[Amélioration de la qualité des diamants monocristallins obtenus par croissance à l'aide d'un porte-substrat – Analyse]
Lors de la croissance d'un monocristal de diamant par MPCVD, des diamants polycristallins ont tendance à pousser sur les bords. Ceci réduit considérablement la surface utilisable du film de diamant obtenu. De plus, la distribution non homogène des contraintes internes provoque la fissuration du diamant au cours de sa croissance. Ces dernières années, plusieurs études expérimentales ont été menées pour résoudre ces problèmes, et des résultats ont été obtenus. Cependant, pour comprendre fondamentalement le mécanisme de croissance du diamant, la relation entre la qualité de la croissance et divers facteurs l'influençant doit encore être étudiée quantitativement au moyen de simulations et d'expériences intégrées. La densité du nombre d'électrons et la température du substrat sont des facteurs importants affectant la qualité de la cristallisation du diamant. Dans cet article, les conditions de croissance du diamant ont été simulées et analysées. Les résultats de la simulation ont été comparés aux résultats expérimentaux. Ceci montre que la distribution de la température de surface est relativement homogène et que le gradient significatif de densité numérique d'électrons dans la direction axiale est la raison principale de la formation de polycristaux sur les bords. Par conséquent, des supports de substrat avec des profondeurs de cavité différentes ont été conçus, et les substrats se sont développés dans la même plage de température. Les morphologies de surface, les qualités cristallines et la distribution des contraintes internes des diamants cultivés ont été mesurées, et on a constaté que la qualité de la croissance augmentait d'abord, puis diminuait avec la profondeur de la cavité, tandis que le taux de croissance diminuait avec l'augmentation de cette dernière. Ces résultats concordent bien avec les résultats de la simulation. Enfin, des suggestions quant au choix du support de substrat pour la croissance de films de différentes épaisseurs sont proposées.
During the growth of a single-crystal diamond by MPCVD, polycrystalline diamonds are prone to grow in the edge regions. This substantially reduces the usable area of the grown diamond film. In addition, the inhomogeneous distribution of internal stress causes diamond to crack during continuous growth. In recent years, a series of experimental studies have been carried out to solve these problems and some achievements have been obtained. However, in order to understand fundamentally the growth mechanism of diamond, the relationship between growth quality and various influencing factors still needs to be quantitatively studied through integrated simulations and experiments. Electron number density and substrate temperature are important factors affecting diamond crystallization quality. In this paper, the growth conditions of the diamond were simulated and analyzed. Simulation results were compared with the experimental results. This evidences that the surface temperature distribution is relatively homogeneous, and that the significant electron number density gradient in the axial direction is the main reason for the formation of polycrystals in the edge regions. Therefore, substrate holders with different cavity depths were designed and the substrates grew in the same temperature range. The surface morphologies, crystalline qualities, and internal stress distributions of the grown diamonds were measured, and it was found that the quality of growth increased first and then decreased with the depth of the cavity, while the growth rate decreased with increasing the latter. These results are in good agreement with the simulation results. Finally, suggestions on the selection of the substrate holder for film growth with different thicknesses are proposed.
Mot clés : MPCVD, Diamant monocristallin, Support de substrat, Qualité des bords
Bo Yang 1 ; Qiao Shen 2 ; Zhiyin Gan 1, 2 ; Sheng Liu 1, 3, 4
@article{CRPHYS_2019__20_6_583_0, author = {Bo Yang and Qiao Shen and Zhiyin Gan and Sheng Liu}, title = {Improving the edge quality of single-crystal diamond growth by a substrate holder {\textendash} {An} analysis}, journal = {Comptes Rendus. Physique}, pages = {583--592}, publisher = {Elsevier}, volume = {20}, number = {6}, year = {2019}, doi = {10.1016/j.crhy.2019.08.008}, language = {en}, }
TY - JOUR AU - Bo Yang AU - Qiao Shen AU - Zhiyin Gan AU - Sheng Liu TI - Improving the edge quality of single-crystal diamond growth by a substrate holder – An analysis JO - Comptes Rendus. Physique PY - 2019 SP - 583 EP - 592 VL - 20 IS - 6 PB - Elsevier DO - 10.1016/j.crhy.2019.08.008 LA - en ID - CRPHYS_2019__20_6_583_0 ER -
