Plan
Comptes Rendus

A novel compound with a 1D network structure constructed by [(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4]2–/SO32– and 4,4′-bipyridine components: its synthesis, characterization, and magnetic behavior
Comptes Rendus. Chimie, Volume 8 (2005) no. 6-7, pp. 957-962.

Résumés

The organically templated compound (NH4)3(4,4′-Hbpy)[(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4(μ-SO3)]·15/2 H2O 1 is the first example of an extended structure in which a polyoxometalate anion, [H2V6IVS4IVO22]2–, is linked by the pyramidal μ2-bridging sulfite group forming a linear polymeric {V6}η chain. Two such chains are linked into a ‘double-rung ladder’ assembly via two different hydrogen bonds provided by 4,4′-Hbpy+ cations.

Le composé (NH4)3(4,4′-Hbpy)[(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4(μ-SO3)]·15/2 H2O 1 synthétisé grâce à un template organique est le premier exemple de structure étendue dans laquelle un polyanion, [H2V6IVS4IVO22]2–, est relié par des groupements sulfite pyramidaux μ2-pontants, pour former une chaîne polymérique {V6}η. Les chaînes s'assemblent deux à deux dans une « échelle à double barreau » par l'intermédiaire de deux sortes de liaisons hydrogène à partir des cations 4,4′-Hbpy+.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2004.12.010
Keywords: Magnetism polyoxometalates, Sulfite, Vanadium
Mots clés : Magnétisme, Polyoxométallates, Sulfite, Vanadium

Haralampos N. Miras 1 ; Raphael Raptis 2 ; Peter Baran 2 ; Nicolia Lalioti 3 ; Andrew Harrison 4 ; Themistoklis A. Kabanos 1

1 Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece
2 Department of Chemistry, University of Puerto Rico, P.O. San Juan, Rio Piedras, PR, USA
3 Department of Materials Science, University of Patras, 26504 Patras, Greece
4 Department of Chemistry, University of Edinburgh, The King's Buildings, Weit Mains Road, Edinburgh EH9 3JJ, UK
@article{CRCHIM_2005__8_6-7_957_0,
     author = {Haralampos N. Miras and Raphael Raptis and Peter Baran and Nicolia Lalioti and Andrew Harrison and Themistoklis A. Kabanos},
     title = {A novel compound with a {1D} network structure constructed by {[(V\protect\textsuperscript{IV}O)\protect\textsubscript{6}(\protect\emph{\ensuremath{\mu}}\protect\textsubscript{4}-O)\protect\textsubscript{2}(\protect\emph{\ensuremath{\mu}}\protect\textsubscript{3}-OH)\protect\textsubscript{2}(\protect\emph{\ensuremath{\mu}}\protect\textsubscript{3}-SO\protect\textsubscript{3})\protect\textsubscript{4}]\protect\textsuperscript{2{\textendash}}/SO\protect\textsubscript{3}\protect\textsuperscript{2{\textendash}}} and 4,4'-bipyridine components: its synthesis, characterization, and magnetic behavior},
     journal = {Comptes Rendus. Chimie},
     pages = {957--962},
     publisher = {Elsevier},
     volume = {8},
     number = {6-7},
     year = {2005},
     doi = {10.1016/j.crci.2004.12.010},
     language = {en},
}
TY  - JOUR
AU  - Haralampos N. Miras
AU  - Raphael Raptis
AU  - Peter Baran
AU  - Nicolia Lalioti
AU  - Andrew Harrison
AU  - Themistoklis A. Kabanos
TI  - A novel compound with a 1D network structure constructed by [(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4]2–/SO32– and 4,4′-bipyridine components: its synthesis, characterization, and magnetic behavior
JO  - Comptes Rendus. Chimie
PY  - 2005
SP  - 957
EP  - 962
VL  - 8
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crci.2004.12.010
LA  - en
ID  - CRCHIM_2005__8_6-7_957_0
ER  - 
%0 Journal Article
%A Haralampos N. Miras
%A Raphael Raptis
%A Peter Baran
%A Nicolia Lalioti
%A Andrew Harrison
%A Themistoklis A. Kabanos
%T A novel compound with a 1D network structure constructed by [(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4]2–/SO32– and 4,4′-bipyridine components: its synthesis, characterization, and magnetic behavior
%J Comptes Rendus. Chimie
%D 2005
%P 957-962
%V 8
%N 6-7
%I Elsevier
%R 10.1016/j.crci.2004.12.010
%G en
%F CRCHIM_2005__8_6-7_957_0
Haralampos N. Miras; Raphael Raptis; Peter Baran; Nicolia Lalioti; Andrew Harrison; Themistoklis A. Kabanos. A novel compound with a 1D network structure constructed by [(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4]2–/SO32– and 4,4′-bipyridine components: its synthesis, characterization, and magnetic behavior. Comptes Rendus. Chimie, Volume 8 (2005) no. 6-7, pp. 957-962. doi : 10.1016/j.crci.2004.12.010. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2004.12.010/

