Plan
Comptes Rendus

Geodynamics / Géodynamique
On the ages of flood basalt events
[Sur l'âge des trapps basaltiques]
Comptes Rendus. Géoscience, Volume 335 (2003) no. 1, pp. 113-140.

Résumés

We review available data constraining the extent, volume, age and duration of all major Phanerozoic continental flood basalts (CFB or traps) and oceanic plateaus (OP), together forming the group of large igneous provinces (LIP), going from the smallest Columbia flood basalts at ∼16 Ma to the as yet ill-known remnants of a possible trap at ∼360 Ma in eastern Siberia. The 16 traps (CFB and OP) reviewed form a rather unimodal distribution with an initial modal volume of the order of 2.5 Mkm3. Most provinces agree with a rather simple first order model in which volcanism may have lasted of the order of 10 Ma, often resulting in continental break-up, but where most of the volume was erupted in about 1 Ma or sometimes less. This makes CFBs/OPs (LIPs) major geodynamic events, with fluxes exceeding the total output of present day hot spots and even possibly exceeding over short times the entire crustal production of mid-ocean ridges. The proposed correlation between trap ages and the ages of several geological events, including mass extinctions and oceanic anoxia, is found to have improved steadily as more data have become available, to the point that the list of trap ages may coincide with many major divisions in the geological time scale. The four largest mass extinctions in the last 260 Ma coincide to the best resolution available with four traps, making a causal connection between the two through some form of catastrophic climatic perturbations the most likely hypothesis. The time sequence of LIPs appears to have been random and there is no robust evidence for long time trends in the corresponding crustal production rate over the last 260 Ma.

Nous passons en revue l'ensemble des données qui permettent de contraindre l'étendue, le volume, l'âge et la durée de toutes les grandes provinces magmatiques basaltiques (en anglais LIP) d'âge Phanérozoı̈que, qu'il s'agisse des trapps ou plateaux basaltiques continentaux (en anglais CFB) ou des plateaux océaniques (OP), allant de la plus récente et plus petite (le plateau de Columbia âgé de ∼16 Ma) à l'une des plus anciennes, encore mal connue, située dans l'Est de la Sibérie et sans doute âgée de ∼360 Ma. Les 16 provinces passées en revue forment une distribution assez unimodale, avec des volumes initiaux de lave de l'ordre de 2,5 Mkm3. La plupart des provinces sont compatibles, au premier ordre, avec un modèle simple selon lequel le volcanisme a pu durer une dizaine de millions d'années et a en général conduit à une déchirure des continents et à l'ouverture d'un nouveau bassin océanique, mais où l'essentiel du volume des laves a été émis en environ 1 million d'années, parfois moins. Ceci fait des trapps (des LIP en général) des événements géodynamiques majeurs, avec des flux de matière ayant dépassé la production totale actuelle des points chauds et même, peut-être, pendant de brefs intervalles, la totalité de la production de croûte océanique par les dorsales. La corrélation déjà proposée entre les âges des trapps et ceux des principales extinctions en masse et des événements anoxiques océaniques n'a cessé de s'améliorer au fur et à mesure que des données nouvelles, plus précises, devenaient disponibles, au point que la liste des âges des trapps coı̈ncide sans doute avec la plupart des principales divisions de l'échelle des temps géologiques. Les quatre plus grandes extinctions des derniers 260 Ma coı̈ncident, avec la précision la meilleure aujourd'hui disponible, avec quatre trapps, faisant d'une interprétation causale de cette coı̈ncidence, par le biais de perturbations climatiques catastrophiques, l'hypothèse la plus probable. La séquence temporelle des LIP semble aléatoire, et il n'y a pas d'indication solide de fluctuations systématiques à long terme du taux de production correspondante de croûte au cours des 260 derniers millions d'années.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0713(03)00006-3
Keywords: Flood basalts, Large igneous provinces (LIP), Geological ages, Geochronology, Mass extinctions, Oceanic anoxia events, Correlation
Mots-clés : Plateaux de basaltes, Provinces océaniques, Grandes provinces magmatiques (LIP), Âges géologiques, Géochronologie, Extinctions en masse, Événements d'anoxie océanique, Corrélation

