Comptes Rendus
Article de recherche
Coupled dynamics of a wave and moving boundary
[Dynamique couplée d’une onde et d’une paroi mobile]
Comptes Rendus. Physique, Volume 26 (2025), pp. 259-270.

Je présente la dynamique d’ondes dans une cavité unidimensionnelle dont une paroi peut se mettre en mouvement sous l’effet, entre autres, de la pression de radiation. Plus précisément, l’équation des ondes classiques est couplée à une paroi subissant de grands déplacements et pouvant se mouvoir à une vitesse comparable à celle des ondes. Les équations du problème sont obtenues dans le cadre de l’électromagnétisme puis discrétisées spatialement en conservant l’énergie totale. Quelques cas particuliers sont ensuite traités, lorsque la position de la paroi est prescrite par un opérateur extérieur ou bien se réduit à un oscillateur dans son régime critique. Des simulations numériques dans la limite conservatives sont finalement discutées.

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :

I present the dynamics of waves trapped in a one-dimensional cavity with a single wall that can move as a result of radiation pressure (and possibly other external forces). Specifically, the classical wave equation is considered and the phenomenology of this system is outlined when the moving boundary achieves large displacements and velocities similar to the one of the waves. Governing equations are derived in the context of electromagnetism, and a spatial discretization that conserves the total energy is proposed. I address cases when the dynamics of the boundary are prescribed or critically damped. Finally, numerical simulations are performed to obtain qualitative results for the conservative limit.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.242
Keywords: Wave, Radiation pressure, Moving boundary, Nonlinear dynamics, Doppler effect
Mots-clés : Ondes, Pression de radiation, Paroi mobile, Dynamique non linéaire, Effet Doppler

Guillaume Michel 1

1 Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_259_0,
     author = {Guillaume Michel},
     title = {Coupled dynamics of a wave and moving boundary},
     journal = {Comptes Rendus. Physique},
     pages = {259--270},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.242},
     language = {en},
}
TY  - JOUR
AU  - Guillaume Michel
TI  - Coupled dynamics of a wave and moving boundary
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 259
EP  - 270
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.242
LA  - en
ID  - CRPHYS_2025__26_G1_259_0
ER  - 
%0 Journal Article
%A Guillaume Michel
%T Coupled dynamics of a wave and moving boundary
%J Comptes Rendus. Physique
%D 2025
%P 259-270
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.242
%G en
%F CRPHYS_2025__26_G1_259_0
Guillaume Michel. Coupled dynamics of a wave and moving boundary. Comptes Rendus. Physique, Volume 26 (2025), pp. 259-270. doi : 10.5802/crphys.242. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.242/

[1] G. Goedecke; V. Toussaint; C. Cooper On energy transfers in reflection of light by a moving mirror, Am. J. Phys., Volume 80 (2012), pp. 684-687 | DOI

[2] D. Censor The generalized Doppler effect and applications, J. Franklin Inst., Volume 295 (1973), pp. 103-116 | DOI

[3] D. Censor Acoustical Doppler effect analysis–Is it a valid method?, J. Acoust. Soc. Am., Volume 83 (1988), pp. 1223-1230 | DOI

[4] N. Mujica; R. Wunenburger; S. Fauve Scattering of a sound wave by a vibrating surface, Eur. Phys. J. B, Volume 33 (2003), pp. 209-213 | DOI

[5] G. Michel The generalized Doppler effect for surface waves, Europhys. Lett., Volume 116 (2016), 44002 | DOI

[6] J. Dittrich; P. Duclos; P. Šeba Resonance response of the quantum vacuum to an oscillating boundary, Phys. Rev. E, Volume 49 (1994), pp. 3535-3538 | DOI

[7] O. Méplan; C. Gignoux Exponential growth of the energy of a wave in a 1D vibrating cavity: application to the quantum vacuum, Phys. Rev. Lett., Volume 76 (1996), pp. 408-410 | DOI

[8] V. V. Dodonov Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries, Phys. Scr., Volume 82 (2010), 038105 | DOI

[9] J. Cooper Long-time behavior and energy growth for electromagnetic waves reflected by a moving boundary, IEEE Trans. Antennas Propag., Volume 41 (1993), pp. 1365-1370 | DOI

[10] M. Aspelmeyer; T. J. Kippenberg; F. Marquardt Cavity optomechanics, Rev. Mod. Phys., Volume 86 (2014), pp. 1391-1452 | DOI

[11] S. Barzanjeh; A. Xuereb; S. Gröblacher; M. Paternostro; C. A. Regal; E. M. Weig Optomechanics for quantum technologies, Nat. Phys., Volume 18 (2022), pp. 15-24 | DOI

[12] V. V. Dodonov Fifty years of the dynamical Casimir effect, Physics, Volume 2 (2020) no. 1, pp. 67-104 | DOI

[13] C. K. Law Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation, Phys. Rev. A, Volume 51 (1995) no. 3, pp. 2537-2541 | DOI

[14] S. Butera; I. Carusotto Mechanical backreaction effect of the dynamical Casimir emission, Phys. Rev. A, Volume 99 (2019), 053815 | DOI

[15] L.-L. Nian; J.-T. Lü Heat transfer mediated by the dynamical Casimir effect in an optomechanical system, Phys. Rev. A, Volume 103 (2021), 063510 | DOI

[16] O. Di Stefano; A. Settineri; V. Macrì; A. Ridolfo; R. Stassi; A. F. Kockum; S. Savasta; F. Nori Interaction of mechanical oscillators mediated by the exchange of virtual photon pairs, Phys. Rev. Lett., Volume 122 (2019), 030402 | DOI

[17] F. Harfoush; A. Taflove; G. A. Kriegsmann A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions, IEEE Trans. Antennas Propag., Volume 37 (1989), pp. 55-63 | DOI

[18] T. T. Koutserimpas; C. Valagiannopoulos Electromagnetic fields between moving mirrors: singular waveforms inside Doppler cavities, Opt. Express, Volume 31 (2023), pp. 5087-5101 | DOI

[19] G. B. Whitham Linear and Nonlinear Waves, John Wiley & Sons, New York, 2011 | DOI

[20] N. J. Zabusky; M. D. Kruskal Interaction of “solitons” in a collisonless plasma and the recurrence of initial states, Phys. Rev. Lett., Volume 15 (1965) no. 6, pp. 240-243 | DOI

[21] G. Baym; C. Pethick; D. Pines Electrical conductivity of neutron star matter, Nature, Volume 224 (1969), pp. 674-675 | DOI

Cité par Sources :

Commentaires - Politique