[Efficacité quantique des photodiodes pour une lumière de 2 µm dans la bande de signal des détecteurs d’ondes gravitationnelles]
Quantum technologies with quantum correlated light require photodiodes with near-perfect ‘true’ quantum efficiency, the definition of which adequately accounts for the photodiode dark noise. Future squeezed-light-enhanced gravitational wave detectors could in principle achieve higher sensitivities with a longer laser wavelength around 2 µm. Photodiodes made of extended InGaAs are available for this range, but the true quantum efficiency at room temperature and the low frequency band of gravitational waves is strongly reduced by dark noise. Here we characterize the change in performance of a commercial extended-InGaAs photodiode versus temperature. While the dark noise decreases as expected with decreasing temperature, the detection efficiency unfortunately also decreases monotonically. Our results indicate the need for a dedicated new design of photodiodes for gravitational wave detectors using 2-µm laser light.
Les technologies quantiques utilisant la lumière corrélée quantique nécessitent des photodiodes dotées d’un rendement quantique « réel » quasi parfait, dont la définition prend en compte de manière adéquate le bruit d’obscurité des photodiodes. Les futurs détecteurs d’ondes gravitationnelles améliorés par lumière comprimée pourraient en principe atteindre des sensibilités plus élevées avec une longueur d’onde laser plus grande, autour de 2 µm. Les photodiodes en InGaAs à bande spectrale étendue sont disponibles pour ces longueurs d’onde, mais l’efficacité quantique réelle à température ambiante et dans la bande de fréquences basses des ondes gravitationnelles est fortement réduite par le bruit d’obscurité. Nous caractérisons ici l’évolution des performances d’une photodiode commerciale en InGaAs à bande spectrale étendue en fonction de la température. Si le bruit d’obscurité diminue comme prévu avec la baisse de température, l’efficacité de détection diminue malheureusement aussi de manière monotone. Nos résultats indiquent la nécessité de concevoir de nouvelles photodiodes spécialement destinées aux détecteurs d’ondes gravitationnelles utilisant une lumière laser de 2 µm.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Rendement quantique, photodiode, InGaAs à bande spectrale étendue
Julian Gurs  1 ; Nils Sültmann  1 ; Christian Darsow-Fromm  2 ; Sebastian Steinlechner  3 , 4 ; Roman Schnabel  1
CC-BY 4.0
@article{CRPHYS_2026__27_G1_41_0,
author = {Julian Gurs and Nils S\"ultmann and Christian Darsow-Fromm and Sebastian Steinlechner and Roman Schnabel},
title = {Photodiode quantum efficiency for 2-{\textmu}m light in the signal band of gravitational wave detectors},
journal = {Comptes Rendus. Physique},
pages = {41--48},
year = {2026},
publisher = {Acad\'emie des sciences, Paris},
volume = {27},
doi = {10.5802/crphys.269},
language = {en},
}
TY - JOUR AU - Julian Gurs AU - Nils Sültmann AU - Christian Darsow-Fromm AU - Sebastian Steinlechner AU - Roman Schnabel TI - Photodiode quantum efficiency for 2-µm light in the signal band of gravitational wave detectors JO - Comptes Rendus. Physique PY - 2026 SP - 41 EP - 48 VL - 27 PB - Académie des sciences, Paris DO - 10.5802/crphys.269 LA - en ID - CRPHYS_2026__27_G1_41_0 ER -
%0 Journal Article %A Julian Gurs %A Nils Sültmann %A Christian Darsow-Fromm %A Sebastian Steinlechner %A Roman Schnabel %T Photodiode quantum efficiency for 2-µm light in the signal band of gravitational wave detectors %J Comptes Rendus. Physique %D 2026 %P 41-48 %V 27 %I Académie des sciences, Paris %R 10.5802/crphys.269 %G en %F CRPHYS_2026__27_G1_41_0