Vincent E. Courtillot 1 ; Paul R. Renne 2, 3

1 Institut de physique du Globe de Paris, 4, place Jussieu, 75252 Paris cedex 05, France
2 Berkeley Geochronology Center, Berkeley, CA, USA
3 Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
@article{CRGEOS_2003__335_1_113_0,
     author = {Vincent E. Courtillot and Paul R. Renne},
     title = {On the ages of flood basalt events},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {113--140},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-0713(03)00006-3},
     language = {en},
}
TY  - JOUR
AU  - Vincent E. Courtillot
AU  - Paul R. Renne
TI  - On the ages of flood basalt events
JO  - Comptes Rendus. Géoscience
PY  - 2003
SP  - 113
EP  - 140
VL  - 335
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0713(03)00006-3
LA  - en
ID  - CRGEOS_2003__335_1_113_0
ER  - 
%0 Journal Article
%A Vincent E. Courtillot
%A Paul R. Renne
%T On the ages of flood basalt events
%J Comptes Rendus. Géoscience
%D 2003
%P 113-140
%V 335
%N 1
%I Elsevier
%R 10.1016/S1631-0713(03)00006-3
%G en
%F CRGEOS_2003__335_1_113_0
Vincent E. Courtillot; Paul R. Renne. On the ages of flood basalt events. Comptes Rendus. Géoscience, Volume 335 (2003) no. 1, pp. 113-140. doi : 10.1016/S1631-0713(03)00006-3. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/S1631-0713(03)00006-3/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Flood basalts are truly gigantic volcanic constructs, consisting primarily of tholeiitic basalts, which have attracted the attention of geologists for well over a century. However, continental flood basalts (CFB) were generally not given great attention until it was realized in the mid-eighties, largely thanks to progress in magnetostratigraphy and geochronological techniques, that they could have been emplaced in a comparatively short time, implying geodynamically very significant mass fluxes, comparable to those involved in the buildup of oceanic crust at mid-ocean ridges. Another feature of flood basalts is that they are relatively rare occurrences at the Earth's surface. Only a dozen flood basalts (including submarine oceanic plateaus, which are equivalent to flood basalts when emplacement occurred on oceanic rather than continental lithosphere) have been identified over the last 300 million years, that is one event per 20 to 30 million years (although there is no periodicity in this time series). Together, flood basalts and suboceanic plateaus are often termed large igneous provinces (LIP). The 16-item list given in Table 1 could be incomplete, since CFBs (and oceanic plateaus or OPs) could have been subducted or consumed during continental collision (we will see one example of the latter in Asia, and possibly of the former in the Pacific). But it seems unlikely that many others would remain hidden beneath sediments in either oceanic or continental surroundings. In a recent review, Eldholm and Coffin [48] list a number of useful parameters for what they call transient LIPs. This includes most of those listed in Table 1, plus 14 other oceanic plateaus, ocean basin flood basalts and volcanic margins that are often far less well known and which we believe may be different geodynamical features (see below and [39]). Very significant work on most CFBs and LIPs (though not all yet) in the last 15 years has shown that a typical province covers a surface of the order of 1 million km2, with an extruded volume of the order of 1 million km3 (see, e.g., reviews in [37,112,189]). Eldholm and Coffin [48] list LIP areas (sometimes present, sometimes assumed original values) and volumes (sometimes extruded components, sometimes subducted, sometimes all supracrustal and infracrustal components) that range respectively from 0.1 to 3.1 Mkm2, and from 0.5 to 44.4 Mkm3. As a result, the Siberian traps are listed with a volume of 1.2 Mkm3 and the Ontong–Java plateau with 44.4 Mkm3. But, in the former case, only the extrusives emplaced above the continental crust and lithosphere are taken into account (with a mean thickness of 500 m), whereas in the latter the entire suite of extrusive cover, middle crustal components and lower crustal body revealed by gravity and seismic exploration are included. This implies that the volumes cannot be compared and do not reflect the respective geodynamical significances of these bodies. In the case of continental flood basalts, much of the original volume may have disappeared since emplacement because of various forms of erosion. Dessert et al. [41] argue that much of the CO2 emitted at the time of trap emplacement must have reacted with the basalts, possibly removing as much as half of the total original volume in only a few million years. Nick Arndt (pers. comm., 2002) points out that part of the altered trap sequences may remain in situ, depending on climate in particular. In any case, present remaining volumes of CFBs must often underestimate (sometimes by a large amount) the original volumes. On the other hand, true submarine traps or oceanic plateaus that were erupted on oceanic crust and under water are likely to have had larger extruded volumes and less erosion. Also the mid-crustal and lower crustal bodies should not be included when comparing their volumes with those of CFBs (or the mid-crustal and lower crustal bodies should be included for the CFBs, but they are generally not (yet) imaged well enough). Indeed, a plume rising below shallower oceanic lithosphere will melt more and produce a larger volume of magma than one arriving beneath thicker continental lithosphere. For this reason, the extruded parts of oceanic LIPs are expected to be bigger than those of continental CFBs, and again the lower crustal part should not be included in the comparison. We have attempted to take this into account in Table 1, where it is found that the original volumes of supracrustal, extruded basalts of CFBs and OPs are actually quite comparable. Except for the tiny Columbia River Flood Basalt, most original trap volumes are estimated to have been larger than 2 Mkm3 and possibly up to 4. In contrast, the Ontong–Java plateau extruded volume could be of the order of 6 Mkm3, therefore not significantly different (and certainly not an order of magnitude larger). The distribution of original extruded LIP volumes is still plagued with uncertainties, but appears rather unimodal, with a mode likely above 2 Mkm3. A consequence of this analysis is that many previous estimates of time evolution of crustal production rates (e.g., [48]) are biased by this unbalance between CFB extruded volumes and OP total crustal volumes, and that the rate based on LIPs alone may well be rather constant in time, with no strong evidence for a peak at 120 Ma (the age of the Ontong–Java plateau that biases all), nor for a decrease up to the Present.

Table 1

List of Large Igneous Provinces (or LIPs), comprising continental flood basalts (CFB) and oceanic plateaus (OP), sometimes with associated volcanic margins (VM). Mean ages and age ranges are in Ma; S are LIP surfaces in Mkm2 (either present, estimated by Eldholm and Coffin [48], or original as estimated in this paper); V are corresponding LIP volumes in Mkm3; EE and OAE are mass extinction events and/or oceanic anoxic events (the latter after Wignall [190]), i.e. major breaks in the geological time scale, with their ages in Ma. Values are discussed in the paper with some relevant references

Liste des grandes provinces magmatiques (en anglais Large Igneous Provinces ou LIP), comprenant les plateaux basaltiques continentaux ou trapps (en anglais CFB) et les plateaux océaniques (en anglais OP), parfois avec leurs marges volcaniques associées (en anglais VM). Les âges moyens et les intervalles d'âges sont en millions d'années (Ma). S est la surface des LIP en millions de kilomètres carrés (soit actuelle, évaluée par Eldholm et Coffin [48], soit à l'origine, évaluée dans cet article). V est le volume correspondant des LIP en millions de kilomètres cubes. EE et OAE sont respectivement les événements d'extinction en masse et les événements anoxiques océaniques (ces derniers d'après Wignall [190]), correspondant aux grandes coupures dans l'échelle des temps géologiques, avec leurs âges en Ma. Les valeurs sont discutées dans l'article et quelques références utiles sont données

