This paper introduces a design method of simple bandpass (BP) negative group delay (NGD) topology. The fundamental specifications of BP NGD function are defined. The NGD passive topology consists of parallel resistance associated with an open-ended microstrip stub. The NGD properties and characterization with respect to the constituting stub parameters are established. The validations are performed with theoretical calculated and simulated GD, transmission and reflection coefficients. The BP NGD circuit can be useful for the improvement of phase linearity and GD equalization of future 5G microwave devices.
Publié le :
Sébastien Lalléchère 1 ; Lala Rajaoarisoa 2 ; Laurent Clavier 2 ; Raul Sanchez Galan 3 ; Blaise Ravelo 4
@article{CRPHYS_2021__22_S1_53_0, author = {S\'ebastien Lall\'ech\`ere and Lala Rajaoarisoa and Laurent Clavier and Raul Sanchez Galan and Blaise Ravelo}, title = {Bandpass {NGD} function design for {5G} microwave signal delay synchronization application}, journal = {Comptes Rendus. Physique}, pages = {53--71}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S1}, year = {2021}, doi = {10.5802/crphys.68}, language = {en}, }
TY - JOUR AU - Sébastien Lalléchère AU - Lala Rajaoarisoa AU - Laurent Clavier AU - Raul Sanchez Galan AU - Blaise Ravelo TI - Bandpass NGD function design for 5G microwave signal delay synchronization application JO - Comptes Rendus. Physique PY - 2021 SP - 53 EP - 71 VL - 22 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.68 LA - en ID - CRPHYS_2021__22_S1_53_0 ER -
%0 Journal Article %A Sébastien Lalléchère %A Lala Rajaoarisoa %A Laurent Clavier %A Raul Sanchez Galan %A Blaise Ravelo %T Bandpass NGD function design for 5G microwave signal delay synchronization application %J Comptes Rendus. Physique %D 2021 %P 53-71 %V 22 %N S1 %I Académie des sciences, Paris %R 10.5802/crphys.68 %G en %F CRPHYS_2021__22_S1_53_0
Sébastien Lalléchère; Lala Rajaoarisoa; Laurent Clavier; Raul Sanchez Galan; Blaise Ravelo. Bandpass NGD function design for 5G microwave signal delay synchronization application. Comptes Rendus. Physique, Volume 22 (2021) no. S1, pp. 53-71. doi : 10.5802/crphys.68. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.68/
[1] 5G PPP – The 5G infrastructure Public-Private Partnership, 2020 https://5g-ppp.eu/ (Permission granted to produce Figure 1), accessed dec. 2020
[2] The Race to 5G: The Latest 5G News and Analysis, 2019 (https://spectrum.ieee.org/static/the-race-to-5g)
[3] Analyzing 5G: prospects of future technological advancements in mobile, IOSR J. Eng., Volume 1 (2018), pp. 6-11 (International Conference on Innovative and Advanced Technologies in Engineering)
[4] The era of 5G and its impacts on EMC design and testing, Proceedings of IEEE International Symposium on EMC, SI/PI, Washington, DC, USA (2017), pp. 7-11
[5] Experimental test results of EMC between 5G and radio relay links in millimeter band, 2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE (2019), pp. 220-225 | DOI
[6] EMC challenges for the era of massive internet of things, IEEE Electromagn. Compat. Mag., Volume 8 (2019) no. 2, pp. 65-74 | DOI
[7] Radiation-pattern reconfigurable phased array with p-i-n diodes controlled for 5G mobile terminals, IEEE Trans. Microw. Theory Tech., Volume 68 (2020) no. 3, pp. 1103-1117 | DOI
[8] Analysis of beam-steering and directive characteristics of adaptive antenna arrays for mobile communications, IEEE Antennas Propag. Mag., Volume 43 (2001) no. 3, pp. 145-152 | DOI
[9] Elimination of beam squint in uniformly excited serially fed antenna arrays using negative group delay circuits, Proceedings of IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, July 2012 (2012), pp. 1-2
[10] Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks, IEEE Trans. Antennas Propag., Volume 63 (2015) no. 5, pp. 1997-2010 | DOI | MR | Zbl
