Plan
Comptes Rendus

Synthesis, IR, Mössbauer and solid-state NMR studies of 1,1-dimethylguanidinium triphenyltin sulphate
Comptes Rendus. Chimie, Volume 10 (2007) no. 6, pp. 466-468.

Résumés

1,1-Dimethylguanidinium triphenyltin sulphate has been synthesised and characterized by infrared, Mössbauer and solid-state NMR spectroscopies. An infinite chain structure with a bidentate sulphate is suggested, the sulphate appearing in a Td symmetry, since the two remaining oxygen atoms are involved in strong H-bonds with the 1,1-dimethylguanidinium, indicating the important influence of the countercation nature on the structure.

Le triphénylétain sulfate de 1,1-diméthylguanidinium a été synthétisé et étudié par spectroscopies infrarouge, Mössbauer et RMN 13C et 117Sn à l'état solide. La structure découlant de ces données spectroscopiques est une chaîne infinie, contenant des sulfates bidentates, la symétrie du sulfate étant tétraédrique du fait que les deux atomes oxygènes non liés à l'étain sont engagés dans des liaisons hydrogène avec l'ion diméthylguanidinium. Ceci montre que la nature du cation joue un rôle important sur la symétrie de l'anion dans de tels composés.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2007.01.007
Keywords: Infrared, Mössbauer, Solid-state 13C and 117Sn NMR, Triphenyltin derivative, 1, 1-Dimethylguanidinium, H-bonds
Mots clés : Infrarouge, Mössbauer, RMN 13C et 117Sn à l'état solide, Dérivé du triphénylétain, 1, 1-Diméthylguanidinium, Liaisons hydrogène

Mouhamadou Sembène Boye 1 ; Aminata Diassé-Sarr 1 ; Libasse Diop 1 ; Umberto Russo 2 ; Monique Biesemans 3 ; Rudolph Willem 3

1 Laboratoire de chimie minérale et analytique (LACHIMIA), département de chimie, faculté des sciences et techniques, université Cheikh-Anta-Diop de Dakar (UCAD), Dakar, Sénégal
2 Dipartimento di Chimica Inorganica Metallorganica ed Analitica, Via Loredan 4, Università degli studi di Padova, 35135 Padova, Italy
3 High-Resolution NMR Centre (HNMR), Department of Polymer Science and Structural Chemistry (POSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
@article{CRCHIM_2007__10_6_466_0,
     author = {Mouhamadou Semb\`ene Boye and Aminata Diass\'e-Sarr and Libasse Diop and Umberto Russo and Monique Biesemans and Rudolph Willem},
     title = {Synthesis, {IR,} {M\"ossbauer} and solid-state {NMR} studies of 1,1-dimethylguanidinium triphenyltin sulphate},
     journal = {Comptes Rendus. Chimie},
     pages = {466--468},
     publisher = {Elsevier},
     volume = {10},
     number = {6},
     year = {2007},
     doi = {10.1016/j.crci.2007.01.007},
     language = {en},
}
TY  - JOUR
AU  - Mouhamadou Sembène Boye
AU  - Aminata Diassé-Sarr
AU  - Libasse Diop
AU  - Umberto Russo
AU  - Monique Biesemans
AU  - Rudolph Willem
TI  - Synthesis, IR, Mössbauer and solid-state NMR studies of 1,1-dimethylguanidinium triphenyltin sulphate
JO  - Comptes Rendus. Chimie
PY  - 2007
SP  - 466
EP  - 468
VL  - 10
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crci.2007.01.007
LA  - en
ID  - CRCHIM_2007__10_6_466_0
ER  - 
%0 Journal Article
%A Mouhamadou Sembène Boye
%A Aminata Diassé-Sarr
%A Libasse Diop
%A Umberto Russo
%A Monique Biesemans
%A Rudolph Willem
%T Synthesis, IR, Mössbauer and solid-state NMR studies of 1,1-dimethylguanidinium triphenyltin sulphate
%J Comptes Rendus. Chimie
%D 2007
%P 466-468
%V 10
%N 6
%I Elsevier
%R 10.1016/j.crci.2007.01.007
%G en
%F CRCHIM_2007__10_6_466_0
Mouhamadou Sembène Boye; Aminata Diassé-Sarr; Libasse Diop; Umberto Russo; Monique Biesemans; Rudolph Willem. Synthesis, IR, Mössbauer and solid-state NMR studies of 1,1-dimethylguanidinium triphenyltin sulphate. Comptes Rendus. Chimie, Volume 10 (2007) no. 6, pp. 466-468. doi : 10.1016/j.crci.2007.01.007. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2007.01.007/