LIP Cat. Mean age Age range S (pres) S (EC00) S (orig) V (pres) V (EC00) V (orig) EE or OAE Age
Viluy traps CFB? in prog. 377–350 (strat.) end Frasnian? 360
Emeishan traps CFB 259±3 >0.5 0.3 2 to 5 >1 end Guadalupian 258
Siberian traps CFB 250 249–251 0.4 2.5 (orig) >4 1.2 (ext) >3 end Permian (OAE) 250
Central Atlantic Magmatic CFB/VM 201 200–202 (<1) 0.1 >7 0.7 (all) >2 end Triassic (OAE?) 200
Province
Karoo and Ferrar traps CFB 183 182–184 3.1 1.5 (ext) >2.5 end Pliensbachian (OAE) 184
Parana and Etendeka traps CFB 133 132–134 (80%) 1.5 2.3 (orig) >2 21 (all) >2.3 end Valanginian? 132
Rajmahal traps/Kerguelen plateau CFB/OP? 118 ⪡109–119 6 (all) end Early Aptian? 117
Ontong–Java plateau 1 OP 122 end Early Aptian? (OAE) 117
Ontong–Java plateau 2 OP 90 2 1.9 44.4 (all) 6? (ext) end Cenomanian? 93/89
Turonian? (OAE)
Caribbean plateau OP 89 89–90 1.1 4 4.5 (all) 4 end Cenomanian? 93/89
Turonian? (OAE)
Madagascar traps CFB/VM? 88 86–90 (1.6?) 4.4 (all) end Cenomanian? (OAE) 93/89
Deccan traps CFB 65.5 65–66 (>80%) 0.5 1.8 (orig) >1 1 8.6 (all?) 2 to 4 end Cretaceous 65
North Atlantic Tertiary CFB 61 <59–62 2 end E Paleocene(OAE) 60
Volc. Prov. 1
North Atlantic Tertiary CFB/VM? 56 <54–57 1.2 9.9 (all) >2 end Paleocene (LPTM) 55
Volc. Prov. 2
Ethiopian and Yemen traps CFB 30 29.5–31 (80%) 0.7 0.8 (orig) 0.35 0.5 (ext) 1.2 Oi2 event 30
Columbia River Flood Basalts CFB 16 15.3–16.6 (95%) 0.2 0.17 1.3 (all) 0.2 end Early Miocene? 16

Most geochronology studies, to be reviewed briefly in this paper, point to a typical duration of 1 million years for the bulk of trap eruption. Therefore, the typical flux is of the order of or larger than 2 km3 yr−1, and could have been of an order of magnitude higher if shorter durations and/or larger volumes apply (which is probable in at least a few cases). CFBs and LIPs are therefore very important geodynamic features, generally unrelated to classical plate dynamics, which may hold the key to important aspects of mantle convection. For instance, their depth and mechanism of origin, link to hot spots, kinematics relative to the transition zone and lower mantle are all subjects of active debate. Moreover, CFBs appear to be closely connected in space and time with major episodes of continental breakup and opening of ocean basins, and it has even been suggested that the geography of the major ocean basins, when untouched by later subduction or collision, could reflect the past distribution of locations where deep mantle plumes first erupted as flood basalts (e.g., [37]). Finally, after early proposals by Vogt [185] and Morgan [123], the idea that trap eruption times coincide with major mass extinctions has gained support, as more numerous and accurate ages for both CFBs and extinctions became available [31,32]. Other CFBs have been associated with major episodes of oceanic anoxia (OAE), and/or with more minor extinction and bioclimatic events (see [190]). A typical trap comprises hundreds of individual flows, many of which exceed 100 km3 in volume, and some of which can reach thousands of cubic kilometers, exceeding the size of the largest historical basaltic flows by more than two orders of magnitude. Regardless of whether traps and extinctions do correlate, it is interesting to address the problem of how the hydrosphere and atmosphere can be affected by the gases and aerosols injected during the eruption of hundreds of such flows over geologically short time intervals. The detailed time history of individual eruption events is still beyond the reach of our dating methods, but paleoclimate modeling may soon reach a stage where such events can be quantitatively analyzed.

The most important geochronologic constraints on flood basalts today are provided by the 40Ar/39Ar and K/Ar methods, whose precision can be better than 0.1%, but whose accuracy is presently limited to about 2% due to systematic errors [120]. The most reliable 40Ar/39Ar ages on flood basalts per se are obtained from plagioclase separates, whose K-content is generally sufficient to produce high-quality data. Application of the intrinsically more accurate UPb method is mainly restricted to the relatively rare zircon- or baddelyite-bearing silicic flows or associated intrusions. Other radioisotopic methods such as Re/Os (e.g., Allègre et al. [1] and Rb/Sr [6,186]) show promise despite still scattered isochrons, a feature which must be resolved before these methods are considered capable of contributing appreciably to the chronology of flood volcanism. Comparison of ages from different radioisotopic dating methods must bear in mind the systematic errors intrinsic to each, as failure to do so can introduce spurious apparent age dispersion, and it must be considered that few methods are more accurate than about 1% of the age (e.g., [13]).

Evidence that traps have some bearing on the dynamics of possibly all of the Earth's envelopes, from the core to the atmosphere, critically relies on the amount and quality of ages obtained from flood basalt samples. We refer readers to the recent review by Wignall [190] who focuses on paleontological observations of extinctions and anoxia events, and on chemical and climatological concepts that could allow us to argue whether a causal connection is possible. In the present paper, we focus on an update on the geochronological constraints that have become available in the last decade, and to their consequences on a number of the problems outlined in this introduction. Out of many possible presentations, we have selected to review data from CFBs and OPs known to us (Table 1), going from the youngest (the 15-Ma-old Columbia flood basalts) for which preservation is expected to be better, to the older, such as the 258-Ma-old Emeishan traps, or possibly the 360-Ma-old traps in Siberia.

2 The Columbia–Snake River flood basalts

The Columbia River basalts are at the same time the youngest but also the smallest CFB. They are so small (0.17 Mkm3; [177]) that they are a distant outlier of the general distribution. It can even be questioned whether they should be included in the list. Although they do span some time between possibly 17 and 6 Ma, almost 95% of the total volume was erupted between 16.6 and 15.3 Ma [19]. The eruptive history is sketched in Wignall [190] (Fig. 3). Of course, remaining errors and undetected effects of alteration can be responsible for part of the scatter, but the general outline appears to be robust. Lange [103] shows that the original volatile concentrations (H2O + CO2) may have reached the exceptionally high value of 4%. Lange proposes that this explains large individual flow volumes and the ability of the dense Fe-rich lava to erupt through as much as 20 km of continental crust. She notes that this is 20 times the value generally based on Leavitt [105] and used for instance by Caldeira and Rampino [18] to estimate CO2 emissions from flood basalts. Coffin and Eldholm [25] suggest a possible link to a mid-Miocene extinction, but Wignall [190] notes that this is not a major event in the compilation of Raup and Sepkoski [146]. However interesting, the Columbia River FB seems to be a volumetrically and geodynamically minor event compared to all other CFBs.