%0 Journal Article %A Bo Yang %A Qiao Shen %A Zhiyin Gan %A Sheng Liu %T Improving the edge quality of single-crystal diamond growth by a substrate holder – An analysis %J Comptes Rendus. Physique %D 2019 %P 583-592 %V 20 %N 6 %I Elsevier %R 10.1016/j.crhy.2019.08.008 %G en %F CRPHYS_2019__20_6_583_0
Bo Yang; Qiao Shen; Zhiyin Gan; Sheng Liu. Improving the edge quality of single-crystal diamond growth by a substrate holder – An analysis. Comptes Rendus. Physique, Volume 20 (2019) no. 6, pp. 583-592. doi : 10.1016/j.crhy.2019.08.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.08.008/
[1] et al. Homoepitaxial growth of single crystal diamond membranes for quantum information processing, Adv. Mater., Volume 24 (2012), pp. 54-59
[2] Quantum photonic devices in single-crystal diamond, New J. Phys., Volume 15 (2013)
[3] Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method, Diam. Relat. Mater., Volume 35 (2013), pp. 19-23
[4] CVD Diamond for Electronic Sensors and Devices (R.S. Sussmann, ed.), Wiley, Chichester, UK, 2009 (Chapter 4)
[5] High optical quality multicarat single crystal diamond produced by chemical vapor deposition, Phys. Status Solidi A, Appl. Mat. Sci., Volume 209 (2012) no. 1, pp. 101-104
[6] New insights into the mechanism of CVD diamond growth: single crystal diamond in MW PECVD reactors, Diam. Relat. Mater., Volume 17 (2008), pp. 1021-1028
[7] A review of plasma enhanced chemical vapour deposition of carbon nanotubes, J. Phys. D, Appl. Phys., Volume 42 (2009) no. 21, pp. 1-15
[8] Application of dynamic and combined magnetic fields in the 300 mm silicon single-crystal growth, Mater. Sci. Semicond. Process., Volume 5 (2002), pp. 347-351
[9] Characterization of interfaces in mosaic CVD diamond crystal, J. Cryst. Growth, Volume 442 (2016), pp. 62-67
[10] “Mosaic” growth of diamond, Diam. Relat. Mater., Volume 4 (1995), pp. 1025-1031
[11] High quality, large surface area, homoepitaxial MPACVD diamond growth, Diam. Relat. Mater., Volume 18 (2009), pp. 683-697
[12] Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges, C. R. Phys., Volume 14 (2013), pp. 169-184
[13] Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD, Diam. Relat. Mater., Volume 14 (2005), pp. 1743-1746
[14] The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD, Diam. Relat. Mater., Volume 13 (2004), pp. 1954-1958
[15] Growth strategies for large and high quality single crystal diamond substrates, Diam. Relat. Mater., Volume 60 (2015), pp. 26-34
[16] Simulation and development of optimized microwave plasma reactors for diamond deposition, Surf. Coat. Technol., Volume 116–119 (1999), pp. 853-862
[17] Numerical modeling of a microwave plasma CVD reactor, Diam. Relat. Mater., Volume 10 (2001), pp. 342-346
[18] Modeling of a capacitively coupled radio-frequency methane plasma: comparison between a one-dimensional and a two-dimensional fluid model, J. Appl. Phys., Volume 92 (2002)
[19] Spatiotemporal electron dynamics in radiofrequency glow discharges: fluid versus dynamic Monte Carlo simulations, J. Phys. D, Appl. Phys., Volume 28 (1995), pp. 727-737
[20] Modeling of microwave discharges of H2 admixed with CH4 for diamond deposition, J. Appl. Phys., Volume 98 (2005)
[21] Modeling and numerical analyses of microwave plasmas for optimizations of a reactor design and its operating conditions, Diam. Relat. Mater., Volume 14 (2005), pp. 1776-1779
[22] Modelling of diamond deposition microwave cavity generated plasmas, J. Phys. D, Appl. Phys., Volume 43 (2010)
[23] Simplified description of microwave plasma discharge for chemical vapor deposition of diamond, J. Appl. Phys., Volume 101 (2007)
[24] Spectroscopic diagnostics and modeling of microwave discharges used for nanocrystalline diamond deposition, J. Appl. Phys., Volume 96 (2004) no. 11
[25] Analysis of hydrogen plasma in a microwave plasma chemical vapor deposition reactor, J. Appl. Phys., Volume 119 (2016) no. 11
[26] Microwave engineering of plasma-assisted CVD reactors for diamond deposition, J. Phys. Condens. Matter, Volume 21 (2009) no. 36
[27] Gas temperature measurements in a microwave plasma by optical emission spectroscopy under single-wall carbon nanotube growth conditions, J. Phys. D, Appl. Phys., Volume 41 (2008)
[28] A 2-in. mosaic wafer made of a single-crystal diamond, Appl. Phys. Lett., Volume 104 (2014)
[29] Two-dimensional simulation of a hot-filament chemical vapor deposition reactor, Diam. Relat. Mater., Volume 5 (1996), pp. 888-894
[30] Simulation of microwave plasmas concentrated on the top surface of a diamond substrate with finite thickness, Diam. Relat. Mater., Volume 15 (2006), pp. 1383-1388
[31] Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy, J. Appl. Phys., Volume 91 (2002) no. 4, pp. 2466-2473
[32] Stress analysis on single-crystal diamonds by Raman spectroscopy 3D mapping, Mater. Sci. Appl., Volume 4 (2013), pp. 191-197
Cité par Sources :
Commentaires - Politique