002–1011.
[68] Approximating spectral clustering via sampling: a review, 2019 (CoRR) | arXiv
[69] B. Girault, P. Gonçalves, E. Fleury, A.S. Mor, Semi-supervised learning for graph to signal mapping: a graph signal Wiener filter interpretation, in: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 4–9 May 2014, pp. 1115–1119.
[70] Connecting the dots: identifying network structure via graph signal processing, IEEE Signal Process. Mag., Volume 36 (2019) no. 3, pp. 16-43
[71] Learning Laplacian matrix in smooth graph signal representations, IEEE Trans. Signal Process., Volume 64 (2016) no. 23, pp. 6160-6173
[72] Graph learning from data under Laplacian and structural constraints, J. Sel. Top. Signal Process., Volume 11 (2017) no. 6, pp. 825-841
[73] Characterization and inference of graph diffusion processes from observations of stationary signals, IEEE Trans. Signal Inf. Process. Netw., Volume 4 (2018) no. 3, pp. 481-496
[74] Network topology inference from spectral templates, IEEE Trans. Signal Inf. Process. Netw., Volume 3 (2017) no. 3, pp. 467-483
[75] Learning heat diffusion graphs, IEEE Trans. Signal Inf. Process. Netw., Volume 3 (2017) no. 3, pp. 484-499
[76] Deep learning, Nature, Volume 521 (2015) no. 7553, pp. 436-444
[77] Geometric deep learning: going beyond Euclidean data, IEEE Signal Process. Mag., Volume 34 (2017) no. 4, pp. 18-42
[78] A unified deep learning formalism for processing graph signals, 2019 (CoRR) | arXiv
[79] Graph neural networks: a review of methods and applications, 2018 (CoRR) | arXiv
[80] Convolutional neural network architectures for signals supported on graphs, IEEE Trans. Signal Process., Volume 67 (2019) no. 4, pp. 1034-1049
[81] Spectrally approximating large graphs with smaller graphs, 2018 (arXiv, CoRR) | arXiv
[82] D.I. Shuman, P. Vandergheynst, P. Frossard, Chebyshev polynomial approximation for distributed signal processing, in: Proc. 7th IEEE International Conference on Distributed Computing in Sensor Systems (IEEE DCOSS '11), Barcelona, Spain, 27–29 June 2011, pp. 1–8.
[83] Approximate fast graph Fourier transforms via multilayer sparse approximations, IEEE Trans. Signal Inf. Process. Netw., Volume 4 (2018) no. 2, pp. 407-420
- Computational and Experimental Exploration of Protein Fitness Landscapes: Navigating Smooth and Rugged Terrains, Biochemistry (2025) | DOI:10.1021/acs.biochem.4c00673
- Community Detection From Multiple Observations: From Product Graph Model to Brain Applications, IEEE Transactions on Signal and Information Processing over Networks, Volume 11 (2025), p. 201 | DOI:10.1109/tsipn.2025.3540702
- A review of graph-powered data quality applications for IoT monitoring sensor networks, Journal of Network and Computer Applications, Volume 236 (2025), p. 104116 | DOI:10.1016/j.jnca.2025.104116
- Multi-resolution Patch-based Fourier Graph Spectral Network for spatiotemporal time series forecasting, Neurocomputing, Volume 638 (2025), p. 130132 | DOI:10.1016/j.neucom.2025.130132
- , 2024 9th International Conference on Frontiers of Signal Processing (ICFSP) (2024), p. 169 | DOI:10.1109/icfsp62546.2024.10785500
- Enhancing CAN Security: A Fourier Transform Approach to Reverse Engineering, Advances in Intelligent Networking and Collaborative Systems, Volume 225 (2024), p. 120 | DOI:10.1007/978-3-031-72322-3_12
- Application of the Algebraic Extension Method to the Construction of Orthogonal Bases for Partial Digital Convolutions, Algorithms, Volume 17 (2024) no. 11, p. 496 | DOI:10.3390/a17110496
- Application of Graph Fourier Transform in the Diagnosis of Left Bundle Branch Block from Electrocardiographic Signals, Bioinspired Systems for Translational Applications: From Robotics to Social Engineering, Volume 14675 (2024), p. 495 | DOI:10.1007/978-3-031-61137-7_46
- Graph signal reconstruction based on spatio-temporal features learning, Digital Signal Processing, Volume 148 (2024), p. 104414 | DOI:10.1016/j.dsp.2024.104414
- Quantum-Mechanical Modelling of Asymmetric Opinion Polarisation in Social Networks, Information, Volume 15 (2024) no. 3, p. 170 | DOI:10.3390/info15030170
- CAGCN: Centrality-Aware Graph Convolution Network for Anomaly Detection in Industrial Control Systems, Journal of Computer Science and Technology, Volume 39 (2024) no. 4, p. 967 | DOI:10.1007/s11390-022-2149-y
- Graph Fourier transform for spatial omics representation and analyses of complex organs, Nature Communications, Volume 15 (2024) no. 1 | DOI:10.1038/s41467-024-51590-5
- Integration of temporal spatial properties of dynamic functional connectivity based on two-directional two-dimensional principal component analysis for disease analysis, PeerJ, Volume 12 (2024), p. e17078 | DOI:10.7717/peerj.17078
- , Proceedings of the 2024 12th International Conference on Communications and Broadband Networking (2024), p. 96 | DOI:10.1145/3688636.3688662
- A High-Resolution Remote Sensing Road Extraction Method Based on the Coupling of Global Spatial Features and Fourier Domain Features, Remote Sensing, Volume 16 (2024) no. 20, p. 3896 | DOI:10.3390/rs16203896
- A framework for collaborative multi-robot mapping using spectral graph wavelets, The International Journal of Robotics Research, Volume 43 (2024) no. 13, p. 2070 | DOI:10.1177/02783649241246847
