Comptes Rendus
Intervention en colloque
Some open mathematical problems concerning charged quantum particles
[Quelques problèmes mathématiques ouverts sur les particules quantiques chargées]
Comptes Rendus. Physique, Volume 26 (2025), pp. 369-380.

Cet article fait partie du numéro thématique Questions ouvertes dans le problème quantique à N corps coordonné par Yvan Castin et al..

I present some open mathematical problems concerning electrons in quantum mechanics and charged particles in general. After discussing the Schrödinger Hamiltonian describing atoms and molecules with classical nuclei, I turn to infinite systems and in particular to the homogeneous electron gas.

Je présente quelques problèmes mathématiques ouverts concernant les électrons en mécanique quantique et les particules chargées en général. Après avoir discuté de l’hamiltonien de Schrödinger décrivant les atomes et les molécules avec des noyaux classiques, je considère les systèmes infinis et en particulier le gaz homogène d’électrons.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.249
Keywords: Schrödinger equation, Coulomb systems, Homogeneous electron gas
Mots-clés : Équation de Schrödinger, Systèmes coulombiens, Gaz d’électrons homogène

Mathieu Lewin 1

1 CEREMADE, CNRS and Université Paris Dauphine - PSL, Place de Lattre de Tassigny, 75 016 PARIS, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_369_0,
     author = {Mathieu Lewin},
     title = {Some open mathematical problems concerning charged quantum particles},
     journal = {Comptes Rendus. Physique},
     pages = {369--380},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.249},
     language = {en},
}
TY  - JOUR
AU  - Mathieu Lewin
TI  - Some open mathematical problems concerning charged quantum particles
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 369
EP  - 380
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.249
LA  - en
ID  - CRPHYS_2025__26_G1_369_0
ER  - 
%0 Journal Article
%A Mathieu Lewin
%T Some open mathematical problems concerning charged quantum particles
%J Comptes Rendus. Physique
%D 2025
%P 369-380
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.249
%G en
%F CRPHYS_2025__26_G1_369_0
Mathieu Lewin. Some open mathematical problems concerning charged quantum particles. Comptes Rendus. Physique, Volume 26 (2025), pp. 369-380. doi : 10.5802/crphys.249. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.249/

[1] M. Lewin Some open mathematical problems concerning charged quantum particles, 2024 https://www.carmin.tv/... (Accessed 2025-04-01 Talk delivered at the institut Henri Poincaré in the symposium “Open Questions in the Quantum Many-body Problem”)

[2] E. H. Lieb; R. Seiringer The Stability of Matter in Quantum Mechanics, Cambridge University Press, Cambridge, 2010 | DOI | MR

[3] T. Kato Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Am. Math. Soc., Volume 70 (1951), pp. 195-221 | MR | Zbl

[4] E. H. Lieb; M. Loss Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001, xxii+346 pages

[5] M. Lewin Spectral Theory and Quantum Mechanics, Universitext, Springer International Publishing, Cham, 2024 | DOI | MR

[6] G. M. Zhislin A study of the spectrum of the Schrödinger operator for a system of several particles, Trudy Moskov. Mat. Obšč., Volume 9 (1960), pp. 81-120 | MR

[7] G. M. Zhislin On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions, Teoret. Mat. Fiz., Volume 21 (1971), pp. 332-341

[8] D. R. Yafaev On the point spectrum in the quantum-mechanical many-body problem, Math. USSR Izv., Volume 40 (1976), pp. 861-896 (English translation) | Zbl

[9] I. M. Sigal Geometric methods in the quantum many-body problem. Non existence of very negative ions, Commun. Math. Phys., Volume 85 (1982), pp. 309-324 | DOI | MR | Zbl

[10] M. B. Ruskai Absence of discrete spectrum in highly negative ions: II. Extension to fermions, Commun. Math. Phys., Volume 85 (1982), pp. 325-327 | DOI | MR

[11] E. H. Lieb Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A, Volume 29 (1984) no. 6, pp. 3018-3028 | DOI

[12] I. M. Sigal; A. Soffer Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent. Math., Volume 99 (1990) no. 1, pp. 115-143 | DOI | MR | Zbl

