Plan
Comptes Rendus

2D sheet frameworks constructed from a diruthenium paddlewheel complex and hexamolybdenum halide clusters
Comptes Rendus. Chimie, Volume 8 (2005) no. 11-12, pp. 1760-1765.

Résumés

The reaction of [Ru2(O2CCMe3)4(H2O)2]BF4 with (nBu4N)2[(Mo6Xi8)Xa6] (Xi, Xa = Cl, Cl; Cl, Br; Br, Cl) in CH2Cl2 afforded 2D sheet structure of [{Ru2(O2CCMe3)4}2{(Mo6Xi8)Xa6}]n·2n CH2Cl2 (Xi, Xa = Cl, Cl (1·2 CH2Cl2); Cl, Br (2·2 CH2Cl2); Br, Cl (3·2 CH2Cl2)). 1·2 CH2Cl2 and 2·2 CH2Cl2 are crystallized in isostructural triclinic unit cells and 3·2 CH2Cl2 in a monoclinic unit cell. All structures have 2D sheet of square lattices with molybdenum clusters as corners and ruthenium complexes as edges. In 1·2 CH2Cl2 and 2·2 CH2Cl2, all the Mo6 and Ru2 units in a sheet lie in a plane. Diruthenium units in 3·2 CH2Cl2 are repeatedly sited above and below the plane of Mo6 units along the b axis. Then the sheet structure of 1·2 CH2Cl2 and 2·2 CH2Cl2 is flat, while that of 3·2 CH2Cl2 is waved. .

La réaction de [Ru2(O2CCMe3)4(H2O)2]BF4 avec (nBu4N)2[(Mo6X8)X′6] (X, X′ = Cl, Cl; Cl, Br; Br, Cl) dans CH2Cl2 a conduit à la structure en feuillet 2D de [{Ru2(O2CCMe3)4}2{(Mo6X8)X'6}]n·2n CH2Cl2 (X, X′ = Cl, Cl (1·2 CH2Cl2); Cl, Br (2·2 CH2Cl2); Br, Cl (3·2 CH2Cl2)). 1·2 CH2Cl2 et 2·2 CH2Cl2 cristallisent dans des mailles tricliniques isostructurales, tandis que 3·2 CH2Cl2 cristallize dans une maille monoclinique. Toutes les structures présentent des feuillets 2D de réseaux carrés formés par les clusters de molybdène situés aux coins du réseau et les complexes de ruthenium formant les côtés. Dans 1·2 CH2Cl2 et 2·2 CH2Cl2, tous les motifs Mo6 et Ru2 d'un feuillet sont situés dans un plan. Dans 3·2 CH2Cl2, les motifs diruthenium sont situés alternativement au-dessus et en dessous du plan formé par les motifs Mo6 selon l'axe b. Il en résulte que, dans les structures de 1·2 CH2Cl2 et 2·2 CH2Cl2, les feuillets sont plans, tandis qu'ils sont ondulés dans 3·2 CH2Cl2. .

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2005.03.018
Keywords: Diruthenium complexes, Molybdenum halide cluster, Metal–metal bonds, X-ray structures, 2-Dimensional structures
Mots clés : Complexes de diruthénium, Halogénures à clusters de molybdène, Liaisons métal–métal, Structures par diffraction X, Structures bidimensionnelles

