Plan
Comptes Rendus

Preparation of 3,4,5-substituted furan-2(5H)-ones using aluminum hydrogen sulfate as an efficient catalyst
Comptes Rendus. Chimie, Volume 17 (2014) no. 2, pp. 131-134.

Résumé

Various derivatives of 3,4,5-substituted furan-2(5H)-ones have been readily prepared by using aluminum hydrogen sulfate [Al(HSO4)3] as an efficient catalyst in good yields and milder reaction conditions. The versatility of this protocol has been demonstrated with various substituted furan-2(5H)-ones.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2013.06.009
Mots-clés : 3, 4, 5-substituted furan-2(5H)-one, Al(HSO4)3, Acetylenic esters, Butenolides

Mohammad Reza Mohammad Shafiee 1 ; Syed Sheik Mansoor 2 ; Majid Ghashang 1 ; Abbas Fazlinia 3

1 Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University, P.O. Box: 517, Najafabad, Esfahan, Iran
2 Research Department of Chemistry, Bioactive Organic Molecule Synthetic Unit, C. Abdul Hakeem College, Melvisharam, 632 509 Tamil Nadu, India
3 Department of Chemistry, Neyriz Branch, Islamic Azad University, Neyriz, Iran
@article{CRCHIM_2014__17_2_131_0,
     author = {Mohammad Reza Mohammad Shafiee and Syed Sheik Mansoor and Majid Ghashang and Abbas Fazlinia},
     title = {Preparation of 3,4,5-substituted {furan-2(5H)-ones} using aluminum hydrogen sulfate as an efficient catalyst},
     journal = {Comptes Rendus. Chimie},
     pages = {131--134},
     publisher = {Elsevier},
     volume = {17},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crci.2013.06.009},
     language = {en},
}
TY  - JOUR
AU  - Mohammad Reza Mohammad Shafiee
AU  - Syed Sheik Mansoor
AU  - Majid Ghashang
AU  - Abbas Fazlinia
TI  - Preparation of 3,4,5-substituted furan-2(5H)-ones using aluminum hydrogen sulfate as an efficient catalyst
JO  - Comptes Rendus. Chimie
PY  - 2014
SP  - 131
EP  - 134
VL  - 17
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crci.2013.06.009
LA  - en
ID  - CRCHIM_2014__17_2_131_0
ER  - 
%0 Journal Article
%A Mohammad Reza Mohammad Shafiee
%A Syed Sheik Mansoor
%A Majid Ghashang
%A Abbas Fazlinia
%T Preparation of 3,4,5-substituted furan-2(5H)-ones using aluminum hydrogen sulfate as an efficient catalyst
%J Comptes Rendus. Chimie
%D 2014
%P 131-134
%V 17
%N 2
%I Elsevier
%R 10.1016/j.crci.2013.06.009
%G en
%F CRCHIM_2014__17_2_131_0
Mohammad Reza Mohammad Shafiee; Syed Sheik Mansoor; Majid Ghashang; Abbas Fazlinia. Preparation of 3,4,5-substituted furan-2(5H)-ones using aluminum hydrogen sulfate as an efficient catalyst. Comptes Rendus. Chimie, Volume 17 (2014) no. 2, pp. 131-134. doi : 10.1016/j.crci.2013.06.009. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2013.06.009/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Multi-component reactions (MCRs) have gained much attention due to their ability in facile execution and productivity [1]. MCRs based on the use of acetylenic esters as starting material has gained much importance in organic synthesis, partly because of the diverse types of clinical and pharmacological activity associated with the products of this reaction [2–6]. Of all kinds of MCRs based on the use of acetylenic esters, methods to synthesize furan derivatives were considered as the most versatile ones for chemical construction of poly-substituted furans [7–11].

Substituted furan derivatives are fundamentally important heterocyclic molecules and are present in many natural and medicinal structures [12,13]. They can be used as valuable intermediates for the construction of heterocycles in organic synthesis. Thus, efforts for the synthesis of furan scaffolds are in demand by organic chemists. Among the various furan derivatives, butenolides have appeared in the literature as interesting components for the construction of natural and pharmacological compounds. These skeletons show a wide range of biological activities such as antimicrobial [14], antifungal [15], anti-inflammatory [16], anticancer [17] and anti-viral HIV-1 [18] activities. Due to this wide range of abundance and applicability, various approaches toward substituted butenolides have been developed, which involve the use of organo-lithium [19], boronic acids [20,21], transition-metal catalysts such as Pd(OAc)2 [22], Ru [23], Cu(II) [24], AuCl [25], and secondary amines [26]. However, many of these methods involve the use of expensive catalysts and hazardous reagents in stoichiometric amounts.