[13] J. Dereziński Asymptotic completeness of long-range N-body quantum systems, Ann. of Math. (2), Volume 138 (1993) no. 2, pp. 427-476 | DOI | MR | Zbl

[14] V. Bach; J. Fröhlich; I. M. Sigal Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 249-290 | DOI | MR | Zbl

[15] M. Griesemer; E. H. Lieb; M. Loss Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595 | DOI | MR | Zbl

[16] A. Kramida; Y. Ralchenko NIST Atomic Spectra Database, NIST Standard Reference Database 78, 1999 | DOI

[17] W. Hunziker On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta, Volume 39 (1966), pp. 451-462 | MR | Zbl

[18] C. Van Winter Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk., Volume 2 (1964) no. 8, pp. 1-60 | MR | Zbl

[19] P. T. Nam The ionization problem in quantum mechanics, The Physics and Mathematics of Elliott Lieb. The 90th Anniversary Volume II (R. L. Frank; A. Laptev; M. Lewin; R. Seiringer, eds.), EMS Press, Berlin, 2022, pp. 93-120 | Zbl

[20] B. Simon Fifteen problems in mathematical physics, Perspectives in Mathematics: Anniversary of Oberwolfach 1984 (W. Jäger; J. Moser; R. Remmert, eds.), Birkhäuser, Basel, 1984, pp. 423-454 | Zbl

[21] R. Benguria; E. H. Lieb Proof of the stability of highly negative ions in the absence of the Pauli principle, Phys. Rev. Lett., Volume 50 (1983), pp. 1771-1774 | DOI

[22] J. P. Solovej Asymptotics for bosonic atoms, Lett. Math. Phys., Volume 20 (1990) no. 2, pp. 165-172 | DOI | MR | Zbl

[23] P. T. Nam New bounds on the maximum ionization of atoms, Commun. Math. Phys., Volume 312 (2012) no. 2, pp. 427-445 | DOI | MR | Zbl

[24] E. H. Lieb; I. M. Sigal; B. Simon; W. Thirring Asymptotic neutrality of large-Z ions, Phys. Rev. Lett., Volume 52 (1984), pp. 994-996 | DOI | MR

[25] E. H. Lieb; I. M. Sigal; B. Simon; W. Thirring Approximate neutrality of large-Z ions, Commun. Math. Phys., Volume 116 (1988) no. 4, pp. 635-644 | DOI | MR

[26] C. L. Fefferman; L. A. Seco On the energy of a large atom, Bull. Amer. Math. Soc. (N.S.), Volume 23 (1990) no. 2, pp. 525-530 | DOI | MR | Zbl

[27] L. A. Seco; I. M. Sigal; J. P. Solovej Bound on the ionization energy of large atoms, Commun. Math. Phys., Volume 131 (1990) no. 2, pp. 307-315 | DOI | MR | Zbl

[28] J. P. Solovej Proof of the ionization conjecture in a reduced Hartree–Fock model, Invent. Math., Volume 104 (1991) no. 2, pp. 291-311 | DOI | MR | Zbl

[29] J. P. Solovej The ionization conjecture in Hartree–Fock theory, Ann. of Math. (2), Volume 158 (2003) no. 2, pp. 509-576 | DOI | MR | Zbl

[30] J. P. Perdew; R. G. Parr; M. Levy; J. L. Balduz Density-functional theory for fractional particle number: Derivative discontinuities of the energy, Phys. Rev. Lett., Volume 49 (1982), pp. 1691-1694 | DOI

[31] R. Parr; W. Yang Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry, Oxford University Press, USA, 1994

[32] E. H. Lieb Density functionals for Coulomb systems, Int. J. Quantum Chem., Volume 24 (1983), pp. 243-277 | DOI

[33] P. W. Ayers Energy is not a convex function of particle number for r-k interparticle potentials with k > log34, J. Chem. Phys., Volume 160 (2024) no. 4, 044110 | DOI

[34] J. Lévy-Leblond Generalized uncertainty relations for many-fermion system, Phys. Lett. A, Volume 26 (1968) no. 11, pp. 540-541 | DOI

[35] P. Phillips; E. R. Davidson Chemical potential for harmonically interacting particles in a harmonic potential, Int. J. Quantum Chem., Volume 23 (1983) no. 1, pp. 185-194 | DOI