Tomonori Sugiura 1 ; Koji Ota 1 ; Masahiro Ebihara 1 ; Takashi Kawamura 1

1 Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
@article{CRCHIM_2005__8_11-12_1760_0,
     author = {Tomonori Sugiura and Koji Ota and Masahiro Ebihara and Takashi Kawamura},
     title = {2D sheet frameworks constructed from a diruthenium paddlewheel complex and hexamolybdenum halide clusters},
     journal = {Comptes Rendus. Chimie},
     pages = {1760--1765},
     publisher = {Elsevier},
     volume = {8},
     number = {11-12},
     year = {2005},
     doi = {10.1016/j.crci.2005.03.018},
     language = {en},
}
TY  - JOUR
AU  - Tomonori Sugiura
AU  - Koji Ota
AU  - Masahiro Ebihara
AU  - Takashi Kawamura
TI  - 2D sheet frameworks constructed from a diruthenium paddlewheel complex and hexamolybdenum halide clusters
JO  - Comptes Rendus. Chimie
PY  - 2005
SP  - 1760
EP  - 1765
VL  - 8
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crci.2005.03.018
LA  - en
ID  - CRCHIM_2005__8_11-12_1760_0
ER  - 
%0 Journal Article
%A Tomonori Sugiura
%A Koji Ota
%A Masahiro Ebihara
%A Takashi Kawamura
%T 2D sheet frameworks constructed from a diruthenium paddlewheel complex and hexamolybdenum halide clusters
%J Comptes Rendus. Chimie
%D 2005
%P 1760-1765
%V 8
%N 11-12
%I Elsevier
%R 10.1016/j.crci.2005.03.018
%G en
%F CRCHIM_2005__8_11-12_1760_0
Tomonori Sugiura; Koji Ota; Masahiro Ebihara; Takashi Kawamura. 2D sheet frameworks constructed from a diruthenium paddlewheel complex and hexamolybdenum halide clusters. Comptes Rendus. Chimie, Volume 8 (2005) no. 11-12, pp. 1760-1765. doi : 10.1016/j.crci.2005.03.018. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2005.03.018/

Version originale du texte intégral

1 Introduction

One-D to 3D polymerized structures of transition metal complexes have received much attention for the last decade. Not only mononuclear complexes but also various types of clusters, di-, tri-, tetra-, and hexanuclear ones, were used as building blocks. Preparation of a novel polymeric structure with paddlewheel complexes is one of our recent efforts. Paddlewheel complex is a useful building block, because it has rich redox chemistry with various electronic states depending on its bridging ligands, and strained bonding direction to its axial sites. We have synthesized 1 to 3D structures of halide-bridged rhodium or ruthenium paddlewheel complexes. The reaction of a dirhodium or diruthenium cation with halide anion gave only 1D chain structure [1–3]. The reaction of a mixture of cation and neutral complexes with halide linker afforded a 2D structure of [{Rh2(acam)4}33-Cl)2]n·4 n H2O [4] and a 3D structure of [{Rh2(acam)4}24-I)]n·6 n H2O [5]. For the former structure, removal of the crystalline water molecules improved its electric conductivity. On the other hand, the latter has 105 higher conductivity in the hydrated form than in the partially dehydrated one. Other than halide bridges, only a few 2D and 3D polymer structures of paddlewheel dinuclear complexes with organic or anionic mononuclear complex linkers have been reported [6–9].

Hexametal cluster is also a good building block to make multi-dimensional frameworks, because they have a variety of cluster charges and electronic states with M6Z8 core (M = Mo, W, Re; Z = halide, chalocogenide). Some network structures with Re6Z8n+ (Z = S, Se, Te) [10–12] or W6S8 [13] have been reported in the recent years. A novel framework constructed with paddlewheel complexes and hexametal clusters may lead to new physical properties and/or porosity. In this paper, we report synthesis and two types of crystal structures of [{Ru2(O2CCMe3)4}2{(Mo6Xi8)Xa6}] (Xi, Xa= Cl, Cl; Cl, Br; Br, Cl).

2 Experimental

2.1 Synthesis

2.1.1 General methods

[Ru2(O2CCMe3)4Cl(H2O)] was prepared according to a literature procedure [14] and [Ru2(O2CCMe3)4(H2O)2]BF4 was synthesized from it by a modification of the method of Barral and coworkers for [Ru2(O2CC6H4-p-CMe3)4(THF)2]PF6 [15]. (nBu4N)2[(Mo6X8)X′6] (X = Cl, Br; X′ = Cl, Br; I) was obtained by the reaction of Mo6X12 with Bun4NX′ in HX′. Dichloromethane, n-hexane and acetonitrile were distilled from CaH2 before use.

2.1.2 [{Ru2(O2CCMe3)4}2{(Mo6Cl8)Cl6}] (1)

A CH2Cl2 solution of (nBu4N)2[(Mo6Cl8)Cl6] (0.026 g, 0.017 mmol) was added to a CH2Cl2 solution of [Ru2(O2CCMe3)4(H2O)]PF6 (0.024 g, 0.033 mmol). Reddish-brown powder was collected, washed with CH2Cl2 and dried in vacuo. Yield 0.026 g (69%). Anal. Calc. for C40H72Cl14Mo6O16Ru4; C, 21.02; H, 3.18%. Found: C, 21.02; H, 2.96%.