A new route to the synthesis of furan skeletons was developed by Murthy et al. via the multi-component reaction of aromatic amines, aldehydes and acetylenic esters, which lead to the preparation of 3,4,5-substituted furan-2(5H)-one derivatives using β-cyclodextrin as a catalyst in water [27]. Recently, Nagarapu et al. reported that SnCl2 can efficiently catalyze this reaction [28].

However, as the existing literature reports that the reaction performance is somewhat vitiated by its time-consuming aspects, the development of a new, efficient and green approach for the preparation of substituted furan-2(5H)-ones is highly desirable. In view of the above and as a part of our ongoing program on multi-component reactions [29], an efficient and convenient synthesis of 3,4,5-substituted furan-2(5H)-one derivatives has been accomplished by a multi-component reaction between aromatic amines, aldehydes and acetylenic esters, using Al(HSO4)3 as an efficient catalyst, with good yields (Scheme 1).

Scheme 1

Preparation of 3,4,5-substituted furan-2(5H)-one derivatives.

2 Experimental

2.1 Reagents and instrumentation

All reagents were purchased from Merck and Aldrich and used without further purification. All yields refer to isolated products after purification. The NMR spectra were recorded on a Bruker Avance DPX 400 MHz instrument. The spectra were measured in CDCl3 relative to TMS (0.00 ppm). IR spectra were recorded on a PerkinElmer 781 spectrophotometer. Elemental analysis was performed on a Heraeus CHN-O-Rapid analyzer. Melting points were determined in open capillaries with a Buchi B-510 melting point apparatus. TLC was performed on Polygram SIL G/UV 254 silica gel plates.

2.2 General procedure

To a mixture of aldehyde (1 mmol), aromatic amine (1 mmol) and acetylenic esters (1 mmol) in ethyl acetate (5 mL), Al(HSO4)3 (0.05 g) was added as the catalyst, and the mixture was stirred for an appropriate time at room temperature. The progress of the reaction was monitored by TLC. Upon completion, the solvent was concentrated and the reaction mixture was diluted in CH2Cl2; the catalyst was isolated by simple filtration, and the crude product was washed with diethyl ether to afford the pure product.

2.3 Selected data

2.3.1 Methyl 4-(p-tolylamino)-2,5-dihydro-5-oxo-2-phenylfuran-3-carboxylate (1a)

1H NMR (400 MHz, CDCl3): 2.25 (s, 3H), 3.81 (s, 3H), 5.69 (s, 1H), 7.06 (d, J = 8.1 Hz, 2H), 7.14-7.38 (m, 7H), 8.93 (s, 1H, NH) ppm; IR (KBr): 3226, 2951, 1706, 1679, 1514, 1466, 1378, 1305, 1235, 1202, 1139, 998, 829, 811, 772 cm−1; found: C, 70.69; H, 5.38; N, 4.39 C19H17NO4; requires: C, 70.58; H, 5.30; N, 4.33%.

2.3.2 Methyl 4-(p-tolylamino)-2,5-dihydro-5-oxo-2-p-tolylfuran-3-carboxylate (3a)

1H NMR (400 MHz, CDCl3): 2.28 (s, 3H), 2.54 (s, 3H), 3.77 (s, 3H), 5.71 (s, 1H), 7.07 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 8.89 (s, 1H, NH) ppm; 13C NMR (100 MHz, CDCl3) δ: 20.7, 34.2, 51.8, 61.5, 112.9, 122.3, 125.6, 126.7, 129.7, 131.8, 133.5, 135.6, 151.3, 156.1, 162.8, 165.3 ppm IR (KBr): 3222, 2954, 1682, 1613, 1515, 1463, 1309, 1255, 1137, 1032, 994, 896, 848, 747 cm−1; found: C, 71.27; H, 5.77; N, 4.21 C20H19NO4; requires: C, 71.20; H, 5.68; N, 4.15%.

2.3.3 Ethyl 4-(p-tolylamino)-2,5-dihydro-5-oxo-2-p-tolylfuran-3-carboxylate (4a)

1H NMR (400 MHz, CDCl3): 1.26 (t, J = 6.8 Hz, 3H), 2.28 (s, 3H), 2.54 (s, 3H), 4.08 (q, J = 6.8 Hz, 2H), 5.72 (s, 1H), 7.08 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 8.89 (s, 1H, NH) ppm; 13C NMR (100 MHz, CDCl3) δ: 14.3, 20.6, 34.1, 51.6, 61.6, 112.9, 122.4, 125.6, 126.8, 129.6, 131.9, 133.5, 135.6, 151.2, 156.1, 162.6, 165.1 ppm IR (KBr): 3224, 3026, 2951, 1703, 1681, 1615, 1511, 1461, 1310, 1254, 1138, 1030, 994, 848, 745 cm−1; found: C, 71.88; H, 6.09; N, 4.05 C21H21NO4; requires: C, 71.78; H, 6.02; N, 3.99%.