Version originale du texte intégral

1 Introduction

Some SnPh3-containing derivatives involving inorganic oxyacids are reported [1–3]. The important role of the cation on the structure of oxalate SnPh3-containing derivatives has been reported and a cis chelating oxalate has been reported in (Cy2NH2)(C2O4)(SnPh3) [4] and a polymeric structure in (Me4N)(C2O4)(SnPh3) [3]: this shows the key role of the cation in the [C2O4SnPh3] arrangement. Recently derivatives of general formula (R4N)(XO4)(SnPh3) (R = Cy, H, Bu, Me; X = S, Se) have been reported, in which the role of the counter cation size on the structure has been specified [5]; the structure, in solution, of (Bu4N)(SO4)(SnPh3) is monomeric, while, in (Me4N)(SO4)(SnPh3), SnPh3 residues are still trans-coordinated by oxygens, conferring bipyramidal trigonal environment to the tin atoms.

In the framework of our research work on oxy-anions acting as ligands [6–10], we describe in this paper the synthesis and spectroscopic studies of the 1,1-dimethylguanidinium triphenyltin sulphate.

2 Experimental

[Me2NC(NH)NH2]2H2SO4 and SnPh3Cl are Aldrich chemicals, used without further purification. The title derivative is obtained by mixing in a 1:1 ratio [Me2NC(NH)NH2]2H2SO4 dissolved in a minimum of water and SnPh3Cl dissolved in ethanol (20 ml). The white precipitate obtained is washed with ethanol.

The elemental analyses were performed in the Microanalyses Laboratory of the Inorganic Metallorganic and Analytical Chemistry Department (University of Padua, Italy), the Mössbauer spectrum is obtained as described in [11], while the solid-state 13C and 117Sn NMR spectra were recorded using a Bruker Avance 250 NMR spectrometer, equipped with a broadband MAS probe, operating at 62.90 and 89.15 MHz for 13C and 117Sn nuclei, respectively. Rotors of 4 mm were used, and spinning rates of 7000 and 9000 Hz for 117Sn acquisition and 4000 Hz for 13C acquisition. Adamantane and tetracyclohexyltin were used as external standards for 13C and 117Sn, respectively.

    Microanalytical data: % calculated (% found)
  • % C: 46.00(46.45) % H: 4.79(4.67) % N: 8.05(8.76); m.p. > 260 °C; yield: 85%
    Infrared data (cm−1)
  • 3371s, 3169s, 3049br νNH3+; 1652s, 1640s δNH3+; 1545m νCN; 1108vs νasSO42−; 616s δasSO42−; 393w δsSO42−; 222m νSnO
    Mössbauer data (mm s−1)
  • Q.S. = 3.73; I.S. = 1.47; Γ = 0.94; A% = 1.05
    NMR data [δ (ppm)]
  • 13C: 156, CN; 138, Ph: C (i) and C (o); 130 Ph: C (m) and C (p); 38, N–CH3
  • 117Sn: −227

3 Discussion

The absence of νs SO42− indicates a Td symmetry for the sulphate [12]. The Q.S. value of 3.73 mm s−1, higher than 3.00 mm s−1, is indicative of a trans-O2SnPh3 stereochemistry about the tin centres [13]. The isotropic 117Sn chemical shift of −227 ppm is consistent with the presence of trans-coordinated Ph3Sn residues [14].