2.1.3 [{Ru2(O2CCMe3)4}2{(Mo6Cl8)Br6}] (2)

A CH2Cl2 solution of (nBu4N)2[(Mo6Cl8)Br6] (0.031 g, 0.017 mmol) was added to a CH2Cl2 solution of [Ru2(O2CCMe3)4(H2O)]PF6 (0.022 g, 0.030 mmol). Reddish-brown powder was collected, washed with CH2Cl2 and dried in vacuo. Yield 0.024 g (62%). Anal. Calc. for C40H72Br6Cl8Mo6O16Ru4; C, 18.83; H, 2.84%. Found: C, 18.89; H, 2.67%.

2.1.4 [{Ru2(O2CCMe3)4}2{(Mo6Br8)Cl6}] (3)

A CH2Cl2 solution of (nBu4N)2[(Mo6Br8)Cl6] (0.020 g, 0.011 mmol) was added to a CH2Cl2 solution of [Ru2(O2CCMe3)4(H2O)]PF6 (0.016 g, 0.022 mmol). Reddish-brown powder was collected, washed with CH2Cl2 and dried in vacuo. Yield 0.020 g (72%). Anal. Calc. for C40H72Br8Cl6Mo6O16Ru4; C, 18.19; H, 2.75%. Found: C, 17.93; H, 2.74%.

2.2 X-ray structure determination

Crystals of 1·CH2Cl2, 2·CH2Cl2 and 3·CH2Cl2 were obtained as follows: (nBu4N)2[(Mo6Xi8)Xa6] was placed in a 6-mm-diameter glass tube and CH2Cl2 was gently added to it. Tightly rolled filter paper was put into the tube just above the solution and then a CH2Cl2 solution of [Ru2(O2CCMe3)4(H2O)]PF6 was layered. After standing at 15 °C for 3 days, brown crystals were obtained. Diffraction measurements were carried out on a Rigaku AFC7R Mercury CCD diffractometer with graphite monochromated Mo Kα radiation (λ = 0.71069 Å). Because crystals of 1·2 CH2Cl2, 2·2 CH2Cl2 and 3·2 CH2Cl2 easily lost CH2Cl2 molecules in a crystal, reflection data were collected at low temperature using a Rigaku XR-TCS-2-050 temperature controller. All structures were solved and refined using the teXsan® crystallographic software package. Scattering factors for neutral atoms were from Cromer and Waber [16] and anomalous dispersion [17] was used. A numerical absorption correction [18] was applied. The structures were solved by direct methods SIR92 [19] and expanded by DIRDIF [20]. Full matrix least-squares refinement was employed. Final least square cycle included non-hydrogen atoms with anisotropic thermal parameters except disordered t-butyl groups were refined as rigid groups. Hydrogen atoms are not included in the refinement. Crystallographic data are summarized in Table 1.

Table 1

Crystallographic data of 1·2 CH2Cl2, 2·2 CH2Cl2 and 3·2 CH2Cl2

1·2 CH2Cl22·2 CH2Cl23·2 CH2Cl2
Chemical formulaC42H76Cl18Mo6O16Ru4C42H76Br6Cl12Mo6O16Ru4C42H76Br8Cl10Mo6O16Ru4
Formula weight2455.132721.832810.73
Crystal systemtriclinictriclinicmonoclinic
Space groupP1- (No. 2)P1- (No. 2)P21/n (No. 14)
a (Å)14.551 (3)14.757 (3)15.374 (6)
b (Å)14.765 (3)14.946 (3)17.851 (7)
c (Å)20.559 (5)20.632 (5)15.364 (6)
α (°)108.656 (5)109.179 (5)
β (°)104.429 (5)104.016 (7)91.247 (5)
γ (°)91.671 (10)91.26 (1)
V3)4024 (1)4144 (1)4215 (2)
Z222
d (calcd) (g cm–3)2.0262.1812.214
μ (mm–1)2.2754.9175.721
T (°C)–40–100–40
Reflections collected332283446634969
Reflections independent18262188699640
Reflections with I > 2 σ(I)14028131946003
Rint0.0320.0440.086
R, Rwa0.047, 0.1060.053, 0.1070.108, 0.287
Residual (min, max) (e Å−3)–1.29, 1.77–1.93, 2.14–4.48, 2.70
Goodness-of-fit1.311.131.44

a R = Σ ||Fo| – |Fc||/Σ |Fo| for data with I > 2 σ(I), Rw = [Σ w (Fo2Fc2)2w Fo4]1/2 for all data.