2.3.4 Methyl 4-(p-tolylamino)-2-(4-chlorophenyl)-2,5-dihydro-5-oxofuran-3-carboxylate (5a)

1H NMR (400 MHz, CDCl3): 2.29 (s, 3H), 3.88 (s, 3H), 5.73 (s, 1H), 7.08 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 9.02 (s, 1H, NH) ppm; 13C NMR (100 MHz, CDCl3) δ: 20.3, 51.6, 60.8, 113.0, 122.9, 125.9, 126.8, 128.8, 129.2, 131.4, 134.9, 143.3, 156.1, 162.5, 165.4 IR (KBr): 3218, 2952, 1715, 1684, 1596, 1496, 1456, 1370, 1282, 1232, 1197, 1132, 1092, 1011, 928, 831, 7610 cm−1; found: C, 63.89; H, 4.63; N, 4.01 C19H16ClNO4; requires: C, 63.78; H, 4.51; N, 3.91%.

2.3.5 Methyl 4-(p-tolylamino)-2-(4-tert-butylphenyl)-2,5-dihydro-5-oxofuran-3-carboxylate (6a)

1H NMR (400 MHz, CDCl3): 1.27 (s, 9H), 2.27 (s, 3H), 3.76 (s, 3H), 5.70 (s, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 8.92 (s, 1H, NH) ppm; 13C NMR (100 MHz, CDCl3) δ: 20.8, 31.1, 34.4, 51.9, 61.2, 112.7, 122.1, 125.4, 126.8, 129.4, 131.7, 133.6, 135.4, 151.2, 155.9, 162.7, 165.2 ppm IR (KBr): 3223, 2951, 1710, 1675, 1511, 1467, 1375, 1305, 1210, 1139, 825, 771 cm−1; found: C, 72.89; H, 6.71; N, 3.75 C23H25NO4; requires: C, 72.80; H, 6.64; N, 3.69%.

2.3.6 Ethyl 4-(p-tolylamino)-2-(4-tert-butylphenyl)-2,5-dihydro-5-oxofuran-3-carboxylate (7a)

1H NMR (400 MHz, CDCl3): 1.25-1.29 (m, 12H), 2.28 (s, 3H), 4.05 (q, J = 6.7 Hz, 2H), 5.70 (s, 1H), 7.08 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 8.91 (s, 1H, NH) ppm; 13C NMR (100 MHz, CDCl3) δ: 14.5, 20.8, 31.2, 34.5, 51.8, 61.5, 112.7, 122.3, 125.4, 126.7, 129.5, 131.9, 133.7, 135.4, 151.5, 156.2, 162.6, 165.4 ppm IR (KBr): 3221, 3024, 2950, 1709, 1675, 1512, 1375, 1212, 1139, 826, 771 cm−1; found: C, 73.35; H, 6.99; N, 3.64 C24H27NO4; requires: C, 73.26; H, 6.92; N, 3.56%.

2.3.7 Methyl 4-(4-chlorophenylamino)-2,5-dihydro-5-oxo-2-p-tolylfuran-3-carboxylate (8a)

1H NMR (400 MHz, CDCl3): 2.55 (s, 3H), 3.83 (s, 3H), 5.75 (s, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 8.98 (s, 1H, NH) ppm; 13C NMR (100 MHz, CDCl3) δ: 20.4, 61.5, 51.6, 112.9, 123.1, 126.8, 128.4, 128.8, 129.2, 131.4, 134.8, 134.9, 156.3, 162.6, 165.4 IR (KBr): 3219, 2952, 1714, 1684, 1595, 1496, 1456, 1426, 1371, 1338, 1283, 1232, 1197, 1132, 1092, 1011, 928, 831, 805, 760, 711, 699 cm−1; found: C, 63.89; H, 4.60; N, 3.99 C19H16ClNO4; requires: C, 63.78; H, 4.51; N, 3.91%.

2.3.8 Methyl 4-(4-methoxyphenylamino)-2,5-dihydro-5-oxo-2-p-tolylfuran-3-carboxylate (10a)

1H NMR (400 MHz, CDCl3): 2.53 (s, 3H), 3.80 (s, 3H), 5.73 (s, 1H), 6.88 (d, J = 8.8 Hz, 2H), 7.05-7.09 (m, 4H), 7.31 (d, J = 8.8 Hz, 2H), 8.85 (s, 1H, NH) ppm; 13C NMR (100 MHz, CDCl3) δ: 19.7, 51.8, 55.3, 61.4, 112.1, 124.6, 125.3, 126.4, 128.1, 128.5, 135.8, 136.4, 144.1, 157.2, 163.4, 165.1 ppm IR (KBr): 3221, 2950, 1707, 1677, 1513, 1466, 1375, 1304, 1207, 1141, 828, 771 cm−1; found: C, 68.09; H, 5.51; N, 4.05 C20H19NO5; requires: C, 67.98; H, 5.42; N, 3.96%.