Version originale du texte intégral

Self-assembly of inorganic precursors in a quest for supramolecular chemistry is one of the highly recognized areas of chemical research [1–4]. The significant contemporary interest in polyoxovanadium-based solid materials reflects their diverse applications in the areas such as catalysis [1,2], materials science [2g], magnetism [1,5] and non-linear optics [1,2]. In studies of these materials, an astonishing variety of novel phases arises from the combination of vanadium progenitors and organic molecules [6]. Such structural variety arises from the versatility of vanadium in terms of its variable oxidation state (III, IV and V) and coordination geometry (tetrahedral, square pyramidal and octahedral), combined with the structure directing and stabilizing effect of the organic molecules. The combination of vanadium POMs with organic molecules adds complexity to the structures and promotes the adjustment of the physicochemical properties of these materials. Moreover, investigations on POM-organic/inorganic systems well characterized at molecular level, might provide structural and spectroscopic models [7] for heterogeneous metal oxide-supported catalysts. In comparison to the extensive work on polyoxometal-phosphates [8] only a very few polyoxometal-sulfites have been reported [9]. Being successful in synthesizing and characterizing polyoxometal-sulfites, we decided to prepare organic/POM-sulfite species. Herein, we report the synthesis, structural and physicochemical characterization, of the first organic/inorganic polyoxometal-sulfite compound (NH4)3(4,4´-Hbpy)[(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4(μ-SO3)]·15/2 H2O 1.

Solid (NH4)2SO3 (6.00 g, 61.2 mmol) was added in one portion to a stirred solution of NH4VVO3 (0.60 g, 5.1 mmol, pH 0) in concentrated (37%) HCl/H2O (1:4 v/v, 20 ml). Upon addition of (NH4)2SO3 the light-yellow color of the solution changed to blue–green, and its pH value was ca. 4. After stirring the solution for ~15 min, it was filtered and an ethanolic solution (6 ml) containing 4,4′-bpy (0.40 g, 2.5 mmol) was layered on it. A layer of diethyl ether was placed between these two layers. Green hexagonal crystals of 1, suitable for X-ray crystal structure analysis1, were obtained after 3 days. Yield 0.48 g (31%) based on vanadium. Compound 12 is indefinitely stable in air.