3 Results and discussion

In a preliminary experiment, we have tried to make crystals of [{Ru2(O2CMe)4}2{(Mo6Cl8)Cl6}] in acetonitrile. Mixing of solutions of [Ru2(O2CMe)4]PF6 and (nBu4N)2[(Mo6Cl8)Cl6] did not precipitate crystals. Although evaporation of the solution afforded brown crystals, they include ruthenium complexes with axial acetonitrile ligands and discrete molybdenum clusters. In dichloromethane, reddish-brown powder was precipitated immediately after mixing of solutions of [Ru2(O2CCMe3)4(H2O)2]BF4 and (nBu4N)2[(Mo6Cl8)Cl6]. To make good crystals, very slow mixing of the solutions is needed.

A sheet structure of 1 in 1·2 CH2Cl2 is shown in Fig. 1. Structure of 2·2 CH2Cl2 is isostructural with 1·2 CH2Cl2. There are four independent ruthenium complexes and two independent molybdenum clusters in a unit cell, all of which are at inversion centers (Mo6: (0, 0, 0) and (0.5, 0, 0.5), Ru2: (0.5, 0, 0), (0, 0.5, 0), (0, 0, 0.5) and (0.5, 0.5, 0.5)). In each of two independent 2D sheets at c = 0 and 0.5, the centers of Ru2 complexes and those of Mo6 clusters are located exactly in the plane. The sheet is made by squares of which corners are molybdenum clusters and edges are ruthenium complexes. Each hexamolybdenum cluster linked to four ruthenium complexes by axial halide ligands. A couple of axial ligands remain as terminal ones. The solvating dichloromethane molecules are sited between the sheets, which are easily lost even at room temperature. The selected distances and angles are summarized in Tables 2 and 3. The distances and angles in two independent sheets are almost identical. The average Ru–Ru distances (1·2 CH2Cl2: 2.272 (1) Å, 2·2 CH2Cl2: 2.274 (3) Å) are in the range of those observed in other Ru2(O2CCMe3)4+ complexes [21–23]. The Mo–Mo distances in 1·2 CH2Cl2 and 2·2 CH2Cl2 (2.607 (5) and 2.608 (5) Å, respectively) are similar to other hexamolybdenum clusters with capping chloride [24,25]. The ruthenium–halogen distances (2.622 (10) Å for 1·2 CH2Cl2 and 2.737 (15) Å for 2·2 CH2Cl2) are similar to those observed in diruthenium halide-bridged chain structures [26,27]. The bond distances between molybdenum and bridging axial halides for 1·2 CH2Cl2 and 2·2 CH2Cl2 are 2.480 (19) and 2.613 (21) Å, respectively, which are longer than those between molybdenum and terminal one, 2.395 (1) and 2.548 (4) Å, respectively. These elongated molybdenum–halide distances are also observed in MoCl2 (= [(Mo6Cl8)Cl4/2Cl2]) in which each Mo6Cl8 unit connects to the four neighboring ones using four outer-chloride as bridges. The Ru–Br–Mo angles for 2 (122.73 (3)–126.24 (3)°) are slightly smaller than the Ru–Cl–Mo angles for 1·2 CH2Cl2 (127.08 (6)–131.34 (6)°), which is due to the long Ru–X distance in 2·2 CH2Cl2.

Fig. 1

Crystal structure of 1·2 CH2Cl2. (a) Top view and (b) side view of the 2D sheet structure. Capping chloro ligands of the hexamolybdenum cluster and methyl carbon atoms are omitted for clarity.

