[Quelques problèmes mathématiques ouverts sur les particules quantiques chargées]
I present some open mathematical problems concerning electrons in quantum mechanics and charged particles in general. After discussing the Schrödinger Hamiltonian describing atoms and molecules with classical nuclei, I turn to infinite systems and in particular to the homogeneous electron gas.
Je présente quelques problèmes mathématiques ouverts concernant les électrons en mécanique quantique et les particules chargées en général. Après avoir discuté de l’hamiltonien de Schrödinger décrivant les atomes et les molécules avec des noyaux classiques, je considère les systèmes infinis et en particulier le gaz homogène d’électrons.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Équation de Schrödinger, Systèmes coulombiens, Gaz d’électrons homogène
Mathieu Lewin 1

@article{CRPHYS_2025__26_G1_369_0, author = {Mathieu Lewin}, title = {Some open mathematical problems concerning charged quantum particles}, journal = {Comptes Rendus. Physique}, pages = {369--380}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.249}, language = {en}, }
Mathieu Lewin. Some open mathematical problems concerning charged quantum particles. Comptes Rendus. Physique, Volume 26 (2025), pp. 369-380. doi : 10.5802/crphys.249. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.249/
[1] Some open mathematical problems concerning charged quantum particles, 2024 https://www.carmin.tv/... (Accessed 2025-04-01 Talk delivered at the institut Henri Poincaré in the symposium “Open Questions in the Quantum Many-body Problem”)
[2] The Stability of Matter in Quantum Mechanics, Cambridge University Press, Cambridge, 2010 | DOI | MR
[3] Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Am. Math. Soc., Volume 70 (1951), pp. 195-221 | MR | Zbl
[4] Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001, xxii+346 pages
[5] Spectral Theory and Quantum Mechanics, Universitext, Springer International Publishing, Cham, 2024 | DOI | MR
[6] A study of the spectrum of the Schrödinger operator for a system of several particles, Trudy Moskov. Mat. Obšč., Volume 9 (1960), pp. 81-120 | MR
[7] On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions, Teoret. Mat. Fiz., Volume 21 (1971), pp. 332-341
[8] On the point spectrum in the quantum-mechanical many-body problem, Math. USSR Izv., Volume 40 (1976), pp. 861-896 (English translation) | Zbl
[9] Geometric methods in the quantum many-body problem. Non existence of very negative ions, Commun. Math. Phys., Volume 85 (1982), pp. 309-324 | DOI | MR | Zbl
[10] Absence of discrete spectrum in highly negative ions: II. Extension to fermions, Commun. Math. Phys., Volume 85 (1982), pp. 325-327 | DOI | MR
[11] Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A, Volume 29 (1984) no. 6, pp. 3018-3028 | DOI
[12] Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent. Math., Volume 99 (1990) no. 1, pp. 115-143 | DOI | MR | Zbl
[13] Asymptotic completeness of long-range N-body quantum systems, Ann. of Math. (2), Volume 138 (1993) no. 2, pp. 427-476 | DOI | MR | Zbl
[14] Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 249-290 | DOI | MR | Zbl
[15] Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595 | DOI | MR | Zbl
[16] NIST Atomic Spectra Database, NIST Standard Reference Database 78, 1999 | DOI
[17] On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta, Volume 39 (1966), pp. 451-462 | MR | Zbl
[18] Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk., Volume 2 (1964) no. 8, pp. 1-60 | MR | Zbl
[19] The ionization problem in quantum mechanics, The Physics and Mathematics of Elliott Lieb. The 90th Anniversary Volume II (R. L. Frank; A. Laptev; M. Lewin; R. Seiringer, eds.), EMS Press, Berlin, 2022, pp. 93-120 | Zbl