3 The Ethiopian and Yemen traps

Though apparently the youngest and possibly the best preserved of the major traps, the Ethiopian lavas had not been well dated until recently. The Ethiopian traps presently cover about 0.7 Mkm2 and their volume amounts to 0.35 Mkm3 according to Mohr and Zanettin [121]. Because the traps actually comprise the now severed extension of the Yemen traps [118], because of significant removal at the time of continental breakup and opening of the Red Sea and Gulf of Aden, and because of subsequent erosion and alteration, their original volume is estimated to have reached at least 1.2 Mkm3 [158]. Based on a geochronological and magnetostratigraphic study of the ∼2000-m-thick Lima–Limo section in the northern part of the Ethiopian traps, Hofmann et al. [77] concluded that the traps formed in 1 to 2 million years 30 Ma ago. Four plateau ages, two sanidine single-grain determinations and one isochron age range from 28.6 to 30.0 Ma, with 95% uncertainties of 0.3 Ma. A histogram of ten age determinations (mostly 40Ar/39Ar plateau ages) indeed shows a single sharp peak at 30 Ma with a half-width of 1.5 Ma. Baker et al. [9] found similar ages in Yemen, spanning from 29.2 to 30.9 Ma. Only two magnetic reversals were found in the Lima–Limo section, which was identified by Hofmann et al. [77] as spanning from chron C11r to C10r. Analyses from additional samples led Rochette et al. [158] to propose that only two correlations with the geomagnetic polarity time scale (GPTS) were possible: a ‘long’ one, lasting 1.9 Ma from chron C11r to C10r, and a ‘short’ one, lasting 0.8 Ma from C11r to C11n-1r. Ukstins et al. [181] have very recently published a set of sixteen new 40Ar/39Ar dates from five sections on the eastern margin of the Ethiopian plateau, and have compiled 96 ages from Ethiopia and Yemen (recalculated to the Fish Canyon sanidine standard at 28.02 Ma as in [153]). The data distribution well reflects the short, major pulse of flood basalt volcanism and a long, sporadic history of subsequent volcanism linked to breakup. The data clearly show a gap at ∼26 Ma and a major (Gaussian-like) peak at 30 Ma with a width at half height of 1.5 Ma. Though Ukstins et al. [181] imply that volcanism was continuous between 29 and 26 Ma, this is not borne out on a regional scale. Coulié et al. [29] analyzed basaltic and silicic samples, from both the Yemen and Ethiopian traps, using both the Cassignol–Gillot K/Ar method and the 40Ar/39Ar method (see also [28]). Interlaboratory biases and discrepancies in the ages of standards were thus largely eliminated and the authors concluded that ages by both methods were concordant, and that onset of volcanism was coeval over the whole province at 30.6±0.4 Ma and 30.2±0.4 Ma, respectively, in Ethiopia and Yemen. Thanks to the larger K-content of the silicic samples, the authors were able to show that most of the lava pile erupted in less than 1 Ma, though volumetrically smaller lavas were dated at 26 Ma and younger ages.

Using a technique based on magnetic susceptibility, Touchard [179] identified four tephra layers in cores from the Indian Ocean (leg 115), Arabian Sea (leg 23, site 220) and South Atlantic (leg 73, site 522). They were able to show that these tephra are the chemical equivalents of the rhyolitic lavas in the upper Wegel Tena section. Using a paleoclimatic model (e.g., [54]), Touchard evaluated the extent, volume, flux and dynamic wind transport of the tephra, and most importantly was able to tie in the events to the biostratigraphic time scale. His work and that of Coulié et al. [29] confirm that volcanism lasted from chron C11r to C11n-1r, with an upper bound of 800 kyr on total duration of the main basaltic and rhyolitic phases, and of about 100 kyr for the terminal bimodal (basaltic and rhyolitic) phase, which amounts to 800 m, i.e. 40% of the total plateau thickness. The resolution of the biostratigraphic correlation, brevity of reversed subchron C11n-1r and small uncertainty on age determinations have led Touchard et al. [180] to propose that it could be used as a new tie-point of the GPTS at 30.1 Ma. On the other hand, the well-defined age of the C11n-2n to C11n-1r reversal, which is bracketed by four K-feldspar age spectra, has led Coulié et al. [29] to propose an age of 29.75±0.10 Ma for this N to R tie-point. When uncertainties on age standards are taken into account, both ages are actually defined with an uncertainty no less than 0.3 Ma and are therefore not yet distinguishable.

It is particularly significant that the traps do not coincide with the Eocene/Oligocene boundary at 33.7 Ma, which may not be the most significant extinction or climatic event in the Cenozoic as was once believed. Iridium anomalies have been observed in Italy by Montanari et al. [122] and three widely separated impact craters are dated at about 35 to 36 Ma (e.g., [109]), which does correlate with a minor extinction in warm water taxa, but occurs about 1.5–2.5 Ma before the E/O boundary. Six important cooling events are now identified between 35 and 26 Ma through a combination of eustatic sea-level changes [71,99], and δ18O isotopic ratio (e.g., [119,193]): they are called Oi1 (at the E/O boundary), Oi1a, Oi1b, Oi2, Oi2a, and Oi2b. Zachos et al. [194] display the δ18O isotopic ratio from 65 Ma to the Present. A major, sharp δ18O positive anomaly and therefore global cooling occurs at the Eocene/Oligocene boundary (Oi1) at 33.7±0.5 Ma. But the ratio remains small for 8 Ma. Using an earlier version of the δ18O curve [119], Prothero [140] finds evidence for a “much bigger and more protracted glacial event, or events starting about 30 Ma ago” (Oi2), i.e. at the time of peak trap eruption. Prothero [140] actually considered the Eocene/Oligocene boundary a ‘non-event’ from a paleontological perspective. Following these observations, Hofmann et al. [77] (see also Rochette et al. [158]) concluded that the traps coincided in time with (i) the largest sea-level drop in the Cenozoic [71], (ii) a major glaciation in Antarctica, and (iii) a minimum in diversity of land mammals. Touchard et al. [180] and Ayalew et al. [6] emphasized the potential climatic impact of the silicic phases. More importantly, they demonstrated that the traps and the Oi2 climatic cooling event were indeed coeval, with the key role being attributed to SO2 emissions.