3 Results and discussion

Our initial aim was to develop an efficient one-pot procedure for the synthesis of 3,4,5-substituted furan-2(5H)-one derivatives through the reaction of aromatic amines, aldehydes and acetylenic esters by employing Al(HSO4)3. Accordingly, the transformation of 4-methylaniline, dimethylacetylenedicarboxylate and benzaldehyde into methyl 4-(p-tolylamino)-2,5-dihydro-5-oxo-2-phenylfuran-3-carboxylate was investigated (Table 1). The reaction was carried out by using different solvents (Table 1, entries 1–6) or solvent-free conditions (Table 1, entry 7) at room temperature. Lower yield of the product was achieved under solvent-free conditions. It was found that the best results were obtained when 0.05 g of Al(HSO4)3 in EtOAc as solvent was employed (Table 1, entry 4).

Table 1

Optimization of the reaction conditions for the synthesis of methyl 4-(p-tolylamino)-2,5-dihydro-5-oxo-2-phenylfuran-3-carboxylate.

EntryCatalyst (g)T (°C)Solvent (5 mL)Time (h)Yield (%)a
10.05r.t.n–Hexane845
20.05r.t.CH2Cl2850
30.05r.t.Et2O865
40.05r.t.EtOAc878
50.05r.t.EtOH851
60.05r.t.MeOH855
70.05r.t.825
8r.t.EtOAc10
90.025r.t.EtOAc1065
100.075r.t.EtOAc677
110.1r.t.EtOAc576

a Isolated yields.

To find out the optimized amount of Al(HSO4)3, the reaction was carried out by varying the quantity of catalyst (Table 1, entries 9–11). The maximum yield was obtained when 0.05 g of catalyst was used (Table 1, entry 4). Further increase in the amount of Al(HSO4)3 in the mentioned reaction did not have any significant effect on the product yield. The results are summarized in Table 1.

Next, the scope and efficiency of these procedures were explored for the synthesis of a wide variety of substituted 3,4,5-substituted furan-2(5H)-ones (Scheme 1, Table 2).

Table 2

Synthesis of 3,4,5-substituted furan-2(5H)-one derivatives (Scheme 1).

ProductAldehydeAmineRTime (h)Yield (%)a
1aBenzaldehyde4-MethylanilineMe878
2aBenzaldehyde4-MethylanilineEt880
3a4-Methylbenzaldehyde4-MethylanilineMe789
4a4-Methylbenzaldehyde4-MethylanilineEt790
5a4-Chlorobenzaldehyde4-MethylanilineMe1071
6a4-tert-Butylbenzaldehyde4-MethylanilineMe881
7a4-tert-Butylbenzaldehyde4-MethylanilineEt880
8a4-Methylbenzaldehyde4-ChloroanilineMe1085
9aBenzaldehyde4-ChloroanilineMe1079
10a4-Methylbenzaldehyde4-MethoxyanilineMe786
11aBenzaldehydeAnilineMe884
12aBenzaldehydeAnilineEt977
13a4-MethylbenzaldehydeAnilineMe886
14a4-MethylbenzaldehydeAnilineEt884
15a4-ChlorobenzaldehydeAnilineMe1075
16a2-ChlorobenzaldehydeAnilineMe1270
17a2,4-DichlorobenzaldehydeAnilineMe1280

a Isolated yields. All known products had been reported previously in the literature and were characterized by comparison of their IR and NMR spectra with those of authentic samples [27,28].

Generally, the results were excellent in terms of yield and product purity. A series of aromatic aldehydes and amines were investigated (Table 2, products 1a–17a). In all cases, aromatic aldehydes containing electron-donating groups gave shorter times and higher yields than that with electron-withdrawing groups.

The work-up procedure is very clear-cut; this means that the products were isolated and purified by simple filtration and washing with diethyl ether. Our protocol making use of Al(HSO4)3 during the reaction process is better than those using hazardous liquid acidic catalysts.

4 Conclusion

In summary, an efficient protocol for the preparation of 3,4,5-substituted furan-2(5H)-one derivatives was described. The reactions were carried out under ambient conditions with short reaction times and produce the corresponding products in good yields. The present methodology offers several advantages such as good yields, simple procedure, shorter reaction times and milder conditions; moreover, the products were purified without having resort to chromatography.

Acknowledgments

We are thankful to the Najafabad Branch, Islamic Azad University research council for partial support of this research.