The structure of compound 1 consists of a one-dimensional extended network constructed by vanadium building-blocks, [H2V6IVS4IVO22]2–/SO32–, protonated bipyridine (4,4′-Hbpy+) as well as ammonium cations and interstitial water molecules. Neighboring [H2V6IVS4IVO22]2– shells are linked together by the pyramidal μ2-(O,O) bridging sulfite groups to form infinite chains running along [001]. Two such chains are linked into a ‘double-rung ladder’ assembly via two different hydrogen bonds provided by singly protonated bipyridine cations (Fig. 1). The principal interatomic distances and selected band angles for 1 are reported in Table 1. The 4,4′-Hbpy+ is nearly planar with the two pyridyl rings twisted by 11.6(4)°. One strong hydrogen-bond is formed between H(9) [of the triply-bridging O(9) hydroxo ligand] and the N(1) atom of 4,4′-Hbpy+ [O(9)···N(1), 2.661(4) Å, 179.0°]. Another hydrogen bond is formed between H(2) of 4,4′-Hbpy+ and O(4) {oxo-ligand of the vanadium cluster; [N(2)···O(4), 2.731(6) Å, 174.8°]}. Packing between ladder ribbons is achieved by an extensive hydrogen-bonding system in which all ammonium cations and water molecules are involved. The structure of the vanadosulfite building block (Fig. 2), [H2V6IVS4IVO22]2–, is essentially identical to that previously reported [9b]. The cluster consists of a distorted cubane unit, [H2V4O4], which is connected to two outer distorted square-pyramidal vanadium(IV) atoms through two μ4-O2– bridges and four μ3-SO32– bridges as well. Bond valence sum (BVS) [10] calculations (Table 2) for the crystallographically independent vanadium atoms gave values in the range of 3.94–4.04 suggesting that all vanadium atoms are in the oxidation state of IV. BVS calculation [10] for the triply bridging oxygen atoms [O(9) and O(10)], gave values of 1.06 and 1.05, respectively, indicating single protonation according to elemental analysis and charge balance, while the sulfur atoms gave values very close to 4.

Fig. 1

Ball-and-stick representation of compound 1.

Table 1

Principal interatomic distances (Å) and selected bond angles (°) for the compound 1