[36] R. M. Fye; M. J. Martins; R. T. Scalettar Binding of holes in one-dimensional Hubbard chains, Phys. Rev. B, Volume 42 (1990) no. 10, pp. 6809-6812 | DOI

[37] J.-P. Blaizot; G. Ripka Quantum Theory of Finite Systems, MIT Press, Cambridge, MA, 1985 | MR

[38] S. Di Marino; M. Lewin; L. Nenna Grand-canonical optimal transport, Arch. Ration. Mech. Anal., Volume 249 (2025), 12 | DOI | MR | Zbl

[39] S. Di Marino; M. Lewin; L. Nenna Ground state energy is not always convex in the number of electrons, J. Phys. Chem. A, Volume 128 (2024) no. 49, pp. 10697-10706 | DOI

[40] E. H. Lieb; B. Simon Thomas–Fermi theory revisited, Phys. Rev. Lett., Volume 31 (1973), pp. 681-683 | DOI

[41] E. H. Lieb; B. Simon The Hartree–Fock theory for Coulomb systems, Commun. Math. Phys., Volume 53 (1977) no. 3, pp. 185-194 | DOI | MR

[42] E. H. Lieb Thomas–Fermi and related theories of atoms and molecules, Rev. Mod. Phys., Volume 53 (1981), pp. 603-641 | DOI | MR | Zbl

[43] J. P. Solovej A new look at Thomas–Fermi theory, Mol. Phys., Volume 114 (2016) no. 7–8, pp. 1036-1040 | DOI

[44] A. Bjerg; J. P. Solovej Periodicity of atomic structure in a Thomas–Fermi mean-field model (2024) | arXiv

[45] H. Brezis; E. H. Lieb A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., Volume 88 (1983) no. 3, pp. 486-490 | DOI

[46] V. Bach Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., Volume 21 (1991) no. 2, pp. 139-149 | DOI | MR | Zbl

[47] V. Bach; R. Lewis; E. H. Lieb; H. Siedentop On the number of bound states of a bosonic N-particle Coulomb system, Math. Z., Volume 214 (1993) no. 3, pp. 441-459 | DOI | MR | Zbl

[48] E. H. Lieb; W. E. Thirring Universal nature of Van Der Waals forces for Coulomb systems, Phys. Rev. A, Volume 34 (1986), pp. 40-46 | DOI

[49] M. Lewin A mountain pass for reacting molecules, Ann. Henri Poincaré, Volume 5 (2004) no. 3, pp. 477-521 | DOI | MR | Zbl

[50] M. Lewin Solution of a mountain pass problem for the isomerization of a molecule with one free atom, Ann. Henri Poincaré, Volume 7 (2006) no. 2, pp. 365-379 | DOI | MR | Zbl

[51] I. Anapolitanos; M. Lewin Compactness of molecular reaction paths in quantum mechanics, Arch. Ration. Mech. Anal., Volume 236 (2020) no. 2, pp. 505-576 | DOI | MR | Zbl

[52] F. J. Dyson; A. Lenard Stability of matter. I, J. Math. Phys., Volume 8 (1967) no. 3, pp. 423-434 | DOI | Zbl

[53] E. H. Lieb The stability of matter, Rev. Mod. Phys., Volume 48 (1976) no. 4, pp. 553-569 | DOI | MR | Zbl

[54] E. H. Lieb The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.), Volume 22 (1990) no. 1, pp. 1-49 | DOI | MR | Zbl

[55] M. Loss Elliott Lieb’s Work on Stability of Matter, EMS Press, Berlin, 2022, pp. 31-45

[56] C. Fefferman The thermodynamic limit for a crystal, Commun. Math. Phys., Volume 98 (1985) no. 3, pp. 289-311 | DOI | MR | Zbl

[57] C. Hainzl; M. Lewin; J. P. Solovej The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Adv. Math., Volume 221 (2009), pp. 488-546 | DOI | MR | Zbl

[58] X. Blanc; M. Lewin Existence of the thermodynamic limit for disordered quantum Coulomb systems, J. Math. Phys., Volume 53 (2012), 095209 (Special issue in honor of E. H. Lieb’s 80th birthday) | DOI | MR | Zbl