Table 2

Selected bond distances (Å) and angles (°) of 1·2 CH2Cl2a

Ru1–Ru1I2.2734 (9)Mo2–Mo3V2.6077 (6)
Ru2–Ru2II2.2715 (8)Mo4–Mo52.6026 (6)
Ru3–Ru3III2.2709 (9)Mo4–Mo5VI2.6116 (7)
Ru4–Ru4IV2.2740 (9)Mo4–Mo62.6085 (6)
Ru1–Cl52.616 (1)Mo4–Mo6VI2.6004 (7)
Ru2–Cl62.616 (1)Mo5–Mo62.6143 (6)
Ru3–Cl122.619 (1)Mo5–Mo6VI2.6087 (6)
Ru4–Cl132.637 (1)Mo1–Cl52.471 (1)
Mo1–Mo22.6135 (7)Mo2–Cl62.482 (1)
Mo1–Mo2V2.6007 (6)Mo3–Cl72.396 (2)
Mo1–Mo32.6071 (6)Mo4–Cl122.460 (1)
Mo1–Mo3V2.6044 (7)Mo5–Cl132.505 (1)
Mo2–Mo32.6095 (6)Mo6–Cl142.394 (2)
Ru1I–Ru1–Cl5176.25 (4)Ru1–Cl5–Mo1127.71 (5)
Ru2II–Ru2–Cl6176.82 (5)Ru2–Cl6–Mo2131.34 (6)
Ru3III–Ru3–Cl12173.32 (4)Ru3–Cl12–Mo4127.08 (6)
Ru4IV–Ru4–Cl13174.52 (5)Ru4–Cl13–Mo5130.44 (6)

a I: 0.5 – x, –y, –z, II: –x, 0.5 – y, –z, III: –x, –y, 0.5 – z, IV: 0.5 – x, 0.5 – y, 0.5 – z, V: –x, –y, –z, VI: 0.5 – x, –y, 0.5 – z.

Table 3

Selected bond distances (Å) and angles (°) of 2·2 CH2Cl2a

Ru1–Ru1I2.274 (1)Mo2–Mo3V2.6117 (8)
Ru2–Ru2II2.271 (1)Mo4–Mo52.6021 (8)
Ru3–Ru3III2.273 (1)Mo4–Mo5VI2.6105 (8)
Ru4–Ru4IV2.278 (1)Mo4–Mo62.6088 (7)
Ru1–Br12.7207 (9)Mo4–Mo6VI2.6012 (9)
Ru2–Br22.7309 (9)Mo5–Mo62.6155 (8)
Ru3–Br42.7394 (9)Mo5–Mo6VI2.6108 (8)
Ru4–Br52.7562 (9)Mo1–Br12.602 (1)
Mo1–Mo22.6113 (8)Mo2–Br22.6119 (9)
Mo1–Mo2V2.6002 (8)Mo3–Br32.5505 (9)
Mo1–Mo32.6092 (8)Mo4–Br42.594 (1)
Mo1–Mo3V2.6050 (9)Mo5–Br52.6422 (9)
Mo2–Mo32.6097 (8)Mo6–Br62.5455 (9)
Ru1I–Ru1–Br1174.56 (4)Ru1–Br1–Mo1123.60 (3)
Ru2II–Ru2–Br2177.61 (4)Ru2–Br2–Mo2126.24 (3)
Ru3III–Ru3–Br172.45 (4)Ru3–Br–Mo4122.73 (3)
Ru4IV–Ru4–Br5176.24 (4)Ru4–Br5–Mo5125.39 (3)

a I: 0.5 – x, –y, –z, II: –x, 0.5 – y, –z, III: –x, –y, 0.5 – z, IV: 0.5 – x, 0.5 – y, 0.5 – z, V: –x, –y, –z, VI: 0.5 – x, –y, 0.5 – z.

Crystals of 3·2 CH2Cl2 includes another type of sheet structure that is shown in Fig. 2. The structure refinement is relatively poor due to the low quality of the crystals of 3·2 CH2Cl2. However, it is sufficient to discuss the main feature of the structure. In this structure, the sheet extended on a dihedral plane between a and c axes is also built by squares which consist of four molybdenum clusters as corners and four ruthenium complexes as edges. In the structure of 1·2 CH2Cl2 and 2·2 CH2Cl2, the sheet is flat, while in the structure of 3·2 CH2Cl2, Ru2 complexes are repeatedly sited above and below a plane made up of Mo6 clusters, along b-axis. It means that the sheet is waved. Selected bond distances and angles are listed in Table 4. Mo–Mo distances are slightly elongated from those in 1·2 CH2Cl2 and 2·2 CH2Cl2 and are similar to other bromide-capped clusters [28]. The Ru–Ru distance is very similar to those observed in 1·2 CH2Cl2 and 2·2 CH2Cl2. A largely different structural parameter from 1·2 CH2Cl2 and 2·2 CH2Cl2 is only the Mo–Cl–(Ru2)–Cl–Mo torsion angle which is 180° in 1·2 CH2Cl2 and 2·2 CH2Cl2 and 53.6 (3)° in 3·2 CH2Cl2.