Bibliographie

[1] A. Dömling; I. Ugi Angew. Chem. Int. Ed. (J. Zhu; H. Bienaymé, eds.), Multicomponent Reactions, 39, Wiley-VCH, Weinheim, Germany, 2000, p. 3168

[2] I. Yavari; H. Djahaniani Tetrahedron Lett., 47 (2006), p. 2953

[3] I. Yavari; Z. Hossaini; M. Sabbaghan Tetrahedron Lett., 47 (2006), p. 6037

[4] I. Yavari; M. Bayat Tetrahedron, 59 (2003), p. 2001

[5] M.T. Maghsoodlou; S.M. Habibi Khorassani; R. Heydari; F. Rostami Charati; N. Hazeri; M. Lashkari; M. Rostamizadeh; G. Marandi; A. Sobolev; M. Makha Tetrahedron Lett., 50 (2009), p. 4439

[6] F. Rostami Charati; M.T. Maghsoodlou; S.M. Habibi Khorassani; M. Makha Tetrahedron Lett., 49 (2008), p. 343

[7] H. Huang; H. Jiang; H. Cao; J. Zhao; D. Shi Tetrahedron, 68 (2012), p. 3135

[8] R. Ghadari; F. Hajishaabanha; M. Mahyari; A. Shaabani; H.R. Khavasi Tetrahedron Lett., 53 (2012), p. 4018

[9] W. Liu; H. Jiang; M. Zhang; C. Qi J. Org. Chem., 75 (2010), p. 966

[10] M. Fan; Z. Yan; W. Liu; Y. Liang J. Org. Chem., 70 (2005), p. 8204

[11] H. Cao; H. Jiang; W. Yao; X. Liu Org. Lett., 11 (2009), p. 1931

[12] S. Miao; R.J. Andersen J. Org. Chem., 56 (1991), p. 6275

[13] M. Kotora; E. Negishi Synthesis (1997) no. 121

[14] R. Rossi; F. Bellina; M. Biagetti; L. Mannina; G. Grossmann; M. Poncioni; M. Bornand; B. Jolivet; M. Neuburger; U. Sequin; L.M. Levy; G.M. Cabrera; J.E. Wright; A.M. Seldes Phytochemistry, 39 (1998), p. 7799

[15] S.M. Hein; J.B. Gloer; B. Koster; D. Malloch; M. Pour; M. Spulak; V. Balsanek; J. Kunes; P. Kubanova; V. Butcha Bioorg. Med. Chem., 64 (2001), p. 809

[16] S. Padakanti; M. Pal; K.R. Yeleswarapu Tetrahedron, 59 (2003), p. 7915

[17] T.R. Hoye; L. Tan; S. Takahashi; A. Kubota; T. Nakata Tetrahedron Lett., 36 (1995), p. 1981

[18] S. Hanessian; R.Y. Park; R.Y. Yang; S. Hanessian; R.Y. Park; R.Y. Yang; A. Choudhury; F. Jin; D. Wang; Z. Wang; G. Xu; D. Nguyen; J. Castoro; M.E. Pierce; P.N. Confalone Tetrahedron Lett., 44 (1997) no. 351, p. 247

[19] J. Boukouvalas; R.P. Loach J. Org. Chem., 73 (2008), p. 8109

[20] J. Wu; Q. Zhu; L. Wang; R. Fathi; Z. Yang J. Org. Chem., 68 (2003), p. 670

[21] D. Lee; S.G. Newman; M.S. Taylor Org. Lett., 11 (2009), p. 5486

[22] S. Cacchi; G. Fabrizi; A. Goggiamani; A. Sferrazza Synlett (2009) no. 1277

[23] M. Bassetti; A. D’Annibale; A. Fanfoni; F. Minissi Org. Lett., 7 (2005), p. 1805

[24] K. Matuso; M. Shindo Org. Lett., 12 (2010), p. 5346

[25] Y. Liu; F. Song; S. Guo J. Am. Chem. Soc., 128 (2006), p. 11332

[26] D. Tejedor; A. Santos-Expósito; F. García-Tellado Synlett (2006) no. 1607

[27] S. Narayana Murthy; B. Madhav; A. Vijay Kumar; K. Rama Rao; Y.V.D. Nageswar Tetrahedron, 65 (2009), p. 5251

[28] L. Nagarapu; U.N. Kumar; P. Upendra; R. Bantu Synth. Commun., 42 (2012), p. 2139

[29] M.R. Mohammad Shafiee; R. Moloudi; M. Ghashang; M. Ghashang; M. Ghashang Lett. Org. Chem., 9 (2011) no. 622, p. 727