In a recent study, Kieffer et al. [95] noted that shield volcanoes overlying the traps had chemistries similar to the underlying flood basalts, but that the chemical make-up changed from one sub-province to the other. Shield volcano ages were 30 Ma in one case, but 23 Ma in two other cases. They concluded that volcanism was complex and protracted, in relation with a heterogeneous plume head and underlying mantle. We point out that in order to properly identify the dynamic importance of flood basalt volcanism, the time history of volcanic flux must be determined in a quantitative way. In Ethiopia and Yemen, the sections that yielded coeval 30 Ma ages are by far the largest and thickest (more than 75% of total volume). Only more modest volumes and episodic volcanism occurred from 29 to 23 Ma. Kieffer et al. [95] estimate that the volumes of post-30-Ma shield volcanoes could be from 5 up to 25% of the volume of the traps. The younger events can be linked to the major phase of continental breakup that marked the onset of successful rifting in the Red Sea and Gulf of Aden [37]. It should be recalled that the Ethiopian traps are the youngest, best preserved, large CFB and that features such as overlying shield volcanoes might not have been preserved in other provinces. The characteristic bimodal volcanism, with 5 to 20% of the volume of the traps being siliceous (rhyolitic), is found in the Paraná and Ethiopian traps, but not in the Deccan or Madagascar, whereas in Siberia trachytic volcanism occurs [95]. Despite these differences, features of the Ethiopian traps such as volume, duration, climatic impact, and relation to continental breakup are similar to those of other traps. They are to our knowledge one of several cases (other being the Deccan, CAMP and Siberian traps, see below) where synchroneity of a major bioclimatic event and trap emission has been demonstrated.

4 The Brito-Arctic province

The Brito-Arctic province (also known as the North Atlantic Tertiary Volcanic Province or NATVP) may be one of the most studied CFBs, in relation to early models of plume generation, plume–rift interaction and opening of the North Atlantic Ocean. Recent dating and seismic work has provided large amounts of data that constrain the time-history of magmatic flux better than in many other provinces. Two main pulses of basaltic volcanism occurred. The first one, around 61.0 Ma, amounting to some 2 Mkm3 in total volume, developed in western Greenland, southeastern Greenland (and possibly between the two below the ice), and northwest Britain (e.g., [43,68,104,172,173]). The second one (even larger) corresponds to breakup at 56 Ma and is found in both eastern Greenland and the Faroes, along part of the then nascent North Atlantic margin, but also in Baffin Bay west of Greenland [57,113]. The former shares the characteristics of many other provinces in having recorded few reversals and being confined in time to a total duration of the order of 1–2 Ma (note however that the volume estimate is subject to the presence of flood basalts below the ice sheet connecting the eastern- and western-coast outcrops, which is debated; Laurent Geoffroy, pers. comm., 2002). The high-velocity crustal ‘seaward dipping reflectors series’ (SDRS) discovered in seismic lines (see [75]), with a total volume (extruded part) in excess of 2 Mkm3, correspond to mainly subaerially erupted basalts (with minor trachyte dykes); their volume (close to 10 Mkm3 in [48]) is well constrained, but corresponds to the deeper, mid- and lower crustal components that cannot be included in volume estimates for pre-rift CFBs (see introduction and Table 1). Tegner et al. [176] dated mafic intrusions by 40Ar/39Ar along the eastern-Greenland rifted margin. They find that tholeiitic magmatism occurred in three discrete pulses at ∼62–59 Ma, 57–54 Ma, and 50–47 Ma, related to melting episodes triggered respectively by plume impact, continental breakup, and passage of the plume axis. Holbrook et al. [79] determined the time evolution of magmatic productivity since the onset of breakup (i.e. the 56 to 55.5-Ma-old (C25n) continent–ocean boundary – COB), which decreases drastically by a factor in excess of 3 in less than 10 Ma. This led them to infer a plume-impact model for Greenland trap generation, with a 600-km diameter at COB time and a rather modest 125 °C mantle thermal anomaly. Results from Mull and Skye [22] indicate a slight broadening of this age range, into C26r.

Courtillot et al. [37] noted that double pulses, such as the 61-Ma CFB and 56-Ma SDR events, could be found in other LIPs. In the case of the Afar plume, for instance, the 30-Ma Ethiopian traps could correspond to the Greenland traps, and the 3-Ma-to-Present trap-like stratoid series to the SDRS. The former would have erupted entirely as a subaerial event, whereas the latter (which are linked with significant extension) could in part be subaquatic, implying significant differences in potential climatic impact. The synthesis of mean global temperatures since the K/T boundary of Zachos et al. [194], which is based on δ18O data, does not show a consistent correlation with either one of the Brito-Arctic events. The older corresponds to a cold minimum, whereas the younger occurs at the time of the sharp, warm event of less than 200-kyr duration [128], termed the Late Paleocene Thermal Maximum (LPTM). In a recent, controversial publication, Jolley et al. [87] argue that UPb and 40Ar/39Ar ages of Brito-Arctic lavas, immediately overlying sedimentary strata in which the LPTM was recorded, extend from 57.5 to 60.5 Ma. These authors conclude that the Paleogene time scale could be in error by up to 5 Ma and that the LPTM, if redated at ∼60 Ma, could correspond to the main continental and subaerial phase of Greenland–Britain volcanism, due to the release of ocean-floor methane hydrates [42]. However, Aubry et al. [5] reject any potential miscalibration of the time scale, and believe that Jolley et al.'s conclusions are based on “selective use and misinterpretation of geochronologic data and undue reliance on imprecise and unsubstantiated palynologic evidence”.