[59] E. H. Lieb; J. L. Lebowitz The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei, Adv. Math., Volume 9 (1972), pp. 316-398 | DOI | Zbl

[60] E. H. Lieb The N5/3 law for bosons, Phys. Lett. A, Volume 70 (1979) no. 2, pp. 71-73 | DOI | MR

[61] E. H. Lieb; H. Narnhofer The thermodynamic limit for jellium, J. Stat. Phys., Volume 12 (1975) no. 4, pp. 291-310 | DOI | Zbl

[62] M. Lewin Coulomb and Riesz gases: The known and the unknown, J. Math. Phys., Volume 63 (2022), 061101 (Special collection in honor of Freeman Dyson) | DOI | MR | Zbl

[63] J. Z. Imbrie Debye screening for jellium and other Coulomb systems, Commun. Math. Phys., Volume 87 (1982) no. 4, pp. 515-565 | DOI | MR

[64] J. Fröhlich; B. Simon; T. Spencer Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys., Volume 50 (1976) no. 1, pp. 79-95 | DOI | MR

[65] F. J. Dyson; E. H. Lieb; B. Simon Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys., Volume 18 (1978) no. 4, pp. 335-383 | DOI | MR

[66] E. P. Wigner On the interaction of electrons in metals, Phys. Rev., Volume 46 (1934), pp. 1002-1011 | DOI | Zbl

[67] X. Blanc; M. Lewin The crystallization conjecture: A review, EMS Surv. Math. Sci., Volume 2 (2015) no. 2, pp. 255-306 | DOI | MR | Zbl

[68] R. J. Baxter Statistical mechanics of a one-dimensional Coulomb system with a uniform charge background, Proc. Camb. Philos. Soc., Volume 59 (1963), pp. 779-787 | DOI | MR | Zbl

[69] H. Kunz The one-dimensional classical electron gas, Ann. Phys. (NY), Volume 85 (1974) no. 2, pp. 303-335 | DOI | MR

[70] H. J. Brascamp; E. H. Lieb Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma, Functional Integration and its Applications (A. Arthurs, ed.), Clarendon Press, Oxford, 1975 | Zbl

[71] M. Aizenman; P. A. Martin Structure of Gibbs states of one dimensional Coulomb systems, Commun. Math. Phys., Volume 78 (1980) no. 1, pp. 99-116 | DOI | MR

[72] S. Jansen; P. Jung Wigner crystallization in the quantum 1D jellium at all densities, Commun. Math. Phys., Volume 331 (2014), pp. 1133-1154 | DOI | MR | Zbl

[73] H. Cohn; A. Kumar; S. D. Miller; D. Radchenko; M. Viazovska Universal optimality of the E8 and Leech lattices and interpolation formulas, Ann. of Math. (2), Volume 196 (2022) no. 3, pp. 983-1082 | DOI | MR | Zbl

[74] M. Petrache; S. Serfaty Crystallization for Coulomb and Riesz interactions as a consequence of the Cohn–Kumar conjecture, Proc. Am. Math. Soc., Volume 148 (2020) no. 7, pp. 3047-3057 | DOI | MR | Zbl

[75] M. Holzmann; S. Moroni Itinerant-electron magnetism: The importance of many-body correlations, Phys. Rev. Lett., Volume 124 (2020), 206404 | DOI

[76] S. Azadi; N. D. Drummond Low-density phase diagram of the three-dimensional electron gas, Phys. Rev. B, Volume 105 (2022), 245135 | DOI

[77] L. Baguet; F. Delyon; B. Bernu; M. Holzmann Hartree–Fock ground state phase diagram of jellium, Phys. Rev. Lett., Volume 111 (2013), 166402 | DOI

[78] L. Baguet; F. Delyon; B. Bernu; M. Holzmann Properties of Hartree–Fock solutions of the three-dimensional electron gas, Phys. Rev. B, Volume 90 (2014), 165131 | DOI

[79] F. Delyon; B. Bernu; L. Baguet; M. Holzmann Upper bounds of spin-density wave energies in the homogeneous electron gas, Phys. Rev. B, Volume 92 (2015), 235124 | DOI

Cité par Sources :

Commentaires - Politique