Bond lengths (Å)
V(1)–O(1)1.607(3)V(3)–O(3)1.596(3)V(5)–O(5)1.594(3)
V(1)–O(7)1.989(3)V(3)–O(9)1.984(3)V(5)–O(19)1.971(3)
V(1)–O(8)1.990(3)V(3)–O(10)1.999(3)V(5)–O(13)1.974(3)
V(1)–O(14)2.034(3)V(3)–O(18)2.031(3)V(5)–O(23)1.976(3)
V(1)–O(11)2.036(3)V(3)–O(12)2.046(3)V(5)–O(7)2.002(3)
V(1)–O(9)2.260(3)V(3)–O(7)2.255(3)V(6)–O(6)1.591(4)
V(2)–O(2)1.599(3)V(4)–O(4)1.607(3)V(6)–O(24)1.972(3)
V(2)–O(8)1.996(3)V(4)–O(10)1.988(3)V(6)–O(22)1.973(3)
V(2)–O(7)1.998(3)V(4)–O(9)1.993(3)V(6)–O(16)1.991(3)
V(2)–O(17)2.025(3)V(4)–O(21)2.011(3)V(6)–O(8)2.005(3)
V(2)–O(20)2.030(3)V(4)–O(15)2.022(3)V(1)···V(2)2.8894(11)
V(2)–O(10)2.302(3)V(4)–O(8)2.240(3)V(3)···V(4)3.1304(11)
V(3)···V(5)3.6261(12)
V(4)···V(6)3.6001(13)
Bond angles (°)
O(1)–V(1)–O(7)103.33(13)O(20)–V(2)–O(10)76.84(11)O(5)–V(5)–O(13)106.45(16)
O(1)–V(1)–O(8)103.91(14)
O(7)–V(1)–O(8)85.58(11)O(2)–V(2)–V(1)99.84(12)O(19)–V(5)–O(13)142.93(14)
O(1)–V(1)–O(14)100.00(14)O(8)–V(2)–V(1)43.47(8)O(5)–V(5)–O(23)101.58(17)
O(7)–V(1)–O(14)156.55(12)O(7)–V(2)–V(1)43.43(8)O(19)–V(5)–O(23)84.69(13)
O(8)–V(1)–O(14)91.09(11)O(17)–V(2)–V(1)132.74(9)O(13)–V(5)–O(23)80.56(13)
O(1)–V(1)–O(11)99.24(14)O(20)–V(2)–V(1)133.33(8)O(5)–V(5)–O(7)102.08(14)
O(7)–V(1)–O(11)91.28(11)O(10)–V(2)–V(1)83.92(7)O(19)–V(5)–O(7)90.01(12)
O(8)–V(1)–O(11)156.74(12)O(3)–V(3)–O(9)102.07(14)O(13)–V(5)–O(7)90.05(12)
O(14)–V(1)–(11)82.69(11)O(3)–V(3)–O(10)104.07(15)O(23)–V(5)–O(7)156.17(15)
O(1)–V(1)–O(9)176.56(13)O(9)–V(3)–O(10)74.96(11)O(6)–V(6)–O(24)103.55(19)
O(7)–V(1)–O(9)78.92(10)O(3)–V(3)–O(18)98.10(15)O(6)–V(6)–O(22)107.69(17)
O(8)–V(1)–O(9)78.76(11)O(9)–V(3)–O(18)157.38(12)O(24)–V(6)–O(22)86.21(14)
O(14)–V(1)–O(9)77.67(11)O(10)–V(3)–O(18)90.34(12)O(6)–V(6)–O(16)106.52(18)
O(11)–V(1)–O(9)78.01(11)O(3)–V(3)–O(12)95.75(16)O(24)–V(6)–O(16)78.60(14)
O(1)–V(1)–V(2)99.08(11)O(9)–V(3)–O(12)90.77(12)O(22)–V(6)–O(16)144.95(15)
O(7)–V(1)–V(2)43.69(8)O(10)–V(3)–O(12)157.52(12)O(6)–V(6)–O(8)102.70(15)
O(8)–V(1)–V(2)43.62(8)O(18)–V(3)–O(12)97.35(13)O(24)–V(6)–O(8)153.38(17)
O(14)–V(1)–V(2)134.00(9)O(3)–V(3)–O(7)176.30(15)O(22)–V(6)–O(8)90.08(12)
O(11)–V(1)–V(2)134.27(8)O(9)–V(3)–O(7)79.12(10)O(16)–V(6)–O(8)89.75(12)
O(9)–V(1)–V(2)84.35(7)O(10)–V(3)–O(7)79.60(11)V(1)–O(7)–V(2)92.89(11)
O(2)–V(2)–O(8)104.06(14)O(18)–V(3)–O(7)81.40(11)V(1)–O(7)–V(5)120.77(13)
O(2)–V(2)–O(7)104.27(14)O(12)–V(3)–O(7)80.71(11)V(2)–O(7)–V(5)120.48(13)
O(8)–V(2)–O(7)85.17(11)O(4)–V(4)–O(10)103.36(15)V(1)–O(7)–V(3)100.28(11)
O(2)–V(2)–O(17)100.47(14)O(4)–V(4)–O(9)104.05(15)V(2)–O(7)–V(3)101.16(11)
O(8)–V(2)–O(17)155.43(12)O(10)–V(4)–O(9)75.02(11)V(5)–O(7)–V(3)116.67(12)
O(7)–V(2)–O(17)90.16(11)O(4)–V(4)–O(21)97.62(15)V(1)–O(8)–V(2)92.91(11)
O(2)–V(2)–O(20)100.33(14)O(10)–V(4)–O(21)92.18(12)V(1)–O(8)–V(6)120.99(14)
O(8)–V(2)–O(20)90.76(11)O(9)–V(4)–O(21)156.82(12)V(2)–O(8)–V(6)120.96(14)
O(7)–V(2)–O(20)155.32(12)O(4)–V(4)–O(15)94.21(15)V(1)–O(8)–V(4)100.78(12)
O(17)–V(2)–O(20)83.48(11)O(10)–V(4)–O(15)158.62(12)V(2)–O(8)–V(4)100.79(12)
O(2)–V(2)–O(10)176.23(13)O(9)–V(4)–O(15)89.07(12)V(6)–O(8)–V(4)115.90(12)
O(8)–V(2)–O(10)78.60(11)O(21)–V(4)–O(15)97.54(14)V(3)–O(9)–V(4)103.85(12)
O(7)–V(2)–O(10)78.49(10)O(4)–V(4)–O(8)175.57(14)V(3)–O(9)–V(1)100.28(11)
O(17)–V(2)–O(10)76.83(11)O(10)–V(4)–O(8)80.29(11)V(4)–O(9)–V(1)100.02(12)
O(9)–V(4)–O(8)79.21(11)V(4)–O(10)–V(3)103.47(12)
O(21)–V(4)–O(8)79.62(12)V(4)–O(10)–V(2)98.95(12)
O(15)–V(4)–O(8)82.79(12)V(3)–O(10)–V(2)99.57(11)
O(5)–V(5)–O(19)109.75(16)
Fig. 2

Ball and stick representation of the vanadium building block, [H2V6IVS4IVO22]2– in 1. Average bond lengths (Å): V=O 1.599(3), V–O (μ3-O) 2.096(3), V–O (μ4-O) 2.107(3), S–O (μ3-SO32–) 1.532(3), S=O 1.446(4).