5 The Deccan traps

The Deccan traps may be one of the earliest CFB provinces to have been studied with the modern tools of magnetostratigraphy and radioisotopic geochronology. After early suggestions of a possible correlation of the traps with the K/T mass extinction by Vogt [185], Courtillot et al. [34,35] pointed out that the joint finding of (i) only three chrons in the lava pile, with the central largest portion being reversely magnetized, (ii) the presence of a characteristic Maastrichtian fossil fish tooth found in the infratrappean sediments, and (iii), then available (if moderately reliable), K/Ar ages close to 66 Ma indicated that the bulk of the traps was most likely emplaced over chrons C30n, C29r and C29n, in less than one million years, straddling the Cretaceous–Tertiary (K/T) boundary. The current trap surface is of the order of 0.5 Mkm2, but much of it has been removed by erosion, continental breakup and rifting away of the Seychelles plateau. Most authors quote an original volume of the order of 2 Mkm3. The recent work by Dessert et al. [41] outlines the importance of early chemical erosion of the traps linked to increased atmospheric CO2 content and shows that this is probably an underestimate. Duncan and Pyle [45] and Courtillot et al. [36] published 40Ar/39Ar plateau ages (from both across the trap horizontal surface and vertical section) that further strengthened the age estimate and brief duration of the bulk of trap volcanism. Further ages have been published since, and ensuing debate has continued over the last decade. Baksi and Farrar [10] presented ages ranging from 67.6 to 64.5 Ma, and Venkatesan et al. [183] argued that volcanism actually started massively at 67 Ma in chron C31r, that is at least 1 Ma prior to the K/T boundary. Féraud and Courtillot [53] challenged these results. Allègre et al. [1] assumed a brief time interval of volcanism over 1500 m of stratigraphic section and 800 km in lateral extent using the new ReOs technique and obtained a well constrained mean age value. All data agreed with an age of 65.6±0.3 Ma, and 187Os/188Os initial ratio showed a mantle source with minor metasomatism and crustal contamination. Hofmann et al. [78] resampled the traps and found virtually undistinguishable 40Ar/39Ar plateau ages of 65.4±0.7 Ma for five flows extending over a few hundred meters of section near the base of the lava pile, and 65.2±0.7 Ma for a dyke cutting across the Poladpur formation, which immediately underlies the topmost Mahabaleshwar formation. This implies that at least 1800 m out of the full 2500-m-thick section erupted close to 65.5 Ma in much less than 1 Ma (the best constraint on duration still coming from magnetostratigraphy). Interestingly, and as has been found in other cases (such as the Ethiopian traps), it was found that age histograms became narrower as new, better data were acquired and as more stringent selection criteria were applied. For instance, Hofmann et al. [78] found that when going from an original data base of 33 plateau ages to 24 ‘A-quality’ results, then to a restriction to 13 plateau ages on mineral separates, the half-width of the main histogram peak was reduced from ∼4 to ∼1 Ma. Rao and Lakshmi [144] confirmed that most of a 338-m-long core from a borehole near the southeastern boundary of the traps had reversed magnetization and was likely coeval with the C29r age of the bulk of the Mahabaleshwar sections. Even farther from the main sections of the western Ghats, lavas of the Rajahmundry Traps on the eastern coast of India, chemically identical to the Poladpur and Ambenali formations, have recently [96] been dated by 40Ar/39Ar as being indistinguishable from these formations. Thus, the original extent of Deccan magmatism is even significantly larger than commonly believed.

Bhandari et al. [14] reported the discovery of iridium in sediments intercalated between flows in the (ill-mapped) Anjar area (Kutch Province) in the northwest of the trap province. Further joint work by Courtillot et al. [38] and Shukla et al. [164] has provided more, if sometimes contradictory, results on this remote thin section of seven traps flows. Both teams confirm the rough location and existence of the Ir anomaly, though intensities are a bit different. Both also agree on the fact that flows below the Ir bearing layers have normal magnetic polarity, and those above have reversed polarity, except for a normal layer that may either correspond to a later dyke or have been subsequently remagnetized. Both teams further agree on the ages of three overlying flows at 65 Ma in chron C29r, and assign the same age to the underlying intertrappean level. However, there are significant discrepancies in some 40Ar/39Ar ages. Shukla et al. [164] choose to average discrepant ages, even if their uncertainties did not overlap, whereas Courtillot et al. [38] (see also [77]) explain why they believe their ages more reliable. Courtillot et al. see the three underlying flows as being roughly coeval at 66.5 Ma with chron C30n (consistent with the 3-chron model defended since 1986), whereas Shukla et al. (based on [184]) propose ages ranging from ca 69 to 65 Ma for the same flows. These authors therefore argue for prolonged volcanism, starting in chron C31n.

Despite some disparate conclusions, these studies have a common important consequence that the Ir bearing sediments, if related to the Chixculub crater impact as generally accepted, indicate that Deccan volcanism began prior to impact and straddled it in time, excluding the sometimes invoked possibility of a causal connection between the two. On the other hand, a minority view is held by Hansen et al. [70] that iridium is not unique to the K/T and could be derived from rhyolitic bentonites in Anjar. These authors believe that the Ir-rich sediments contain non-reworked dinosaur eggshell fragments [7,8], and predate the K/T boundary (i.e. are located within the Maastrichtian part of reversed chron C29r). The results of Venkatesan et al. [184] and a number of others suggest that Deccan volcanism started at least 67 Ma ago, and possibly 69 Ma ago, and ended only 61 Ma ago, therefore lasting up to 8 Ma. Although we (together with [38,53,77,78]) would argue that many older and younger ages are based on lower quality, disturbed spectra as well as whole rock samples that may have been affected by alteration and recoil, the important question is to reconstruct the flux (or volume) history of volcanism. For instance, Sheth et al. [163] find an age between 60 and 62 Ma on trachyte dykes (not flows) from near the coast and flexure marking the edge of continental breakup between India and the Seychelles. It is not surprising that a tail (and more) of volcanism should mark the later breakup phase following trap emplacement [34,35,37], as has been seen to be the case with much larger volumes for the Ethiopian and Brito-Arctic traps. Very recently, Mahoney et al. [114] have identified volumetrically minor but geologically significant volcanic rocks in the Tethyan suture, which suggest that the Réunion hot spot was active at 73 Ma off northwestern Greater India, well before and to the north of the Deccan traps. These authors show that such activity is compatible with the plume-head model. All published results (amount of composite section of lava pile, surface extent, histogram analysis with quality criteria) show that the bulk of Deccan trap volcanics erupted around K/T time in less than 1 Ma, 50% at least of the volume being erupted within the 0.5-Ma-long reversed chron C29r, possibly in shorter but as yet unresolvable climactic episodes [30,32]. Widdowson [189] and Steve Self (pers. comm., 2002) point out the significance of an upward increasing number of intratrappean alteration levels (or ‘red boles’) that indicate a certain (unknown as yet) duration between flows, and the fact that there was a voluminous initial burst of volcanism followed by a decreasing trend, although an alternative explanation could be that the intensity of alteration was increasing upsection due to cumulatively increasing atmospheric CO2 concentration.