[20] Fifteen problems in mathematical physics, Perspectives in Mathematics: Anniversary of Oberwolfach 1984 (W. Jäger; J. Moser; R. Remmert, eds.), Birkhäuser, Basel, 1984, pp. 423-454 | Zbl
[21] Proof of the stability of highly negative ions in the absence of the Pauli principle, Phys. Rev. Lett., Volume 50 (1983), pp. 1771-1774 | DOI
[22] Asymptotics for bosonic atoms, Lett. Math. Phys., Volume 20 (1990) no. 2, pp. 165-172 | DOI | MR | Zbl
[23] New bounds on the maximum ionization of atoms, Commun. Math. Phys., Volume 312 (2012) no. 2, pp. 427-445 | DOI | MR | Zbl
[24] Asymptotic neutrality of large-Z ions, Phys. Rev. Lett., Volume 52 (1984), pp. 994-996 | DOI | MR
[25] Approximate neutrality of large-Z ions, Commun. Math. Phys., Volume 116 (1988) no. 4, pp. 635-644 | DOI | MR
[26] On the energy of a large atom, Bull. Amer. Math. Soc. (N.S.), Volume 23 (1990) no. 2, pp. 525-530 | DOI | MR | Zbl
[27] Bound on the ionization energy of large atoms, Commun. Math. Phys., Volume 131 (1990) no. 2, pp. 307-315 | DOI | MR | Zbl
[28] Proof of the ionization conjecture in a reduced Hartree–Fock model, Invent. Math., Volume 104 (1991) no. 2, pp. 291-311 | DOI | MR | Zbl
[29] The ionization conjecture in Hartree–Fock theory, Ann. of Math. (2), Volume 158 (2003) no. 2, pp. 509-576 | DOI | MR | Zbl
[30] Density-functional theory for fractional particle number: Derivative discontinuities of the energy, Phys. Rev. Lett., Volume 49 (1982), pp. 1691-1694 | DOI
[31] Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry, Oxford University Press, USA, 1994
[32] Density functionals for Coulomb systems, Int. J. Quantum Chem., Volume 24 (1983), pp. 243-277 | DOI
[33] Energy is not a convex function of particle number for r
[34] Generalized uncertainty relations for many-fermion system, Phys. Lett. A, Volume 26 (1968) no. 11, pp. 540-541 | DOI
[35] Chemical potential for harmonically interacting particles in a harmonic potential, Int. J. Quantum Chem., Volume 23 (1983) no. 1, pp. 185-194 | DOI
[36] Binding of holes in one-dimensional Hubbard chains, Phys. Rev. B, Volume 42 (1990) no. 10, pp. 6809-6812 | DOI
[37] Quantum Theory of Finite Systems, MIT Press, Cambridge, MA, 1985 | MR
[38] Grand-canonical optimal transport, Arch. Ration. Mech. Anal., Volume 249 (2025), 12 | DOI | MR | Zbl
[39] Ground state energy is not always convex in the number of electrons, J. Phys. Chem. A, Volume 128 (2024) no. 49, pp. 10697-10706 | DOI
[40] Thomas–Fermi theory revisited, Phys. Rev. Lett., Volume 31 (1973), pp. 681-683 | DOI
[41] The Hartree–Fock theory for Coulomb systems, Commun. Math. Phys., Volume 53 (1977) no. 3, pp. 185-194 | DOI | MR
[42] Thomas–Fermi and related theories of atoms and molecules, Rev. Mod. Phys., Volume 53 (1981), pp. 603-641 | DOI | MR | Zbl
[43] A new look at Thomas–Fermi theory, Mol. Phys., Volume 114 (2016) no. 7–8, pp. 1036-1040 | DOI
[44] Periodicity of atomic structure in a Thomas–Fermi mean-field model (2024) | arXiv
[45] A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., Volume 88 (1983) no. 3, pp. 486-490 | DOI
[46] Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., Volume 21 (1991) no. 2, pp. 139-149 | DOI | MR | Zbl
[47] On the number of bound states of a bosonic N-particle Coulomb system, Math. Z., Volume 214 (1993) no. 3, pp. 441-459 | DOI | MR | Zbl
[48] Universal nature of Van Der Waals forces for Coulomb systems, Phys. Rev. A, Volume 34 (1986), pp. 40-46 | DOI
[49] A mountain pass for reacting molecules, Ann. Henri Poincaré, Volume 5 (2004) no. 3, pp. 477-521 | DOI | MR | Zbl
