Comptes Rendus
Fourier and the science of today / Fourier et la science d'aujourd'hui
Fourier's law based on microscopic dynamics
[La loi de Fourier à la base de la dynamique microscopique]
Comptes Rendus. Physique, Volume 20 (2019) no. 5, pp. 393-401.

Bien que la loi de Fourier soit confirmée empiriquement pour de nombreuses substances et sur un très large domaine de paramètres thermodynamiques, une dérivation microscopique convaincante pose encore des difficultés. Avec les machines actuelles, la solution des équations de mouvement de Newton peut être obtenues avec une grande précision et pour un nombre raisonnablement grand de particules. Pour les systèmes modèles simplifiés, on parvient ainsi à une compréhension plus approfondie de la base microscopique de la loi de Fourier. Nous discutons les progrès récents ainsi que ceux qui le sont moins.

While Fourier's law is empirically confirmed for many substances and over an extremely wide range of thermodynamic parameters, a convincing microscopic derivation still poses difficulties. With current machines, the solution to Newton's equations of motion can be obtained with high precision and for a reasonably large number of particles. For simplified model systems, one thereby arrives at a deeper understanding of the microscopic basis for Fourier's law. We report on recent, and not so recent, advances.

Publié le :
DOI : 10.1016/j.crhy.2019.08.004
Keywords: Fourier's law, Molecular dynamics simulations, Green–Kubo formula
Mot clés : Loi de Fourier, Simulation de la dynamique moléculaire, Formule de Green–Kubo

Abhishek Dhar 1 ; Herbert Spohn 2

1 International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
2 Zentrum Mathematik & Physik-Department, Technische Universität München, 85747 Garching, Germany
@article{CRPHYS_2019__20_5_393_0,
     author = {Abhishek Dhar and Herbert Spohn},
     title = {Fourier's law based on microscopic dynamics},
     journal = {Comptes Rendus. Physique},
     pages = {393--401},
     publisher = {Elsevier},
     volume = {20},
     number = {5},
     year = {2019},
     doi = {10.1016/j.crhy.2019.08.004},
     language = {en},
}
TY  - JOUR
AU  - Abhishek Dhar
AU  - Herbert Spohn
TI  - Fourier's law based on microscopic dynamics
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 393
EP  - 401
VL  - 20
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.08.004
LA  - en
ID  - CRPHYS_2019__20_5_393_0
ER  - 
%0 Journal Article
%A Abhishek Dhar
%A Herbert Spohn
%T Fourier's law based on microscopic dynamics
%J Comptes Rendus. Physique
%D 2019
%P 393-401
%V 20
%N 5
%I Elsevier
%R 10.1016/j.crhy.2019.08.004
%G en
%F CRPHYS_2019__20_5_393_0
Abhishek Dhar; Herbert Spohn. Fourier's law based on microscopic dynamics. Comptes Rendus. Physique, Volume 20 (2019) no. 5, pp. 393-401. doi : 10.1016/j.crhy.2019.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.08.004/

[1] J. Fourier Théorie Analytique de la Chaleur, Chez Firmin Didot, Paris, 1822 (Translated as: The Analytical Theory of Heat, 1878, Cambridge University Press, London)

[2] F. Bonetto; J-. Lebowitz; L. Rey-Bellet Fourier's law: a challenge to theorists (A. Fokas; A. Grigoryan; T. Kibble; B. Zegarlinski, eds.), Mathematical Physics 2000, Imperial College Press, London, 2000, p. 128

[3] B.J. Alder; T.E. Wainwright Decay of the velocity autocorrelation function, Phys. Rev. A, Volume 1 (1970), p. 18

[4] S. Lepri; R. Livi; A. Politi Thermal conduction in classical low-dimensional lattices, Phys. Rep., Volume 377 (2003), p. 1

[5] A. Dhar Heat transport in low-dimensional systems, Adv. Phys., Volume 57 (2008), p. 457

[6] J.-P. Eckmann; M. Hairer Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Commun. Math. Phys., Volume 212 (2000), p. 105

[7] B.J. Alder; D.M. Gass; T.E. Wainwright Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid, J. Chem. Phys., Volume 53 (1970), p. 3813