Scenarios of the climatic consequences of the Deccan traps have been sketched by many authors, starting with McLean's [111] CO2 crisis. This is reviewed by Wignall [190] and is not the focus of the present paper. The subsequent effects of short term cooling due to H2SO4 aerosols and longer term warming due to massive CO2 injection are still at the edge of paleoclimatic modeling capabilities (but see [41,180]). The major unknown is the duration of individual eruptions (e.g., [161]) and, just as important, the duration between eruptions, i.e. the detailed shape of the forcing function. If eruptions are close in time, they may interact with varying phase between cooling and warming episodes, and can buildup faster than ocean equilibration times. Dessert et al. [41] propose a quantitative model of time evolution of surface temperature, ocean pH and CO2 atmospheric content: for instance, their model predicts that chemical erosion due to HCO3 will lead to a global 87Sr/86Sr signal similar to the observed one, both in amplitude and shape, with both a transient and an irreversible part. This is a proxy that should be further studied at the times of other CFBs.

We should note at this point that there was a sea-level fall 100 kyr before the Ir-defined K/T boundary. The low point occurred 10 kyr before K/T according to Hallam and Wignall [65], who attribute the subsequent rise and warming to Deccan eruptions and associated CO2 release. We will briefly return to the three time constants that are apparent in K/T records (notably paleontological ones), i.e. long (10 Ma), shorter (1 Ma to 100 kyr) and very short (possibly instantaneous), in the discussion section.

6 The Madagascar and Caribbean provinces

The Caribbean–Columbian oceanic plateau is generally recognized as the tectonized remnant of a large eastern Pacific oceanic plateau (e.g., [94]). The deeper levels of the plateau have been exposed on its margins due to its mode of emplacement between the North and South American plates. The bulk of volcanism occurred between 91 and 88 Ma in a number of short, discrete events [166]. The initial period lasted less than 2 Ma, but this cannot be constrained by magnetostratigraphy, because this was the time of the Cretaceous Long Normal Superchron. Ages are found to be synchronous over a large region, consistent with a flood basalt origin [166]. The volume of the plateau is thought to be of the order of 4 Mkm3 and is dated at 89.5±0.3 Ma. It is linked by most authors to the birth of the Galapagos hot spot. A younger, widespread magmatic event occurred at about 70 Ma, but with much smaller volumes. It so happens that volumetrically smaller flood-like basalts are found in Madagascar at roughly the same age (40Ar/39Ar ages 88.5±2.9, 87.6±2.9 Ma from [171]; see [190]). This is the time of only a modest extinction, but of one of the most widespread oceanic anoxic events (OAE) at the Cenomanian–Turonian boundary (93 Ma). There is also an extinction event at the end of the Turonian (89 Ma after [60]), hence a double event in the interval of 5 Ma. Kerr [93] has proposed a scenario for this event, in which volcanism-related CO2 leads to a runaway greenhouse climate and to global warming.

7 The Kerguelen plateau

The Kerguelen plateau in the southern Indian Ocean is the second largest oceanic plateau after the Ontong–Java plateau in the SW Pacific [25]. Its southern part, which is the largest, has recently been dated at 119–109 Ma [26,44]. Duncan [44] proposes that the entire plateau formed around 118 Ma, which is also the time of eruption of the Rajmahal traps in eastern India [92]. The Kerguelen plateau, Rajmahal traps, and Bunbury basalts in western Australia (erupted in two phases at 132 and 123 Ma [55,56]) were located close to each other at the time of eruption and roughly coeval with the breakup of eastern Gondwana. Ingle et al. [83] note that there are strong geochemical similarities within a first group, comprising a Bunbury group, a Rajmahal group, and one site in the south Kerguelen plateau, and also a second group, comprising another Bunbury group, another Rajmahal group, and a site to the northwest of the south Kerguelen plateau. Both groups could have originated from the Kerguelen plume, the first one being the only one to require input from depleted asthenospheric mantle. The first phase could correspond to a typical CFB, such as the ones in Greenland or Ethiopia, and the second phase to a burst prior to formation of oceanic crust as with the SDRS in the Brito-Arctic province or Afar stratoid series (see above). Ingle et al. [83] note that despite uncertainties on the time of rifting, geochemical and geophysical evidence requires the presence of a mechanism to isolate continental fragments during early breakup of eastern Gondwana and opening stages of the Indian Ocean. Though more data are required, we note that, in one interpretation, a joint S. Kerguelen/Rajmahal/Bunbury CFB-like volcanic pulse may have occurred over a rather short interval of time near 118 Ma, i.e. the Late Barremian [44]. Alternately, this age is close to that of 117 Ma assigned by Gradstein et al. [60] to the Early/Late Aptian boundary, a time of major biological crisis, far more significant than the end of the Barremian (Annie Arnaud-Vanneau, pers. comm., 2002). The Kerguelen plateau is unusual in several respects, notably because of a long magmatic history in which the plume ‘tail’ appears to have been more voluminous than the plume ‘head’. Large volumes also erupted at ∼90 Ma, an age that coincides with the peaks of Caribbean and Madagascar volcanism. This may imply that the 90-Ma events were more widespread and could have had a larger environmental impact than generally suspected (Nick Arndt, pers. comm., 2002).

8 The Ontong–Java plateau

The Ontong–Java plateau in the southwestern Pacific is the largest of all oceanic plateaus, and is often considered to be the largest of all LIPs by an order of magnitude [25]. Its surface extent reaches 2 Mkm2 and its mean crustal thickness is estimated at 36 km, leading to a total volume of the order of 50 Mkm3 [25], revised to 44.4 Mkm3 by [48]. However, we have seen in the introduction that, for other flood basalts, neither underplated, lower-crust magmas, nor those injected within the crust are taken into account. Also, melt volume will be larger at the shallower depths of the suboceanic lithosphere. Finally, there is no mechanism to produce the major mechanical or chemical erosion that follows emplacement of subaerial continental traps [41]. That eruptions were submarine is documented by Saunders et al. [159]. If these are taken into account, the ‘corrected’ total volume of extruded, supracrustal Ontong–Java lavas may not exceed 6 Mkm3. Mahoney et al. [113] argue that much of the plateau was emplaced over a rather brief time interval at 122 Ma, i.e. close to the end of the Barremian, at the time of a major anoxic event and also of global sea-level rise [175]. Neal et al. [127] recall that ages actually fall in two peaks, one at ∼122 and one at ∼90 Ma. Hallam and Wignall [66] propose that Early Cretaceous biota were largely immune to the effects of a major volcanic episode. Indeed, there is no mass extinction at that time, but the OAE argues for major environmental events. In qualitative models of the relationship between trap volcanism and environmental change (see [190] for a review), the main role is attributed to volcanic gases: SO2 (H2SO4) would eventually lead to short-term cooling, whereas CO2 would lead to longer-term warming, with possible subsequent release of marine clathrates (methane hydrates) leading to a runaway greenhouse. But in the case of submarine volcanism, the enormous mass of ocean water is expected to act as a strong buffer, and SO2 is not expected to play a significant role (hence no mass extinction), whereas CO2 would still lead to water anoxia and a greenhouse period. In conclusion, there is a good case for a correlation between Ontong–Java volcanism and the end-Barremian OAE, and a mass extinction should not be expected because of suboceanic emplacement.

