[Dynamique couplée d’une onde et d’une paroi mobile]
Je présente la dynamique d’ondes dans une cavité unidimensionnelle dont une paroi peut se mettre en mouvement sous l’effet, entre autres, de la pression de radiation. Plus précisément, l’équation des ondes classiques est couplée à une paroi subissant de grands déplacements et pouvant se mouvoir à une vitesse comparable à celle des ondes. Les équations du problème sont obtenues dans le cadre de l’électromagnétisme puis discrétisées spatialement en conservant l’énergie totale. Quelques cas particuliers sont ensuite traités, lorsque la position de la paroi est prescrite par un opérateur extérieur ou bien se réduit à un oscillateur dans son régime critique. Des simulations numériques dans la limite conservatives sont finalement discutées.
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
I present the dynamics of waves trapped in a one-dimensional cavity with a single wall that can move as a result of radiation pressure (and possibly other external forces). Specifically, the classical wave equation is considered and the phenomenology of this system is outlined when the moving boundary achieves large displacements and velocities similar to the one of the waves. Governing equations are derived in the context of electromagnetism, and a spatial discretization that conserves the total energy is proposed. I address cases when the dynamics of the boundary are prescribed or critically damped. Finally, numerical simulations are performed to obtain qualitative results for the conservative limit.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Révisé le :
Accepté le :
Publié le :
Mots-clés : Ondes, Pression de radiation, Paroi mobile, Dynamique non linéaire, Effet Doppler
Guillaume Michel 1

@article{CRPHYS_2025__26_G1_259_0, author = {Guillaume Michel}, title = {Coupled dynamics of a wave and moving boundary}, journal = {Comptes Rendus. Physique}, pages = {259--270}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.242}, language = {en}, }
Guillaume Michel. Coupled dynamics of a wave and moving boundary. Comptes Rendus. Physique, Volume 26 (2025), pp. 259-270. doi : 10.5802/crphys.242. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.242/
[1] On energy transfers in reflection of light by a moving mirror, Am. J. Phys., Volume 80 (2012), pp. 684-687 | DOI
[2] The generalized Doppler effect and applications, J. Franklin Inst., Volume 295 (1973), pp. 103-116 | DOI
[3] Acoustical Doppler effect analysis–Is it a valid method?, J. Acoust. Soc. Am., Volume 83 (1988), pp. 1223-1230 | DOI
[4] Scattering of a sound wave by a vibrating surface, Eur. Phys. J. B, Volume 33 (2003), pp. 209-213 | DOI
[5] The generalized Doppler effect for surface waves, Europhys. Lett., Volume 116 (2016), 44002 | DOI
[6] Resonance response of the quantum vacuum to an oscillating boundary, Phys. Rev. E, Volume 49 (1994), pp. 3535-3538 | DOI
[7] Exponential growth of the energy of a wave in a 1D vibrating cavity: application to the quantum vacuum, Phys. Rev. Lett., Volume 76 (1996), pp. 408-410 | DOI
[8] Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries, Phys. Scr., Volume 82 (2010), 038105 | DOI
[9] Long-time behavior and energy growth for electromagnetic waves reflected by a moving boundary, IEEE Trans. Antennas Propag., Volume 41 (1993), pp. 1365-1370 | DOI
[10] Cavity optomechanics, Rev. Mod. Phys., Volume 86 (2014), pp. 1391-1452 | DOI
[11] Optomechanics for quantum technologies, Nat. Phys., Volume 18 (2022), pp. 15-24 | DOI
[12] Fifty years of the dynamical Casimir effect, Physics, Volume 2 (2020) no. 1, pp. 67-104 | DOI
[13] Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation, Phys. Rev. A, Volume 51 (1995) no. 3, pp. 2537-2541 | DOI
[14] Mechanical backreaction effect of the dynamical Casimir emission, Phys. Rev. A, Volume 99 (2019), 053815 | DOI
[15] Heat transfer mediated by the dynamical Casimir effect in an optomechanical system, Phys. Rev. A, Volume 103 (2021), 063510 | DOI
[16] Interaction of mechanical oscillators mediated by the exchange of virtual photon pairs, Phys. Rev. Lett., Volume 122 (2019), 030402 | DOI
[17] A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions, IEEE Trans. Antennas Propag., Volume 37 (1989), pp. 55-63 | DOI
[18] Electromagnetic fields between moving mirrors: singular waveforms inside Doppler cavities, Opt. Express, Volume 31 (2023), pp. 5087-5101 | DOI
[19] Linear and Nonlinear Waves, John Wiley & Sons, New York, 2011 | DOI
[20] Interaction of “solitons” in a collisonless plasma and the recurrence of initial states, Phys. Rev. Lett., Volume 15 (1965) no. 6, pp. 240-243 | DOI
[21] Electrical conductivity of neutron star matter, Nature, Volume 224 (1969), pp. 674-675 | DOI
Cité par Sources :
Commentaires - Politique