Cité par

  • Dhananjay D. Gadge; Pramod S. Kulkarni 5‐Sulfosalicylic Acid Dihydrate‐Catalyzed Multicomponent Synthesis of 3‐(Arylamino)‐Furan‐2(5H)‐ones, ChemistrySelect, Volume 10 (2025) no. 9 | DOI:10.1002/slct.202405870
  • Sakshi Pathak; Kanchan Verma; Gargi Pathak; Jaya Mathur; Rahul Shrivastava; Mahendra Kumar Nanocatalyzed Organic Transformations for Synthesis of Drug-Like Small Molecules with Privileged Heterocycles, Handbook of Nanofillers (2025), p. 1 | DOI:10.1007/978-981-99-3516-1_98-2
  • Sakshi Pathak; Kanchan Verma; Gargi Pathak; Jaya Mathur; Rahul Shrivastava; Mahendra Kumar Nanocatalyzed Organic Transformations for Synthesis of Drug-Like Small Molecules with Privileged Heterocycles, Handbook of Nanofillers (2024), p. 1 | DOI:10.1007/978-981-99-3516-1_98-1
  • Neda NIKNAM; Nader NOROOZİ PESYAN GO@dopamine-Cu as a Green Nanocatalyst for the Efficient Synthesis of Fully Substituted Dihydrofuran-2(5H)-ones, Journal of the Turkish Chemical Society Section A: Chemistry, Volume 11 (2024) no. 1, p. 233 | DOI:10.18596/jotcsa.1264129
  • Mehdi Khalaj; Maryam Zarandi; Malihe Samadi Kazemi; Seyed Mahmoud Musavi; Johannes Hohnsen; Axel Klein Multi-Component Syntheses of Spiro[furan-2,3′-indoline]-3-carboxylate Derivatives Using Ionic Liquid Catalysts, Molecules, Volume 29 (2024) no. 6, p. 1223 | DOI:10.3390/molecules29061223
  • Hossein Rostamizadeh; Abbas Rahmati Trans‐metallated chlorophyllin by copper supported on silica‐coated magnetic nanoparticles as an efficient and green catalyst for the synthesis of furan‐2(5H)‐ones, Applied Organometallic Chemistry, Volume 37 (2023) no. 4 | DOI:10.1002/aoc.7045
  • Rathinam Ramesh; Rajendran Abinaya Glycerol Derived carbon-SO3H: A Green Recyclable Catalyst toward the Access of Functionalised 2,5-Dihydrofuran-3-Carboxylates, Polycyclic Aromatic Compounds, Volume 43 (2023) no. 2, p. 1722 | DOI:10.1080/10406638.2022.2036772
  • Samira Noori; Ramin Ghorbani-Vaghei; Reza Azadbakht; Zahra Karamshahi; Mostafa Koolivand Graphene-oxide/schiff base N2O4 ligand-palladium: A new catalyst for the synthesis of furan derivatives, Journal of Molecular Structure, Volume 1250 (2022), p. 131849 | DOI:10.1016/j.molstruc.2021.131849
  • Ellahe Sabbaghnasab; Enayatollah Sheikhhosseini Nio Nanoparticles: A Highly Efficient Catalyst for the One-Pot Three- Component Synthesis of Pyrano [2, 3-D] Pyrimidine Derivatives in Green Reaction Media, Letters in Organic Chemistry, Volume 19 (2022) no. 7, p. 576 | DOI:10.2174/1570178618666211001115655
  • Feng Hao; Xia Wang; Majid Mohammadnia Preparation and Characterization of a Novel Magnetic Nano Catalyst for Synthesis and Antibacterial Activities of Novel Furan-2(5H)-Ones Derivatives, Polycyclic Aromatic Compounds, Volume 42 (2022) no. 7, p. 4255 | DOI:10.1080/10406638.2021.1887298
  • Seyyed Mohammad Ebrahimi; Baram Hamah-Ameen; Ali Kareem Abbas; Hossein Shahbazi-Alavi; Homayoun Gholamzadeh; Javad Safaei-Ghomi Synthesis of 5-Oxo-2,5-Dihydro-3-Furancarboxylates Using Nano-CuO, Polycyclic Aromatic Compounds, Volume 42 (2022) no. 9, p. 6389 | DOI:10.1080/10406638.2021.1982732
  • Rahimeh Hajinasiri Acetylenic Esters in Organic Synthesis, Synlett, Volume 33 (2022) no. 13, p. 1227 | DOI:10.1055/s-0040-1719916
  • Seyyed Mohammad Ebrahimi; Ali Kareem Abbas; Hossein Shahbazi-Alavi; Javad Safaei-Ghomi Synthesis of 2,5-dihydro-3-furans using nano-CoAl2O4, Research on Chemical Intermediates, Volume 47 (2021) no. 8, p. 3189 | DOI:10.1007/s11164-021-04463-1