Fig. 2

Crystal structure of 3·2 CH2Cl2. (a) Top view and (b) side view of the 2D sheet structure. Capping bromo ligand of the hexamolybdenum cluster and methyl carbon atoms are omitted for clarity.

Table 4

Selected bond distances (Å) and angles (°) of 3·CH2Cl2a

Ru1–Ru22.273 (2)Mo1–Mo3′2.631 (2)
Ru1–Cl12.598 (5)Mo2–Mo32.629 (2)
Ru2–Cl2”2.580 (5)Mo2–Mo3′2.626 (2)
Mo1–Mo22.623 (2)Mo1–Cl12.450 (4)
Mo1–Mo2′2.618 (2)Mo2–Cl22.459 (5)
Mo1–Mo32.623 (2)Mo3–Cl32.425 (4)
Ru2–Ru1–Cl1170.7 (1)Ru1–Cl1–Mo1128.7 (2)
Ru1–Ru2–Cl2”170.7 (1)Ru2′–Cl2–Mo2128.6 (2)

a ′: 1 – x, –y, 1–z, ′′–x, 0.5 – y, –z.

Although the reaction of [Ru2(O2CCMe3)4(H2O)2]BF4 with other Mo6 clusters (Xi, Xa = Cl, I; Br, Br; Br, I) gave only very small crystals, cell constants of the crystals suggest that these complexes may have a similar flat sheet structure to 1·2 CH2Cl2 and 2·2 CH2Cl21. In the structure of Cs2[{Fe(H2O)2}{Re6S8(CN)6}] [29], sheet structure of [{Fe(H2O)2}{Re6S8(CN)6}]2– in which square is made up of alternating Fe ion and Re clusters is waved as the Fe ions are up and down from a plane of the Re6 clusters. An amplitude and a period of the wave in this complex are 1.65 and 18.55 Å, respectively, while those of 3· CH2Cl2 are 2.27 and 17.85 Å, respectively. The difference of the amplitude is due to the bent Ru–Br–Mo angle compared with the Fe–N–C one.

In summary, two types of structures of [{Ru2(O2CCMe3)4}2{(Mo6Xi8)Xa6}], flat and waved sheets are obtained by mixing of the solutions of [Ru2(O2CCMe3)4(H2O)2]+ and [(Mo6Xi8)Xa6}]2–. Unfortunately all crystals degrade by a loss of crystalline dichloromethane molecules. We are investigating to make stable crystals with other paddlewheel complexes and/or molybdenum clusters.

4 Supplementary material

Crystallographic data (excluding structure factors) for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC Nos. 247469–247471 for 1·2 CH2Cl2, 2·2 CH2Cl2 and 3·2 CH2Cl2. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [Fax: +44 1223 33 6033; E-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk].

1 Cell constant of the crystals obtained by the reaction of [Ru2(O2CCMe3)4(H2O)2]BF4 with (nBu4N)2[(Mo6Xi8)Xa6] are as follows: Xi, Xa = Cl, I; a = 15.217 (10), b = 15.288 (10), c = 21.14 (1) Å, α = 108.961 (7), β = 104.147 (8), γ = 90.594 (5)°, V = 4487 (4) Å3. Xi, Xa = Br, Br; a = 14.844 (7), b = 14.969 (7), c = 20.65 (1) Å, α = 107.85 (1), β = 104.42 (2), γ = 91.25 (3)°, V = 4205 (3) Å3. Xi, Xa = Br, I; a = 15.25 (1), b = 15.34 (1), c = 21.02 (2) Å, α = 109.45 (3), β = 103.72 (3), γ = 91.14 (6)°, V = 4477 (6) Å3.


Bibliographie

[1] Z. Yang; T. Fujinami; M. Ebihara; K. Nakajima; H. Kitagawa; T. Kawamura Chem. Lett. (2000), p. 1006

[2] Z. Yang; M. Ebihara; T. Kawamura; T. Okubo; T. Mitani Inorg. Chim. Acta., 321 (2001), p. 97

[3] Y. Takazaki, S. Kawasaki, M. Ebihara, K. Inoue, K. Sugimoto, M. Nakano, T. Kawamura, Inorg. Chem. (submitted).