Julian Gurs; Nils Sültmann; Christian Darsow-Fromm; Sebastian Steinlechner; Roman Schnabel. Photodiode quantum efficiency for 2-µm light in the signal band of gravitational wave detectors. Comptes Rendus. Physique, Volume 27 (2026), pp. 41-48. doi: 10.5802/crphys.269
[1] et al. Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., Volume 116 (2016), 061102, 16 pages (LIGO Scientific Collaboration and Virgo Collaboration) | DOI
[2] et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett., Volume 119 (2017), 141101, 16 pages (LIGO Scientific Collaboration and Virgo Collaboration) | DOI
[3] et al. The third generation of gravitational wave observatories and their science reach, Class. Quant. Grav., Volume 27 (2010) no. 8, 084007 | DOI
[4] et al. A cryogenic silicon interferometer for gravitational-wave detection, Class. Quant. Grav., Volume 37 (2020) no. 16, 165003 | DOI
[5] et al. Cosmic Explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO (2019) | arXiv
[6] et al. KAGRA: 2.5 generation interferometric gravitational wave detector, Nat. Astron., Volume 3 (2019), pp. 35-40 | DOI | Zbl
[7] Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing, Phys. Rev. Lett., Volume 120 (2018), 263602, 6 pages | DOI
[8] Quantum metrology for gravitational wave astronomy, Nat. Commun., Volume 1 (2010), 121, 10 pages | DOI
[9] Squeezed states of light and their applications in laser interferometers, Phys. Rep., Volume 684 (2017), pp. 1-51 | DOI
[10] et al. A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys., Volume 7 (2011), pp. 962-965 (LIGO Scientific Collaboration) | DOI
[11] First long-term application of squeezed states of light in a gravitational-wave observatory, Phys. Rev. Lett., Volume 110 (2013), 181101, 5 pages | DOI
[12] et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy, Phys. Rev. Lett., Volume 123 (2019), 231107, 8 pages | DOI
[13] et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light, Phys. Rev. Lett., Volume 123 (2019), 231108, 10 pages (Virgo Collaboration) | DOI
[14] Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett., Volume 117 (2016), 110801, 5 pages | DOI
[15] Highly efficient generation of coherent light at 2128 nm via degenerate optical-parametric oscillation, Opt. Lett., Volume 45 (2020) no. 22, pp. 6194-6197 | DOI
[16] Conversion of 30 W laser light at 1064 nm to 20 W at 2128 nm and comparison of relative power noise, Class. Quant. Grav., Volume 41 (2024) no. 24, 245008, 7 pages | DOI
[17] Coherent noise suppression at high-efficiency wavelength doubling for high-precision experiments, Opt. Laser Technol., Volume 183 (2025), 112179, 6 pages | DOI
[18] Squeezed light at 2128 nm for future gravitational-wave observatories, Opt. Lett., Volume 46 (2021) no. 23, pp. 5850-5853 | DOI
[19] High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity, Opt. Express, Volume 20 (2012) no. 16, pp. 17539-17544 | DOI
[20] Observation of squeezed light in the 2 µm region, Phys. Rev. Lett., Volume 120 (2018), 203603, 5 pages | DOI
[21] Squeezed vacuum phase control at 2 µm, Opt. Lett., Volume 44 (2019) no. 21, pp. 5386-5389 | DOI
[22] On the momentum term in gradient descent learning algorithms, Neural Netw., Volume 12 (1999) no. 1, pp. 145-151 | DOI
[23] A laser interferometer accelerometer for vibration sensitive cryogenic experiments, Meas. Sci. Technol., Volume 33 (2022) no. 8, 085902 | DOI
[24] Characterizing 1550 nm optical components down to 8 K, Cryogenics, Volume 142 (2024), 103895, 7 pages | DOI
[25] Band‐gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP, Appl. Phys. Lett., Volume 56 (1990) no. 13, pp. 1269-1271 | DOI
[26] Third-generation infrared photodetector arrays, J. Appl. Phys., Volume 105 (2009) no. 9, 091101 | DOI
Cité par Sources :
Commentaires - Politique