[11] Negative group delay circuit, 2016 (United States Patent Application US20160093958)
[12] Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit, Proceedings of 2019 49th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019 (2019), pp. 256-259
[13] Method of generating negative group delay in phase arrays without using lossy circuits, Proceedings of IEEE Antennas and Propagation Wireless Symposium (IWS) 2013, Beijing, China, 14–18 April 2013 (2013), pp. 1-4
[14] Realizing non-Foster reactive elements using negative-group-delay networks, IEEE Trans. Microw. Theory Tech., Volume 61 (2013) no. 12, pp. 4322-4332 | DOI
[15] Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit, IEEE Microw. Wirel. Compon. Lett., Volume 27 (2017) no. 10, pp. 921-923 | DOI
[16] Broadband negative group delay networks for compensation of oscillators, filters and communication systems, Electron. Lett., Volume 36 (2000) no. 23, pp. 1931-1933 | DOI
[17] Distributed NGD active circuit for RF-microwave communication, Int. J. Electron. Commun., Volume 68 (2014) no. 4, pp. 282-290 | DOI
[18] Absorptive bandstop filter with prescribed negative group delay and bandwidth, IEEE Microw. Wirel. Compon. Lett., Volume 27 (2017) no. 7, pp. 639-641 | DOI
[19] A full-passband linear-phase band-pass filter equalized with negative group delay circuits, IEEE Access, Volume 8 (2020), pp. 43336-43343 | DOI
[20] Theory and circuit modelling of baseband and modulated signal delay compensations with low- and band-pass NGD effects, Int. J. Electron. Commun., Volume 70 (2016) no. 9, pp. 1122-1127 | DOI
[21] Reduction technique of differential propagation delay with negative group delay function, Proceedings of IEEE EuCAP 2020, Copenhagen, Denmark, 15–20 March 2020 (2020), pp. 1-5
[22] A negative group delay microwave circuit based on signal interference techniques, IEEE Microw. Wirel. Compon. Lett., Volume 28 (2018) no. 4, pp. 290-292 | DOI
[23] Maximally flat negative group-delay circuit: a microwave transversal filter approach, IEEE Trans. Microw. Theory Tech., Volume 62 (2014) no. 6, pp. 1330-1342
[24] A novel design for a dual-band negative group delay circuit, IEEE Microw. Wirel. Compon. Lett., Volume 21 (2011) no. 1, pp. 19-21 | DOI
[25] Miniaturized dual-band negative group delay circuit using dual-plane defected structures, IEEE Microw. Wirel. Compon. Lett., Volume 24 (2014) no. 8, pp. 521-523 | DOI
[26] Compact negative group delay circuit using defected ground structure, 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul (2013), pp. 22-24 | DOI
[27] Compact transmission-type negative group delay circuit with low attenuation, Electron. Lett., Volume 53 (2017) no. 7, pp. 476-478 | DOI
[28] A compact transmission line self-matched negative group delay microwave circuit, IEEE Access, Volume 5 (2017), pp. 22836-22843 | DOI
[29] Miniaturized dual-band negative group delay circuit using dual-plane defected structures, IEEE Microw. Wirel. Compon. Lett., Volume 21 (2011) no. 1, pp. 19-21
[30] A compact dual-band negative group delay microwave circuit, Radio Eng., Volume 27 (2018) no. 4, pp. 1070-1076
[31] Similitude between the NGD function and filter gain behaviours, Int. J. Circ. Theor. Appl., Volume 42 (2014) no. 10, pp. 1016-1032 | DOI
[32] On the low-pass, high-pass, bandpass and stop-band NGD RF passive circuits, URSI Radio Sci. Bull., Volume 2017 (2017) no. 363, pp. 10-27
[33] FUTURE NETWORKS: 5G AND BEYOND. Design of 3.6-GHz 5G NGD passive circuit, 2020 20e Journées Scientifiques URSI-France (JS’20), Future Network: 5G and Beyond, march 2020, Paris, France. https://hal.archives-ouvertes.fr/hal-02814577
[34] 802.11ac In-Depth, 2014 (37 pages, https://www.arubanetworks.com/assets/wp/WP_80211acInDepth.pdf)
Cité par Sources :
Commentaires - Politique