On the basis of these spectroscopic data, the proposed structure is a polymeric chain, in which Ph3Sn residues are trans coordinated, the sulphate behaving as a bidentate ligand, the two other oxygen atoms being involved in NH⋯O hydrogen bonds with the 1,1-dimethylguanidinium (the characteristic absorptions are localized at 3371 and 3169 cm−1 on the infrared spectrum), conferring a Td symmetry to the sulphate. In SO4(SnPh3)(H2O·SnPh3) [15], the sulphate appears as belonging to the Td symmetry group (in this compound, there is no free oxygen atom, three being bonded to the tin center and the fourth one involved in the hydrogen bond linking the two adjacent chains, allowing the anion to appear as belonging to the Td point group). In (R4N)(SnPh3)(SO4) (R = Bu, Me) [5], the sulphate group has a C2v symmetry [5]. The number of the protons linked to N allows us to consider all the non-coordinating oxygen atoms to be involved in H-bonds. While considering the polymeric chains, the cations can be involved in NH⋯O hydrogen bonds in two ways:

  • (1) the cations link to oxygen atoms of the same sulphate, allowing the formation of an SO2N2 cycle (Fig. 1);
  • (2) the cations link two adjacent polymeric chains, the resulting structure being a three-dimensional network (Fig. 2).

Fig. 1
Fig. 2

4 Conclusion

In the title compound, the sulphate behaves as a bridging bidentate ligand involving a polymeric chain; H-bonds involving the two other oxygen atoms of the sulphate and the counter cation are noteworthy.


Bibliographie

[1] G.K. Schweitzer; S.W. McCarthy J. Inorg. Nucl. Chem., 27 (1965), p. 191

[2] M.L. Lahlou; L. Diop Spectrochim. Acta, 47A (1991) no. 12, p. 1775

[3] C.A.K. Diop; M. Lahlou; L. Diop; U. Russo; B. Mahieu Main Group Met. Chem., 20 (1997) no. 10, p. 681

[4] S.W. Ng; A.D. Rae Z. Kristallogr., 215 (2000), p. 199

[5] C.K. Diop; Y.A.O. Kochikpa; L. Diop; B. Mahieu Main Group Met. Chem., 23 (2000) no. 9, p. 493

[6] A. Diassé-Sarr; L. Diop; M.F. Mahon; K.C. Molloy Main Group Met. Chem., 20 (1997) no. 4, p. 223

[7] C.K. Diop; S. Bassène; M. Sidibé; A. Diassé-Sarr; L. Diop; K.C. Molloy; R.A. Toscano Main Group Met. Chem., 25 (2002) no. 11, p. 683

[8] A. Diassé-Sarr; L. Diop J. Soc. Ouest-Afr. Chim., 9 (2000), p. 117

[9] A. Diassé-Sarr; L. Diop J. Soc. Ouest-Afr. Chim., 11 (2001), p. 39

[10] A. Diassé-Sarr; A.H. Barry; T. Jouini; L. Diop; B. Mahieu; M.F. Mahon; K.C. Molloy J. Organomet. Chem., 689 (2004), p. 2087

[11] O. Guèye; H. Qamar; L. Diop; C.A. Diop; U. Russo Polyhedron, 12 (1992), p. 1245

[12] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordinated Compounds, third ed., 1978.

[13] A.G. Davies; P.J. Smith (G. Wilkinson; F.G.A. Stone; E.W. Abel, eds.), Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press, Oxford, UK, 1982 (Chapter 11)

[14] J. Holecek; M. Nadvornik; K. Handir; A. Lycka J. Organomet. Chem., 241 (1983), p. 177

[15] C.A.K. Diop; L. Diop; A.R. Toscano Main Group Met. Chem., 25 (2002) no. 5, p. 327


Commentaires - Politique