[8] G. Casati; J. Ford; F. Vivaldi; W.M. Visscher One-dimensional classical many-body system having a normal thermal conductivity, Phys. Rev. Lett., Volume 52 (1984), p. 1861

[9] S. Lepri; R. Livi; A. Politi Heat conduction in chains of nonlinear oscillators, Phys. Rev. Lett., Volume 78 (1997), p. 1896

[10] B. Hu; B. Li; H. Zhao Heat conduction in one-dimensional nonintegrable systems, Phys. Rev. E, Volume 61 (2000), p. 3828

[11] K. Aoki; D. Kusnezov Non-equilibrium statistical mechanics of classical lattice ϕ4 field theory, Ann. Phys., Volume 295 (2002), p. 50

[12] H. Zhao Identifying diffusion processes in one-dimensional lattices in thermal equilibrium, Phys. Rev. Lett., Volume 96 (2006)

[13] K. Aoki; J. Lukkarinen; H. Spohn Energy transport in weakly anharmonic chains, J. Stat. Phys., Volume 124 (2006), p. 1105

[14] R. Lefevere; A. Schenkel Normal heat conductivity in a strongly pinned chain of anharmonic oscillators, J. Stat. Mech. Theory Exp., Volume L02001 (2006)

[15] O.V. Gendelman; A.V. Savin Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction, Phys. Rev. Lett., Volume 84 (2000), p. 2381

[16] S.G. Das; A. Dhar Role of conserved quantities in normal heat transport in one dimension, 2015 | arXiv

[17] S. Iubini; S. Lepri; R. Livi; A. Politi Coupled transport in rotor models, New J. Phys., Volume 18 (2016)

[18] A. Das; K. Damle; A. Dhar; D.A. Huse; M. Kulkarni; C.B. Mendl; H. Spohn Nonlinear fluctuating hydrodynamics for the classical XXZ spin chain, 2019 | arXiv

[19] K. Saito; A. Dhar Heat conduction in a three dimensional anharmonic crystal, Phys. Rev. Lett., Volume 104 (2010)

[20] Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer (S. Lepri, ed.), Lecture Notes in Physics, vol. 921, Springer International Publishing, 2016

[21] J. Lukkarinen; H. Spohn Anomalous energy transport in the FPU-β chain, Commun. Pure Appl. Math., Volume 61 (2008), p. 1753

[22] C.B. Mendl; H. Spohn Dynamic correlators of Fermi-Pasta-Ulam chains and nonlinear fluctuating hydrodynamics, Phys. Rev. Lett., Volume 111 (2013)

[23] H. Spohn Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys., Volume 154 (2014), p. 1191

[24] S.G. Das; A. Dhar; K. Saito; C.B. Mendl; H. Spohn Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain, Phys. Rev. E, Volume 90 (2014)

[25] S.G. Das; A. Dhar; O. Narayan Heat conduction in the αβ Fermi–Pasta–Ulam chain, J. Stat. Phys., Volume 154 (2014), p. 204

[26] Y. Zhong; Y. Zhang; J. Wang; H. Zhao Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions, Phys. Rev. E, Volume 85 (2012) 060102(R)

[27] L. Wang; B. Hu; B. Li Validity of Fourier's law in one-dimensional momentum-conserving lattices with asymmetric interparticle interactions, Phys. Rev. E, Volume 88 (2013)

[28] A. Kundu; A. Chaudhuri; D. Roy; A. Dhar; J.-L. Lebowitz; H. Spohn Heat conduction and phonon localization in disordered harmonic crystals, Europhys. Lett., Volume 90 (2010)

[29] A. Chaudhuri; A. Kundu; D. Roy; A. Dhar; J.-L. Lebowitz; H. Spohn Heat transport and phonon localization in mass-disordered harmonic crystals, Phys. Rev. B, Volume 81 (2010)

[30] A. Dhar; J.-L. Lebowitz Effect of phonon–phonon interactions on localization, Phys. Rev. Lett., Volume 100 (2008)

Cité par Sources :

Commentaires - Politique