[50] Solution of a mountain pass problem for the isomerization of a molecule with one free atom, Ann. Henri Poincaré, Volume 7 (2006) no. 2, pp. 365-379 | DOI | MR | Zbl
[51] Compactness of molecular reaction paths in quantum mechanics, Arch. Ration. Mech. Anal., Volume 236 (2020) no. 2, pp. 505-576 | DOI | MR | Zbl
[52] Stability of matter. I, J. Math. Phys., Volume 8 (1967) no. 3, pp. 423-434 | DOI | Zbl
[53] The stability of matter, Rev. Mod. Phys., Volume 48 (1976) no. 4, pp. 553-569 | DOI | MR | Zbl
[54] The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.), Volume 22 (1990) no. 1, pp. 1-49 | DOI | MR | Zbl
[55] Elliott Lieb’s Work on Stability of Matter, EMS Press, Berlin, 2022, pp. 31-45
[56] The thermodynamic limit for a crystal, Commun. Math. Phys., Volume 98 (1985) no. 3, pp. 289-311 | DOI | MR | Zbl
[57] The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Adv. Math., Volume 221 (2009), pp. 488-546 | DOI | MR | Zbl
[58] Existence of the thermodynamic limit for disordered quantum Coulomb systems, J. Math. Phys., Volume 53 (2012), 095209 (Special issue in honor of E. H. Lieb’s 80th birthday) | DOI | MR | Zbl
[59] The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei, Adv. Math., Volume 9 (1972), pp. 316-398 | DOI | Zbl
[60] The N
[61] The thermodynamic limit for jellium, J. Stat. Phys., Volume 12 (1975) no. 4, pp. 291-310 | DOI | Zbl
[62] Coulomb and Riesz gases: The known and the unknown, J. Math. Phys., Volume 63 (2022), 061101 (Special collection in honor of Freeman Dyson) | DOI | MR | Zbl
[63] Debye screening for jellium and other Coulomb systems, Commun. Math. Phys., Volume 87 (1982) no. 4, pp. 515-565 | DOI | MR
[64] Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys., Volume 50 (1976) no. 1, pp. 79-95 | DOI | MR
[65] Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys., Volume 18 (1978) no. 4, pp. 335-383 | DOI | MR
[66] On the interaction of electrons in metals, Phys. Rev., Volume 46 (1934), pp. 1002-1011 | DOI | Zbl
[67] The crystallization conjecture: A review, EMS Surv. Math. Sci., Volume 2 (2015) no. 2, pp. 255-306 | DOI | MR | Zbl
[68] Statistical mechanics of a one-dimensional Coulomb system with a uniform charge background, Proc. Camb. Philos. Soc., Volume 59 (1963), pp. 779-787 | DOI | MR | Zbl
[69] The one-dimensional classical electron gas, Ann. Phys. (NY), Volume 85 (1974) no. 2, pp. 303-335 | DOI | MR
[70] Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma, Functional Integration and its Applications (A. Arthurs, ed.), Clarendon Press, Oxford, 1975 | Zbl
[71] Structure of Gibbs states of one dimensional Coulomb systems, Commun. Math. Phys., Volume 78 (1980) no. 1, pp. 99-116 | DOI | MR
[72] Wigner crystallization in the quantum 1D jellium at all densities, Commun. Math. Phys., Volume 331 (2014), pp. 1133-1154 | DOI | MR | Zbl
[73] Universal optimality of the E
[74] Crystallization for Coulomb and Riesz interactions as a consequence of the Cohn–Kumar conjecture, Proc. Am. Math. Soc., Volume 148 (2020) no. 7, pp. 3047-3057 | DOI | MR | Zbl
[75] Itinerant-electron magnetism: The importance of many-body correlations, Phys. Rev. Lett., Volume 124 (2020), 206404 | DOI
[76] Low-density phase diagram of the three-dimensional electron gas, Phys. Rev. B, Volume 105 (2022), 245135 | DOI
[77] Hartree–Fock ground state phase diagram of jellium, Phys. Rev. Lett., Volume 111 (2013), 166402 | DOI
[78] Properties of Hartree–Fock solutions of the three-dimensional electron gas, Phys. Rev. B, Volume 90 (2014), 165131 | DOI
[79] Upper bounds of spin-density wave energies in the homogeneous electron gas, Phys. Rev. B, Volume 92 (2015), 235124 | DOI
Cité par Sources :
Commentaires - Politique