Table 2

Bond valance sum calculations for the vanadium, sulfur and oxygen atoms for the compound 1

AtomBVSAtomBVSAtomBVS
V(1)3.99O(7)1.89O(19)1.54
V(2)4.00O(8)1.59O(20)1.55
V(3)4.03O(9)1.06O(21)1.54
V(4)4.04O(10)1.07O(22)1.55
V(5)3.95O(11)1.63O(23)1.62
V(6)3.94O(12)1.75O(24)1.74
O(1)1.65O(13)1.55O(25)1.48
O(2)1.69O(14)1.54S(1)3.97
O(3)1.71O(15)1.54S(2)3.95
O(4)1.65O(16)1.55S(3)3.97
O(5)1.72O(17)1.54S(4)3.87
O(6)1.74O(18)1.55S(5)3.96

The infrared spectrum of 1 exhibits bands at 3504s (br) [v(O–H) from H2O], 3127s (br) [v(N–H) from NH4+], 1637m (br) [δ(H2O)], 1607m, 1560w, 1211w [ν(4,4´-Hbpy+)], 1401s [δ(NH4+)], 1028sh, 922s, 874s, 834s, 814m and 568s cm–1 [v(SO32–)] [11], 979s and 971sh cm–1 [v(V=O)], respectively. The electronic spectrum of 1 in aqueous solution consists of a band in the visible and a peak in the ultraviolet region, namely, λ/nm(ɛ/M–1 cm–1)]: 889(sh) (1261), 251 (18,440). The UV–Vis solid state reflectance of compound 1, revealed a band at 251 nm, thus indicating that 1 loses its integrity in aqueous solution.

The experimental magnetic data for 1 are plotted as χMT vs. T in Fig. 3A. The χMT value decreases from 1.74 emu mol–1 K at 300 K, which is significantly smaller with the expected value of 2.25 emu mol–1 K for six non-interacting VIV centers (S = 1/2), to 1.53 emu mol–1 K at 78 K and then increases abruptly to the value of 1.70 emu mol–1 K at 5.8 K and then drastically decreases to the value of 1.48 at 1.8 K. The behavior of χMT suggests the existence of very strong antiferromagnetic interactions along with ferromagnetic exchange interactions within the molecule. The Hamiltonian formalism used to fit the experimental data for this VIV6 system (Scheme 1) is given by Eq. 1.(1)

H = J1(S1S2) + J2(S3S4) + J3[S1(S3 + S4) + S2(S3 + S4)] + J4[S5(S3 + S4 + S2) + S6(S3 + S4 + S1)]
Using Eq. (1) a very good fit (solid line in Fig. 3A) was obtained. The resulting parameters are, J1 = –1.27 cm–1, J2 = 112.3 cm–1, J3 = 51.1 cm–1, J4 = 0.21 cm–1, g = 1.99. This fit reveals the existence of one small ferromagnetic exchange parameter within the VIV6 cluster that is between V1 and V2 ions (Scheme 1) [V···V = 3.131(1) Å, average V–O–V = 103.6(1)°] although an antiferromagnetic one is expected. The reason for this discrepancy comes from the two large antiferromagnetic interactions that influence the behavior of the system and the existence of many triangles in it leading to frustration effects. An important result is the significant antiferromagnetic interaction between the V3 and V4 ions [V···V = 2.890(1) Å, average V–O–V = 92.9(1)°] which is mainly due to the very small distance (almost a metallic bond) and for this reason there is a direct exchange interaction instead of a superexchange one. The energy diagram of the system reveals that the ground state is a ST = 0 and two different ST = 1 excited states are at ca. 0.5 cm–1 and 0.9 cm–1, respectively, while the S = 2 excited state is at 1.4 cm–1. In order to verify the above fitting parameters, variable field magnetization data were collected at two different temperatures 2.5 and 4.5 K. The data are plotted as M/B vs. H/T in Fig. 3B (where N is the Avogadro's number and μB is the Bohr magneton). The same magnetic model was used to simulate the data and the results (solid lines in Fig. 3B) are in perfect agreement with the experimental data at 4.5 K while there is a discrepancy with the data at 2.5 K possibly due to the 1-D character of the system.