[4] Y. Takazaki; Z. Yang; M. Ebihara; K. Inoue; T. Kawamura Chem. Lett., 32 (2003), p. 120

[5] Y. Fuma; M. Ebihara; S. Kutsumizu; T. Kawamura J. Am. Chem. Soc., 126 (2004), p. 12238

[6] F.A. Cotton; Y. Kim J. Am. Chem. Soc., 115 (1993), p. 8511

[7] J. Lu; W.T.A. Harrison; A.J. Jacobson Chem. Commun. (1996), p. 399

[8] H. Miyasaka; C.S. Campos-Fernandez; R. Clerac; K.R. Dunbar Angew. Chem. Int. Ed. Engl., 39 (2000), p. 3831

[9] D. Yoshioka; M. Handa; H. Azuma; M. Mikuriya; I. Hiromitsu; K. Kasuga Mol. Cryst. Liquid Cryst., 342 (2000), p. 133

[10] M.V. Bennett; L.G. Beauvais; M.P. Shores; J.R. Long J. Am. Chem. Soc., 123 (2001) (8022 and references therein))

[11] N.G. Naumov; S.B. Artemkina; V.E. Fedorov; D.V. Soldatov; J.A. Ripmeester Chem. Commun. (2001) (571 and references therein)

[12] Y. Kim; S.-M. Park; S.-J. Kim Inorg. Chem. Commun., 5 (2002) (592 and references therein)

[13] S. Jin; F.J. DiSalvo Chem. Mater., 14 (2002), p. 3448

[14] M.C. Barral; R. Jimenez-Aparicio; J.L. Priego; E.C. Royer; M.J. Saucedo; F.A. Urbanos; U. Amador J. Chem. Soc., Dalton Trans. (1995), p. 2183

[15] M.C. Barral; R. Jimenez-Aparicio; J.L. Priego; E.C. Royer; E. Gutierrez-Puebla; C.R. Valero Polyhedron, 11 (1992), p. 2209

[16] D.T. Cromer; J.T. Waber International Tables for X-ray Crystallography, vol. IV (J.A. Ibers; W.C. Hamilton, eds.), The Kynoch Press, 1974

[17] D.C. Creagh; W.J. McAuley International Tables for X-ray Crystallography, vol. C (A.J.C. Wilson, ed.), Kluwer Academic Publishers, 1992 (, p. 219)

[18] T. Higashi Numabs-Numerical Absorption Correction, Rigaku Corporation, Tokyo, Japan, 1999

[19] A. Altomare; M.C. Burla; M. Camalli; M. Cascarano; C. Giacovazzo; A. Guagliardi; G. Polidori J. Appl. Crystallogr., 27 (1994), p. 435

[20] V. Parthasarathi; P.T. Beurskens; H.J.B. Slot Acta Crystallogr., Sect. A, 39 (1983), p. 860

[21] Y. Sayama; M. Handa; M. Mikuriya; I. Hiromitsu; K. Kasuga Chem. Lett. (1998), p. 777

[22] Y. Sayama; M. Handa; M. Mikuriya; I. Hiromitsu; K. Kasuga Bull. Chem. Soc. Jpn, 73 (2000), p. 2499

[23] D. Yoshioka; M. Mikuriya; M. Handa Chem. Lett. (2002), p. 1044

[24] W. Preetz; K. Harder; H.G. Von Schnering; G. Kliche; K. Peters J. Alloys Compds, 183 (1992), p. 413

[25] M.A. White; M.R. Pressprich; P. Coppens Acta Crystallogr., Sect. C, 50 (1994), p. 1087

[26] T. Kimura; T. Sakurai; M. Shima; T. Togano; M. Mukaida; T. Nomura Bull. Chem. Soc. Jpn, 55 (1982), p. 3927

[27] M.C. Barral, R. Jimenez-Aparicio, D. Perez-Quintanilla, J.L. Priego, E.C. Royer, M.R. Torres, F.A. Urbanos, Inorg. Chem. 39 (2000) 65 and references therein.

[28] W. Preetz; D. Bublitz; H.G. von Schnering; J. Sassmannshausen; Z. Anorg Allg. Chem., 620 (1994), p. 234

[29] L.G. Beauvais; M.P. Shores; J.R. Long Chem. Mater., 10 (1998), p. 3783


Commentaires - Politique