Comptes Rendus
Article de recherche
Photodiode quantum efficiency for 2-µm light in the signal band of gravitational wave detectors
[Efficacité quantique des photodiodes pour une lumière de 2 µm dans la bande de signal des détecteurs d’ondes gravitationnelles]
Comptes Rendus. Physique, Volume 27 (2026), pp. 41-48

Quantum technologies with quantum correlated light require photodiodes with near-perfect ‘true’ quantum efficiency, the definition of which adequately accounts for the photodiode dark noise. Future squeezed-light-enhanced gravitational wave detectors could in principle achieve higher sensitivities with a longer laser wavelength around 2 µm. Photodiodes made of extended InGaAs are available for this range, but the true quantum efficiency at room temperature and the low frequency band of gravitational waves is strongly reduced by dark noise. Here we characterize the change in performance of a commercial extended-InGaAs photodiode versus temperature. While the dark noise decreases as expected with decreasing temperature, the detection efficiency unfortunately also decreases monotonically. Our results indicate the need for a dedicated new design of photodiodes for gravitational wave detectors using 2-µm laser light.

Les technologies quantiques utilisant la lumière corrélée quantique nécessitent des photodiodes dotées d’un rendement quantique « réel » quasi parfait, dont la définition prend en compte de manière adéquate le bruit d’obscurité des photodiodes. Les futurs détecteurs d’ondes gravitationnelles améliorés par lumière comprimée pourraient en principe atteindre des sensibilités plus élevées avec une longueur d’onde laser plus grande, autour de 2 µm. Les photodiodes en InGaAs à bande spectrale étendue sont disponibles pour ces longueurs d’onde, mais l’efficacité quantique réelle à température ambiante et dans la bande de fréquences basses des ondes gravitationnelles est fortement réduite par le bruit d’obscurité. Nous caractérisons ici l’évolution des performances d’une photodiode commerciale en InGaAs à bande spectrale étendue en fonction de la température. Si le bruit d’obscurité diminue comme prévu avec la baisse de température, l’efficacité de détection diminue malheureusement aussi de manière monotone. Nos résultats indiquent la nécessité de concevoir de nouvelles photodiodes spécialement destinées aux détecteurs d’ondes gravitationnelles utilisant une lumière laser de 2 µm.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.269
Keywords: Quantum efficiency, photodiode, extended InGaAs
Mots-clés : Rendement quantique, photodiode, InGaAs à bande spectrale étendue

Julian Gurs  1   ; Nils Sültmann  1   ; Christian Darsow-Fromm  2   ; Sebastian Steinlechner  3 , 4   ; Roman Schnabel  1

1 Institut für Quantenphysik & Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
2 Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
3 Faculty of Science and Engineering, Maastricht University, Duboisdomein 30, 6229 GT Maastricht, The Netherlands
4 Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2026__27_G1_41_0,
     author = {Julian Gurs and Nils S\"ultmann and Christian Darsow-Fromm and Sebastian Steinlechner and Roman Schnabel},
     title = {Photodiode quantum efficiency for 2-{\textmu}m light in the signal band of gravitational wave detectors},
     journal = {Comptes Rendus. Physique},
     pages = {41--48},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {27},
     doi = {10.5802/crphys.269},
     language = {en},
}
TY  - JOUR
AU  - Julian Gurs
AU  - Nils Sültmann
AU  - Christian Darsow-Fromm
AU  - Sebastian Steinlechner
AU  - Roman Schnabel
TI  - Photodiode quantum efficiency for 2-µm light in the signal band of gravitational wave detectors
JO  - Comptes Rendus. Physique
PY  - 2026
SP  - 41
EP  - 48
VL  - 27
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.269
LA  - en
ID  - CRPHYS_2026__27_G1_41_0
ER  - 
%0 Journal Article
%A Julian Gurs
%A Nils Sültmann
%A Christian Darsow-Fromm
%A Sebastian Steinlechner
%A Roman Schnabel
%T Photodiode quantum efficiency for 2-µm light in the signal band of gravitational wave detectors
%J Comptes Rendus. Physique
%D 2026
%P 41-48
%V 27
%I Académie des sciences, Paris
%R 10.5802/crphys.269
%G en
%F CRPHYS_2026__27_G1_41_0
Julian Gurs; Nils Sültmann; Christian Darsow-Fromm; Sebastian Steinlechner; Roman Schnabel. Photodiode quantum efficiency for 2-µm light in the signal band of gravitational wave detectors. Comptes Rendus. Physique, Volume 27 (2026), pp. 41-48. doi: 10.5802/crphys.269

[1] B. P. Abbott; R. Abbott; T. D. Abbott et al. Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., Volume 116 (2016), 061102, 16 pages (LIGO Scientific Collaboration and Virgo Collaboration) | DOI

[2] B. P. Abbott; R. Abbott; T. D. Abbott et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett., Volume 119 (2017), 141101, 16 pages (LIGO Scientific Collaboration and Virgo Collaboration) | DOI

[3] M Punturo; M Abernathy; F Acernese et al. The third generation of gravitational wave observatories and their science reach, Class. Quant. Grav., Volume 27 (2010) no. 8, 084007 | DOI

[4] R X Adhikari; K Arai; A F Brooks et al. A cryogenic silicon interferometer for gravitational-wave detection, Class. Quant. Grav., Volume 37 (2020) no. 16, 165003 | DOI