Fig. 3

A) Temperature dependence of the susceptibility data, in the form of χMT vs. T for 1. The solid line represents the fitting results according to equation 1; B) magnetization data for 1 at 2.5 and 4.5 K.

Scheme 1

In conclusion, the successful isolation of a novel one-dimensional species (NH4)3(4,4′-Hbpy)[(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4(μ-SO3)]·15/2 H2O 1, provides a novel example of assembling vanadosulfite with sulfite anion through the structure-control effect of 4,4′-Hbpy+ cation. In addition, compound 1 is the first organic/inorganic polyoxometal-sulfite species in which the 4,4′-Hbpy+ ligand is only involved in hydrogen-bonding. Variable temperature magnetic susceptibility measurements revealed an overall antiferromagnetic behavior for 1, in marked contrast to the ferromagnetic behavior for the previously described hexanuclear species [H2V6IVS4IVO22]2– [9b].

Acknowledgments

This research was funded by the program ‘Heraklitos’ of the Operational Program for Education and Initial Vocational Training of the Hellenic Ministry of Education under the 3rd Community Support Framework and the European Social Fund.

1 Elemental analysis calcd. (%) for C10H38N5O32.5S5V6 (1214.39): C: 9.88, H: 3.12, N: 5.76, S: 13.17, V: 25.17; found: C: 9.81, H: 3.04, N: 5.63, S: 12.98, V: 25.01.

2 X-Ray crystal structure analysis for 1: (NH4)3(4,4′-bipyH)[(VIVO)6(μ4-O)2(μ3-OH)2(μ3-SO3)4(μ-SO3)]·15/2 H2O: C10H38N5O32.5S5V6, Mr = 1214.39, triclinic, space group P1 (No. 2), a = 10.739(2) Å, b = 11.002(2) Å, c = 18.028(4) Å, α = 86.972(4)°, β = 78.215(4)°, γ = 69.160(4)°, V = 1948.1(7) Å3, Z = 2, ρcalc = 2.070 Mg m–3, T = 299(2) K, R1 = 0.0481, wR2 = 0.1142, index ranges = –14 ≤ h ≤ 13, –9 ≤ k ≤ 14, –23 ≤ l ≤ 16; intensity data collection was carried out on a green crystal of 0.07 × 0.05 × 0.03 mm and refined by full-matrix least-squares, based on F2. CCDC reference number 255738. See http://www.rsc.org/suppdata/dt/b1/b108430p/ for crystallographic data in CIF or other electronic format.


Bibliographie

[1] (a) M.T. Pope, A. Muller (Eds.), Polyoxometalate Chemistry Kluwer, Dordercht, The Netherlands, 2001; (b) Polyoxometalates, Chem. Rev. 98 (1998) 1.

[2] (a) M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, New York, 1983; (b) M.T. Pope, A. Müller, Angew. Chem. Int. Ed. Engl. 30 (1991) 34; (c) S.M. Kuznicki, K.A. Thrush, F.M. Allen, S.M. Levine, M.M. Hamil, D.T. Hayhurst, M. Mansour, in: M.L. Occelli, H.E. Robson (Eds.), Synthesis of Microporous Materials, vol. 1, Van Nostrad Reinhold, New York, 1992, p. 427; (d) M.T. Pope, A. Müller (Eds.), Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994; (e) M. Farahbakhsh, H. Schmidt, D. Rehder, Chem. Ber./Recueil. 130 (1997) 1123; (f) C.L. Hill, guest editor, Chem. Rev. 98 (1998) 8; (g) A. Muller, L. Toma, H. Bogge, M. Schmidtmann, P. Kogerler, Chem. Commun. (2003) 2000.