  • Zahra Karamshahi; Ramin Ghorbani‐Vaghei Efficient synthesis of multiply substituted furans using BF@Propyl/dopamine/Pd as a green catalyst, Applied Organometallic Chemistry, Volume 34 (2020) no. 4 | DOI:10.1002/aoc.5530
  • Moumita Saha; Asish R. Das Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium, Current Green Chemistry, Volume 7 (2020) no. 1, p. 53 | DOI:10.2174/2213346107666200218122718
  • Naglaa F. H. Mahmoud; Ahmed M. El‐Saghier Multi‐component Reactions, Solvent‐free Synthesis of Substituted Pyrano‐pyridopyrimidine under Different Conditions Using ZnO Nanoparticles, Journal of Heterocyclic Chemistry, Volume 56 (2019) no. 6, p. 1820 | DOI:10.1002/jhet.3556
  • Hossein Shahbazi-Alavi; Sheida Khojasteh-Khosro; Javad Safaei-Ghomi; Seyed Hadi Nazemzadeh Sonosynthesis of furan-2(5H)-ones using nanosilica-tethered polyhedral oligomeric silsesquioxanes, Journal of the Iranian Chemical Society, Volume 16 (2019) no. 11, p. 2433 | DOI:10.1007/s13738-019-01711-5
  • Mehdi Abaszadeh; Seyyed Jalal Roudbaraki; Majid Ghashang Effect of Liquid Glass Composition on the Catalytic Preparation of Pyrano[2,3-d]pyrimidine Derivatives, Organic Preparations and Procedures International, Volume 51 (2019) no. 3, p. 255 | DOI:10.1080/00304948.2019.1600124
  • Hamideh Ahankar; Ali Ramazani; Nadia Fattahi; Katarzyna Ślepokura; Tadeusz Lis; Pegah Azimzadeh Asiabi; Vasyl Kinzhybalo; Younes Hanifehpour; Sang Woo Joo Tetramethylguanidine-functionalized silica-coated iron oxide magnetic nanoparticles catalyzed one-pot three-component synthesis of furanone derivatives, Journal of Chemical Sciences, Volume 130 (2018) no. 12 | DOI:10.1007/s12039-018-1572-7
  • Setareh Sheikh; Abbas Fazlinia Preparation of Pyrido[2,3‐b]indole Derivatives Using Silicates of Group 1 and 2 Metals, Journal of Heterocyclic Chemistry, Volume 55 (2018) no. 10, p. 2291 | DOI:10.1002/jhet.3284
  • Mohammad Mehdi Khodaei; Abdolhamid Alizadeh; Maryam Haghipour Supported 4-carboxybenzyl sulfamic acid on magnetic nanoparticles as a recoverable and recyclable catalyst for synthesis of 3,4,5-trisubstituted furan-2(5H)-one derivatives, Journal of Organometallic Chemistry, Volume 870 (2018), p. 58 | DOI:10.1016/j.jorganchem.2018.06.012
  • Farzaneh Ghayour; Mohammad Reza Mohammad Shafiee; Majid Ghashang ZnO-CeO2 nanocomposite: efficient catalyst for the preparation of thieno[2,3-d]pyrimidin-4(3H)-one derivatives, Main Group Metal Chemistry, Volume 0 (2018) no. 0 | DOI:10.1515/mgmc-2017-0038
  • Abbas Fazlinia; Setareh Sheikh Metal silicates: efficient catalysts for the three-component preparation of 2-amino-5-oxo-4-aryl-4,5-dihydroindeno[1,2-b]pyran-3-carbonitrile derivatives, Main Group Metal Chemistry, Volume 41 (2018) no. 3-4, p. 47 | DOI:10.1515/mgmc-2017-0042
  • Majid Ghashang; Sadaf Janghorban; Seyyed Jalal Roudbaraki Synthesis of 3,4,5-substituted furan-2(5H)-ones using Al-doped ZnO nanostructure, Research on Chemical Intermediates, Volume 44 (2018) no. 9, p. 5013 | DOI:10.1007/s11164-018-3406-0
  • Rathinam Ramesh; Durairaj Meignanasundar; Appaswami Lalitha An Organocatalytic Novel Synthesis of Polyfunctionalized Bis-2,5-dihydrofuran-3-carboxylates via Domino-MCR Strategy, ChemistrySelect, Volume 2 (2017) no. 31, p. 10210 | DOI:10.1002/slct.201701786
  • Prasanna Nithiya Sudhan; Majid Ghashang; Syed Sheik Mansoor Phthalimide- N -sulfonic acid as a recyclable organocatalyst for an efficient and eco-friendly synthesis of 2-(2-oxo-2 H -chromen-3-yl)-4-aryl-indeno[1,2- b ]pyridine-5-one derivatives, Journal of Saudi Chemical Society, Volume 21 (2017) no. 7, p. 776 | DOI:10.1016/j.jscs.2015.09.005