[5] David Reitze; Rana X Adhikari; Stefan Ballmer et al. Cosmic Explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO (2019) | arXiv

[6] T. Akutsu; M. Ando; K. Arai et al. KAGRA: 2.5 generation interferometric gravitational wave detector, Nat. Astron., Volume 3 (2019), pp. 35-40 | DOI | Zbl

[7] J. Steinlechner; I. W. Martin; A. S. Bell; J. Hough; M. Fletcher; P. G. Murray; R. Robie; S. Rowan; R. Schnabel Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing, Phys. Rev. Lett., Volume 120 (2018), 263602, 6 pages | DOI

[8] Roman Schnabel; Nergis Mavalvala; David E. McClelland; Ping K. Lam Quantum metrology for gravitational wave astronomy, Nat. Commun., Volume 1 (2010), 121, 10 pages | DOI

[9] Roman Schnabel Squeezed states of light and their applications in laser interferometers, Phys. Rep., Volume 684 (2017), pp. 1-51 | DOI

[10] J. Abadie; B. P. Abbott; R. Abbott et al. A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys., Volume 7 (2011), pp. 962-965 (LIGO Scientific Collaboration) | DOI

[11] H. Grote; K. Danzmann; K. L. Dooley; R. Schnabel; J. Slutsky; H. Vahlbruch First long-term application of squeezed states of light in a gravitational-wave observatory, Phys. Rev. Lett., Volume 110 (2013), 181101, 5 pages | DOI

[12] M. Tse; Haocun Yu; N. Kijbunchoo et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy, Phys. Rev. Lett., Volume 123 (2019), 231107, 8 pages | DOI

[13] F. Acernese; M. Agathos; L. Aiello et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light, Phys. Rev. Lett., Volume 123 (2019), 231108, 10 pages (Virgo Collaboration) | DOI

[14] Henning Vahlbruch; Moritz Mehmet; Karsten Danzmann; Roman Schnabel Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett., Volume 117 (2016), 110801, 5 pages | DOI

[15] Christian Darsow-Fromm; Maik Schröder; Julian Gurs; Roman Schnabel; Sebastian Steinlechner Highly efficient generation of coherent light at 2128 nm via degenerate optical-parametric oscillation, Opt. Lett., Volume 45 (2020) no. 22, pp. 6194-6197 | DOI

[16] Julian Gurs; Nina Bode; Christian Darsow-Fromm; Henning Vahlbruch; Pascal Gewecke; Sebastian Steinlechner; Benno Willke; Roman Schnabel Conversion of 30 W laser light at 1064 nm to 20 W at 2128 nm and comparison of relative power noise, Class. Quant. Grav., Volume 41 (2024) no. 24, 245008, 7 pages | DOI

[17] Julian Gurs; Mikhail Korobko; Christian Darsow-Fromm; Sebastian Steinlechner; Roman Schnabel Coherent noise suppression at high-efficiency wavelength doubling for high-precision experiments, Opt. Laser Technol., Volume 183 (2025), 112179, 6 pages | DOI

[18] Christian Darsow-Fromm; Julian Gurs; Roman Schnabel; Sebastian Steinlechner Squeezed light at 2128 nm for future gravitational-wave observatories, Opt. Lett., Volume 46 (2021) no. 23, pp. 5850-5853 | DOI

[19] Yulong Tang; Chongyuan Huang; Shengli Wang; Hongqiang Li; Jianqiu Xu High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity, Opt. Express, Volume 20 (2012) no. 16, pp. 17539-17544 | DOI

[20] Georgia L. Mansell; Terry G. McRae; Paul A. Altin; Min Jet Yap; Robert L. Ward; Bram J. J. Slagmolen; Daniel A. Shaddock; David E. McClelland Observation of squeezed light in the 2 µm region, Phys. Rev. Lett., Volume 120 (2018), 203603, 5 pages | DOI

[21] M. J. Yap; D. W. Gould; T. G. McRae; P. A. Altin; N. Kijbunchoo; G. L. Mansell; R. L. Ward; D. A. Shaddock; B. J. J. Slagmolen; D. E. McClelland Squeezed vacuum phase control at 2 µm, Opt. Lett., Volume 44 (2019) no. 21, pp. 5386-5389 | DOI

[22] Ning Qian On the momentum term in gradient descent learning algorithms, Neural Netw., Volume 12 (1999) no. 1, pp. 145-151 | DOI

[23] R Bajpai; T Tomaru; K Yamamoto; T Ushiba; N Kimura; T Suzuki; T Yamada; T Honda A laser interferometer accelerometer for vibration sensitive cryogenic experiments, Meas. Sci. Technol., Volume 33 (2022) no. 8, 085902 | DOI

[24] Tim J. Kuhlbusch; Morgane Zeoli; Robert Joppe; Christophe Collette; Thomas Hebbeker; Joris V. van Heijningen; Achim Stahl Characterizing 1550 nm optical components down to 8 K, Cryogenics, Volume 142 (2024), 103895, 7 pages | DOI

[25] D. K. Gaskill; N. Bottka; L. Aina; M. Mattingly Band‐gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP, Appl. Phys. Lett., Volume 56 (1990) no. 13, pp. 1269-1271 | DOI

[26] A. Rogalski; J. Antoszewski; L. Faraone Third-generation infrared photodetector arrays, J. Appl. Phys., Volume 105 (2009) no. 9, 091101 | DOI

Cité par Sources :

Commentaires - Politique