Comptes Rendus
Fourier and the science of today / Fourier et la science d'aujourd'hui
Fourier's law and many-body quantum systems
[La loi de Fourier et les systèmes quantiques à n corps]
Comptes Rendus. Physique, Volume 20 (2019) no. 5, pp. 442-448.

Cet article porte sur les propriétés de transport de chaînes quantiques à n corps en s'accompagnant de simulations de type « groupe de renormalisation de matrice de densité » du modèle de Bose–Hubbard. Pour dresser une vue d'ensemble, nous présentons d'abord une très brève introduction à la théorie quantique à n corps et aux approximations des réseaux de tenseurs. Les propriétés de transport sont étudiées à l'aide de fonctions dynamiques de corrélation de densité, en suivant la théorie de la réponse linéaire. Nous observons un comportement diffusif à « température infinie » T. Enfin, nous mentionnons d'autres approches permettant d'étudier le transport, par exemple en imposant explicitement un gradient de température via des réservoirs thermiques aux bords.

The topic of this article are transport properties of many-body quantum chains accompanying DMRG-type simulations of the Bose–Hubbard model. To set the stage, we first provide a very brief introduction to many-body quantum theory and tensor network approximations. Transport properties are studied via dynamical density correlation functions, in line with linear response theory. We observe diffusive behavior at “infinite temperature” T. Finally, we mention other approaches to study transport, e.g., explicitly imposing a temperature gradient via thermal reservoirs at the boundary.

Publié le :
DOI : 10.1016/j.crhy.2019.08.006
Keywords: Many-body quantum chains, Diffusive transport, Dynamical correlation functions, DMRG/tensor networks
Mot clés : Chaînes quantiques à n corps, Transport diffusif, Fonctions de corrélation dynamiques, GRMD / réseaux de tenseurs

Christian B. Mendl 1

1 Technische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, Germany
@article{CRPHYS_2019__20_5_442_0,
     author = {Christian B. Mendl},
     title = {Fourier's law and many-body quantum systems},
     journal = {Comptes Rendus. Physique},
     pages = {442--448},
     publisher = {Elsevier},
     volume = {20},
     number = {5},
     year = {2019},
     doi = {10.1016/j.crhy.2019.08.006},
     language = {en},
}
TY  - JOUR
AU  - Christian B. Mendl
TI  - Fourier's law and many-body quantum systems
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 442
EP  - 448
VL  - 20
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.08.006
LA  - en
ID  - CRPHYS_2019__20_5_442_0
ER  - 
%0 Journal Article
%A Christian B. Mendl
%T Fourier's law and many-body quantum systems
%J Comptes Rendus. Physique
%D 2019
%P 442-448
%V 20
%N 5
%I Elsevier
%R 10.1016/j.crhy.2019.08.006
%G en
%F CRPHYS_2019__20_5_442_0
Christian B. Mendl. Fourier's law and many-body quantum systems. Comptes Rendus. Physique, Volume 20 (2019) no. 5, pp. 442-448. doi : 10.1016/j.crhy.2019.08.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.08.006/

[1] J.J. Sakurai; J. Napolitano Modern Quantum Mechanics, Cambridge University Press, 2017

[2] D.J. Griffiths Introduction to Quantum Mechanics, Pearson Prentice Hall, 2004

[3] H. Bruus; K. Flensberg Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, Oxford Graduate Texts, Oxford University Press, 2004

[4] J. von Neumann Mathematische Grundlagen der Quantenmechanik, Springer, 1932

[5] M.S. Green Markoff random processes and the statistical mechanics of time-dependent phenomena, II: irreversible processes in fluids, J. Chem. Phys., Volume 22 (1954) no. 3, pp. 398-413

[6] R. Kubo Statistical-mechanical theory of irreversible processes, I: general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn., Volume 12 (1957), pp. 570-586

[7] H. Fehske; R. Schneider; A. Weiße Computational Many-Particle Physics, Springer-Verlag, Berlin–Heidelberg, 2008

[8] A. Avella; F. Mancini Strongly Correlated Systems – Numerical Methods, Springer-Verlag, Berlin–Heidelberg, 2013

[9] S.R. White Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., Volume 69 (1992), pp. 2863-2866

[10] S.R. White Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, Volume 48 (1993), pp. 10345-10356

[11] U. Schollwöck The density-matrix renormalization group, Rev. Mod. Phys., Volume 77 (2005), pp. 259-315

[12] U. Schollwöck The density-matrix renormalization group in the age of matrix product states, Ann. Phys., Volume 326 (2011), pp. 96-192

[13] F. Verstraete; V. Murg; J.I. Cirac Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys., Volume 57 (2008), pp. 143-224

[14] W. Hackbusch Tensor Spaces and Numerical Tensor Calculus, Springer Series in Computational Mathematics, Springer-Verlag, Berlin–Heidelberg, 2012

[15] G. Vidal Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett., Volume 91 (2003)

[16] G. Vidal Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett., Volume 101 (2008)

[17] E.M. Stoudenmire; S.R. White Minimally entangled typical thermal state algorithms, New J. Phys., Volume 12 (2010)

[18] T. Barthel Precise evaluation of thermal response functions by optimized density matrix renormalization group schemes, New J. Phys., Volume 15 (2013)

[19] J. Eisert; M. Cramer; M.B.P. Colloquium Area laws for the entanglement entropy, Rev. Mod. Phys., Volume 82 (2010), pp. 277-306

[20] C. Hubig; I.P. McCulloch; U. Schollwöck Generic construction of efficient matrix product operators, Phys. Rev. B, Volume 95 (2017)

[21] J. Haegeman; C. Lubich; I. Oseledets; B. Vandereycken; F. Verstraete Unifying time evolution and optimization with matrix product states, Phys. Rev. B, Volume 94 (2016)

[22] A. Bohrdt; C.B. Mendl; M. Endres; M. Knap Scrambling and thermalization in a diffusive quantum many-body system, New J. Phys., Volume 19 (2017)

[23] M. Lundstrom Fundamentals of Carrier Transport, Cambridge University Press, 2009

[24] D.W. Snoke The quantum Boltzmann equation in semiconductor physics, Ann. Phys., Volume 523 (2011), pp. 87-100

[25] M.L.R. Fürst; C.B. Mendl; H. Spohn Matrix-valued Boltzmann equation for the Hubbard chain, Phys. Rev. E, Volume 86 (2012)

[26] G. Lindblad On the generators of quantum dynamical semigroups, Commun. Math. Phys., Volume 48 (1976), pp. 119-130

[27] T. Prosen Exact nonequilibrium steady state of a strongly driven open XXZ chain, Phys. Rev. Lett., Volume 107 (2011)

[28] T. Prosen Exact nonequilibrium steady state of an open Hubbard chain, Phys. Rev. Lett., Volume 112 (2014)

[29] M. Žnidarič; A. Scardicchio; V.K. Varma Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system, Phys. Rev. Lett., Volume 117 (2016)

[30] M.J. Bhaseen; B. Doyon; A. Lucas; K. Schalm Energy flow in quantum critical systems far from equilibrium, Nat. Phys., Volume 11 (2015), pp. 509-514

Cité par Sources :

Commentaires - Politique