  • Nafisehsadat Sheikhan-Shamsabadi; Majid Ghashang Nano-basic silica as an efficient catalyst for the multi-component preparation of pyrano[2,3-d]pyrimidine derivatives, Main Group Metal Chemistry, Volume 40 (2017) no. 1-2 | DOI:10.1515/mgmc-2016-0034
  • Javad Safaei-Ghomi; Alireza Hatami; Hossein Shahbazi-Alavi A Highly Flexible Green Synthesis of 3,4,5-Substituted Furan-2(5H)-ones Using Nano-CdZr4(PO4)6as Catalyst under Microwave Irradiation, Polycyclic Aromatic Compounds, Volume 37 (2017) no. 5, p. 407 | DOI:10.1080/10406638.2015.1129975
  • Sakineh Asghari; Majid Mohammadnia Preparation and characterization of sulfamic acid pyridinium chloride-functionalized Fe3O4 nanoparticles as a novel magnetic catalyst for synthesis of novel N-coumarin-2-furanones, Research on Chemical Intermediates, Volume 43 (2017) no. 12, p. 7193 | DOI:10.1007/s11164-017-3068-3
  • Majid Ghashang; Sai Guhanathan; S. Sheik Mansoor Nano Fe2O3@SiO2–SO3H: efficient catalyst for the multi-component preparation of indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine-2,4,6(3H)-trione derivatives, Research on Chemical Intermediates, Volume 43 (2017) no. 12, p. 7257 | DOI:10.1007/s11164-017-3073-6
  • Nourallah Hazeri; Razieh Doostmohammadi; Belgheis Adrom; Mojtaba Lashkari; Malek Taher Maghsoodlou Extract of Barberry as Entirely Green Catalyst for the Synthesis of Structurally Diverse 3,4,5-Substituted Furan-2(5H)-Ones, Chemistry Journal of Moldova, Volume 11 (2016) no. 2, p. 68 | DOI:10.19261/cjm.2016.11(2).02
  • Majid Ghashang ZnAl2O4–Bi2O3 composite nano-powder as an efficient catalyst for the multi-component, one-pot, aqueous media preparation of novel 4H-chromene-3-carbonitriles, Research on Chemical Intermediates, Volume 42 (2016) no. 5, p. 4191 | DOI:10.1007/s11164-015-2269-x
  • Farzaneh Bahramian; Abbas Fazlinia; Syed Sheik Mansoor; Majid Ghashang; Fateme Azimi; Mohammad Najafi Biregan Preparation of 3,4,5-substituted furan-2(5H)-ones using HY Zeolite nano-powder as an efficient catalyst, Research on Chemical Intermediates, Volume 42 (2016) no. 8, p. 6501 | DOI:10.1007/s11164-016-2476-0
  • Belghais Adrom; Malek Taher Maghsoodlou; Mojtaba Lashkari; Nourallah Hazeri; Razieh Doostmohammadi Efficient One-Pot Three-Component Synthesis of 3,4,5-Substituted Furan-2(5H)-ones Catalyzed Watermelon Juice, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Volume 46 (2016) no. 3, p. 423 | DOI:10.1080/15533174.2014.988230
  • Javad Safaei-Ghomi; Elham Heidari-Baghbahadorani; Hossein Shahbazi-Alavi SnO nanoparticles: a robust and reusable heterogeneous catalyst for the synthesis of 3,4,5-substituted furan-2(5H)-ones, Monatshefte für Chemie - Chemical Monthly, Volume 146 (2015) no. 1, p. 181 | DOI:10.1007/s00706-014-1281-y
  • Mehdi Shahraki; Sayyed Mostafa Habibi-Khorassani; Maryam Dehdab Effect of different substituents on the one-pot formation of 3,4,5-substituted furan-2(5H)-ones: a kinetics and mechanism study, RSC Advances, Volume 5 (2015) no. 65, p. 52508 | DOI:10.1039/c5ra09717g
  • Sajjad Salahi; Malek Taher Maghsoodlou; Nourallah Hazeri; Fahimeh Movahedifar; Razieh Doostmohammadi; Mojtaba Lashkari Acidic ionic liquid N-methyl 2-pyrrolidonium hydrogen sulfate as an efficient catalyst for the one-pot multicomponent preparation of 3,4,5-substituted furan-2(5H)-ones, Research on Chemical Intermediates, Volume 41 (2015) no. 9, p. 6477 | DOI:10.1007/s11164-014-1754-y

Cité par 37 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: