[La loi de Fourier et les systèmes quantiques à n corps]
Cet article porte sur les propriétés de transport de chaînes quantiques à n corps en s'accompagnant de simulations de type « groupe de renormalisation de matrice de densité » du modèle de Bose–Hubbard. Pour dresser une vue d'ensemble, nous présentons d'abord une très brève introduction à la théorie quantique à n corps et aux approximations des réseaux de tenseurs. Les propriétés de transport sont étudiées à l'aide de fonctions dynamiques de corrélation de densité, en suivant la théorie de la réponse linéaire. Nous observons un comportement diffusif à « température infinie »
The topic of this article are transport properties of many-body quantum chains accompanying DMRG-type simulations of the Bose–Hubbard model. To set the stage, we first provide a very brief introduction to many-body quantum theory and tensor network approximations. Transport properties are studied via dynamical density correlation functions, in line with linear response theory. We observe diffusive behavior at “infinite temperature”
Mots-clés : Chaînes quantiques à n corps, Transport diffusif, Fonctions de corrélation dynamiques, GRMD / réseaux de tenseurs
Christian B. Mendl 1
@article{CRPHYS_2019__20_5_442_0, author = {Christian B. Mendl}, title = {Fourier's law and many-body quantum systems}, journal = {Comptes Rendus. Physique}, pages = {442--448}, publisher = {Elsevier}, volume = {20}, number = {5}, year = {2019}, doi = {10.1016/j.crhy.2019.08.006}, language = {en}, }
Christian B. Mendl. Fourier's law and many-body quantum systems. Comptes Rendus. Physique, Fourier and the science of today / Fourier et la science d’aujourd’hui, Volume 20 (2019) no. 5, pp. 442-448. doi : 10.1016/j.crhy.2019.08.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.08.006/
[1] Modern Quantum Mechanics, Cambridge University Press, 2017
[2] Introduction to Quantum Mechanics, Pearson Prentice Hall, 2004
[3] Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, Oxford Graduate Texts, Oxford University Press, 2004
[4] Mathematische Grundlagen der Quantenmechanik, Springer, 1932
[5] Markoff random processes and the statistical mechanics of time-dependent phenomena, II: irreversible processes in fluids, J. Chem. Phys., Volume 22 (1954) no. 3, pp. 398-413
[6] Statistical-mechanical theory of irreversible processes, I: general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn., Volume 12 (1957), pp. 570-586
[7] Computational Many-Particle Physics, Springer-Verlag, Berlin–Heidelberg, 2008
[8] Strongly Correlated Systems – Numerical Methods, Springer-Verlag, Berlin–Heidelberg, 2013
[9] Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., Volume 69 (1992), pp. 2863-2866
[10] Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, Volume 48 (1993), pp. 10345-10356
[11] The density-matrix renormalization group, Rev. Mod. Phys., Volume 77 (2005), pp. 259-315
[12] The density-matrix renormalization group in the age of matrix product states, Ann. Phys., Volume 326 (2011), pp. 96-192
[13] Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys., Volume 57 (2008), pp. 143-224
[14] Tensor Spaces and Numerical Tensor Calculus, Springer Series in Computational Mathematics, Springer-Verlag, Berlin–Heidelberg, 2012
[15] Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett., Volume 91 (2003)
[16] Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett., Volume 101 (2008)
[17] Minimally entangled typical thermal state algorithms, New J. Phys., Volume 12 (2010)
[18] Precise evaluation of thermal response functions by optimized density matrix renormalization group schemes, New J. Phys., Volume 15 (2013)
[19] Area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010), pp. 277-306
[20] Generic construction of efficient matrix product operators, Phys. Rev. B, Volume 95 (2017)
[21] Unifying time evolution and optimization with matrix product states, Phys. Rev. B, Volume 94 (2016)
[22] Scrambling and thermalization in a diffusive quantum many-body system, New J. Phys., Volume 19 (2017)
[23] Fundamentals of Carrier Transport, Cambridge University Press, 2009
[24] The quantum Boltzmann equation in semiconductor physics, Ann. Phys., Volume 523 (2011), pp. 87-100
[25] Matrix-valued Boltzmann equation for the Hubbard chain, Phys. Rev. E, Volume 86 (2012)
[26] On the generators of quantum dynamical semigroups, Commun. Math. Phys., Volume 48 (1976), pp. 119-130
[27] Exact nonequilibrium steady state of a strongly driven open XXZ chain, Phys. Rev. Lett., Volume 107 (2011)
[28] Exact nonequilibrium steady state of an open Hubbard chain, Phys. Rev. Lett., Volume 112 (2014)
[29] Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system, Phys. Rev. Lett., Volume 117 (2016)
[30] Energy flow in quantum critical systems far from equilibrium, Nat. Phys., Volume 11 (2015), pp. 509-514
Cité par Sources :
Commentaires - Politique