[3] (a) P.J. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 38 (1999) 2638; (b) G. Ferey, Chem. Mater. 13 (2001) 3084; (c) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi, Acc. Chem. Res. 34 (2001) 319; (d) V. Artero, A. Proust, P. Herson, F. Villain, C. Moulin, P. Gouzerh, J. Am. Chem. Soc. 125 (2003) 11156; (e) A. Gaunt, I. May, R. Copping, A. Bhatt, D. Collison, O. Fox, K. Holman, M. Pope, Dalton Trans. (2003) 3009; (f) R. Rarig, J. Zubieta, Dalton Trans. (2003) 1861.

[4] (a) B. Chem, M. Eddaoudi, T.S. Hyde, M. O'Keeffe, O.M. Yaghi, Science 291 (2001) 1021; (b) P.M. Forster, A.K. Cheetam, Angew. Chem. Int. Ed. Engl. 41 (2002) 457; (c) M.X. Zhang, M.L. Tong, M.X. Chen, Angew. Chem. Int. Ed. Engl. 41 (2002) 1029.

[5] J.M. Clemente-Juan; E. Coronado Coord. Chem. Rev. (1999), p. 193 &361 (and references therein)

[6] (a) M. Piepenbrink, M. Triller, N. Gorman, B. Krebs, Angew. Chem. Int. Ed. Engl. 41 (2002) 2523; (b) R. Rarig, J. Zubieta, Dalton Trans. (2003) 1861.

[7] (a) M. Pope, A. Muller, Angew. Chem. Int. Ed. 30 (1991) 34; (b) C. Sanchez, F. Ribot. (Eds.), Proc. 1st European Workshop on Hybrid Organic–Inorganic Materials (special issue) New J. Chem. 18 (1994).

[8] (a) R.C. Haushalter, L.A. Mundi, Chem. Mater. 4 (1992) 31; (b) A.K. Cheetham, G. Férey, T. Loiseau, Angew. Chem. Int. Ed. Engl. 38 (1999) 3268 (and references therein); (c) C. du Peloux, A. Dolbecq, P. Mialane, J. Marrot, E. Rivière, F. Sécheresse, Angew. Chem. Int. Ed. Engl. 40 (2001) 2455; (e) C. Peloux, P. Mialane, A. Dolbecq, J. Marrot, F. Sécheresse, Angew. Chem. Int. Ed. Engl. 41 (2001) 2808; (f) C. Peloux, P. Mialane, A. Dolbecq, J. Marrot, E. Rivière, F. Sécheresse, J. Mater. Chem. 11 (2001) 3392; (g) C. Peloux, P. Mialane, A. Dolbecq, J. Marrot, E. Rivière, F. Sécheresse, Inorg. Chem. 41 (2002) 7100.

[9] (a) K. Matsumoto, M. Kato, Y. Sasaki, Bull. Chem. Soc. Jpn 49 (1976) 106; (b) M. Manos, H.N. Miras, J.D. Woollins, V. Tangoulis, A.M.Z. Slawin, T.A. Kabanos, Angew. Chem. Int. Ed. Engl. 42 (2003) 425; (c) M. Manos, J.D. Woollins, A.M.Z. Slawin, T.A. Kabanos, Angew. Chem. Int. Ed. Engl. 41 (2002) 2801; (d) H.N. Miras, R. Raptis, N. Lalioti, M.P. Sigalas, P. Baran, T.A. Kabanos, Chem.: Eur. J. 11(2005); (e) D. Long, P. Kögerler, L. Cronin, Angew. Chem. Int. Ed. Engl. 43 (2004) 1817.

[10] (a) I.D. Brown, K.K. Wu, Acta Crystallogr., Sect. B 32 (1976) 1950; (b) I.D. Brown, in: M. O'Keefe, A. Navrotdsky (Eds.), Structure and Bonding in Crystals, vol. II, Academic Press, New Work, 1981, pp. 1–30; (c) I.D. Brown, D. Altermatt, Acta Crystallogr., Sect. B 41 (1985) 244.

[11] P.K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986


Commentaires - Politique