- The Effect of Small Eigenvalues on the Effectivity of Laplacian Anomaly Detection of Dynamic Networks, Advances in Intelligent Networking and Collaborative Systems, Volume 182 (2023), p. 200 | DOI:10.1007/978-3-031-40971-4_19
- Harmonic analysis on directed graphs and applications: From Fourier analysis to wavelets, Applied and Computational Harmonic Analysis, Volume 62 (2023), p. 390 | DOI:10.1016/j.acha.2022.10.003
- A novel fault diagnosis method for power grid based on graph Fourier transform, Frontiers in Energy Research, Volume 10 (2023) | DOI:10.3389/fenrg.2022.1020687
- Exploring the behavior feature of complex trajectories of ships with Fourier transform processing: a case from fishing vessels, Frontiers in Marine Science, Volume 10 (2023) | DOI:10.3389/fmars.2023.1271930
- SVD-Based Graph Fourier Transforms on Directed Product Graphs, IEEE Transactions on Signal and Information Processing over Networks, Volume 9 (2023), p. 531 | DOI:10.1109/tsipn.2023.3299511
- Rethinking data-driven point spread function modeling with a differentiable optical model, Inverse Problems, Volume 39 (2023) no. 3, p. 035008 | DOI:10.1088/1361-6420/acb664
- Identifying coastal highway pavement anomalies using multiscale wavelet analysis in radar signal interpretation, Journal of Civil Structural Health Monitoring, Volume 13 (2023) no. 1, p. 49 | DOI:10.1007/s13349-022-00595-z
- On new PageRank computation methods using quantum computing, Quantum Information Processing, Volume 22 (2023) no. 3 | DOI:10.1007/s11128-023-03856-y
- A Fourier Frequency Domain Convolutional Neural Network for Remote Sensing Crop Classification Considering Global Consistency and Edge Specificity, Remote Sensing, Volume 15 (2023) no. 19, p. 4788 | DOI:10.3390/rs15194788
- Graph Fourier transform based on singular value decomposition of the directed Laplacian, Sampling Theory, Signal Processing, and Data Analysis, Volume 21 (2023) no. 2 | DOI:10.1007/s43670-023-00062-w
- , 2022 IEEE International Conference on Consumer Electronics (ICCE) (2022), p. 1 | DOI:10.1109/icce53296.2022.9730316
- Localized Fourier analysis for graph signal processing, Applied and Computational Harmonic Analysis, Volume 57 (2022), p. 1 | DOI:10.1016/j.acha.2021.10.004
- Development of a chemically intuitive filter for chemical graph convolutional network, Bulletin of the Korean Chemical Society, Volume 43 (2022) no. 7, p. 934 | DOI:10.1002/bkcs.12533
- Spectral Graph Theoretic analysis of process systems: an application to distillation columns, Computers Chemical Engineering, Volume 161 (2022), p. 107748 | DOI:10.1016/j.compchemeng.2022.107748
- Multivariate analysis of peptide-driven nucleation and growth of Au nanoparticles, Digital Discovery, Volume 1 (2022) no. 4, p. 427 | DOI:10.1039/d2dd00017b
- A graph signal processing‐based multiple model Kalman filter (GSP‐MMKF) tool for predictive analytics: An air separation unit process application, Journal of Advanced Manufacturing and Processing, Volume 4 (2022) no. 4 | DOI:10.1002/amp2.10121
- Autorrelation and cross-relation of graphs and networks, Journal of Physics: Complexity, Volume 3 (2022) no. 4, p. 045009 | DOI:10.1088/2632-072x/aca57c
- ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD, Nuclear Engineering and Technology, Volume 54 (2022) no. 11, p. 3996 | DOI:10.1016/j.net.2022.07.006
- Lagrangian scale decomposition via the graph Fourier transform, Physical Review Fluids, Volume 7 (2022) no. 12 | DOI:10.1103/physrevfluids.7.124401
- On the sparsity of fitness functions and implications for learning, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 1 | DOI:10.1073/pnas.2109649118
- , 2021 29th European Signal Processing Conference (EUSIPCO) (2021), p. 701 | DOI:10.23919/eusipco54536.2021.9616317
- , ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2021), p. 1785 | DOI:10.1109/icassp39728.2021.9413469
- Quantifying Signal Quality for Joint Acoustic Emissions Using Graph-Based Spectral Embedding, IEEE Sensors Journal, Volume 21 (2021) no. 12, p. 13676 | DOI:10.1109/jsen.2021.3071664
- Higher Order Crossings Analysis of Signals Over Graphs, IEEE Signal Processing Letters, Volume 28 (2021), p. 837 | DOI:10.1109/lsp.2021.3074090
- Improving J-Divergence of Brain Connectivity States by Graph Laplacian Denoising, IEEE Transactions on Signal and Information Processing over Networks, Volume 7 (2021), p. 493 | DOI:10.1109/tsipn.2021.3100302
- Approximate and Exact Solutions of Intertwining Equations Through Random Spanning Forests, In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius, Volume 77 (2021), p. 27 | DOI:10.1007/978-3-030-60754-8_3
- Geary’s c and Spectral Graph Theory, Mathematics, Volume 9 (2021) no. 19, p. 2465 | DOI:10.3390/math9192465
- Graph Neural Networks: Architectures, Stability, and Transferability, Proceedings of the IEEE, Volume 109 (2021) no. 5, p. 660 | DOI:10.1109/jproc.2021.3055400
- Vertex-frequency graph signal processing: A comprehensive review, Digital Signal Processing, Volume 107 (2020), p. 102802 | DOI:10.1016/j.dsp.2020.102802
Cité par 45 documents. Sources : Crossref
Commentaires - Politique