9 The Paraná and Etendeka traps

The Paraná traps in South America, together with their smaller severed counterpart at the Etendeka traps in Namibia and Angola, comprise a surface in excess of 1.5 Mkm2 and an original volume in excess of 2.3 Mkm3 [58]. Renne et al. [150] and Ernesto et al. [50] showed that most of the volcanism occurred at ∼133±1 Ma, based on 40Ar/39Ar plateau ages, and Renne et al. [150] further found that the total duration of trap volcanism could be constrained to 0.6±1 Ma. Based on data from cuttings retrieved from boreholes extending over a significant area of the traps, Stewart et al. [170] argued that volcanism extended from 138 to 128 Ma, spanning some 10 Ma. Even if uncertainties on ages derived from these particular samples (small cuttings from rocks having sojourned at rather warm temperatures with strong hydrothermal overprints) are discounted, it remains true, even for Stewart et al. [170], that the data histogram strongly peaks at 133 Ma, implying that a large fraction of trap volume was emplaced at that time. Also, since trap emplacement was followed by continental breakup and formation of the South Atlantic Ocean, a tail of younger volcanism is expected. Indeed, rift-related dikes are dated in coastal Brazil beginning around 128 Ma [145]. The Etendeka traps are coeval with those of Paraná [152], including remnants as far north as Angola [117].

Taken at face value and using currently accepted numerical time scales, the age of the Paraná CFB corresponds to the end of the Valanginian. Although this is apparently often understated, the end of the Valanginian is a prominent extinction level. A major crisis for Bryozoan faunas and a cooling event have been noted by Walter [187] and Arnaud-Vanneau (pers. comm., 2002). This occurs near the base of the Trinodosum Zone (133–134 Ma if one follows the Gradstein et al. [60] time scale). A warming event follows at the end of the Callidiscus zone (133–132 Ma). On the other hand, the age of the Paraná CFB ‘misses’ the age of the Jurassic–Cretaceous boundary (not a prominent extinction either) by several Ma. Most current time scales give the J/K boundary an age at 145 Ma, ranging between 149 and 139 Ma. Ogg and Lowrie [130] note that there is no internationally recognized standard for the J/K boundary. Recently, Palfy et al. [134] compiled a revised Jurassic time scale. Based on the chronogram method, they proposed an age of 141.8/+2.5/−1.8 Ma. Deconinck et al. [40] determined low temperature J/K boundary illites to be 122.3±2.3 to 136.5±2.5 Ma old, with the latter age being supposed close to J/K age. Using the same material (and glauconites) Odin [129] proposes a J/K age of 135±5 Ma, although the integrity of the KAr system in these materials is open to question.

We note that the 40-km-diameter Morokweng crater in South Africa has been dated at 145 to 146 Ma with a 1- to 2-Ma uncertainty (using Pb isotopes on zircons from the impact melt), and is considered by the authors as undistinguishable from the J/K boundary [97].

We conclude that the Paraná–Etendeka province is the only major CFB that has not yet been conclusively shown to correlate with a clear, significant global paleoenvironmental event, even considering possible ambiguities in the definition and age of biostratigraphic boundaries in the Early Cretaceous. We suggest tentatively that several unique aspects of this CFB may explain its departure from the otherwise excellent correlation: (1) the relative paucity of primitive (asthenospheric) melts with high S and CO2 concentrations; (2) a substrate which was an extensive desert, lacking combustible biomass; (3) or maybe, as suggested by some (see above) to be the case for the E/O boundary, the J/K boundary might be an artifact or a non-event [66], in any case not a major extinction level. But the traps could be coeval with younger than J/K bioclimatic events at the end of the Valanginian.

10 The Karoo and Farrar provinces

The Karoo basalts in South Africa and Farrar volcanics extending for 4000 km throughout Antarctica are the remnants of a large CFB that erupted somewhat diachronously [49,157] just prior to the breakup of Gondwana at 183±1 Ma [46]. The total original volume of the CFB, which extends over more than 6000 km, was in excess of 2.5 Mkm3. Using a revised time scale based on high precision UPb ages, Palfy and Smith [135] suggested that the Pliensbachian–Toarcian extinction lasted about 4 Ma and peaked around 183 Ma. They argued in favor of simultaneity and causal connection between the flood basalts, an anoxic event, a rapid 87Sr/86Sr rise and biotic crises. Although the vast majority of Karoo basalts in South Africa, Lesotho and Namibia were extruded within 1 Ma of 183 Ma [46], Jones et al. [88] have recently found that igneous activity at the northwest extremity of the Province occurred at ∼180 Ma, in a short time span, but significantly younger than the main phase. These authors conclude that the duration of emplacement of the CFB was ∼5 Ma. However, this does not contradict the fact that the vast majority of the lava volume appears to have been extruded at 183 Ma in about 1 Ma. Wignall [190] summarizes evidence for a link in time with the Late Pliensbachian–Early Toarcian extinction event, identified in NW European marine sections by Hallam [64] and then found in South America: this is a global event (and a second order yet significant extinction peak for Sepkoski [162]). This is biostratigraphically tied to the base of the Falciferum zone [135] (see also discussion by Wignall [190]). It is an anoxic event, and eruption of volcanic CO2 and ensuing global warming have been hypothesized as probable causes of the extinction [85]. Hesselbo et al. [72] identified a negative δ13C excursion, which, because of its amplitude and the low δ13C of volcanic CO2, they link with dissociation of 25% of the global gas hydrate reservoir subsequent to CO2-generated warming.

11 The Central Atlantic Magmatic Province

The Central Atlantic Magmatic Province (CAMP) is a relatively recent arrival in the series of large scale CFBs. Volcanic infilling of grabens on the East Coast of the US has been a topic of geological study for a long time, and the similarity between the age of the Palisades sills and that of the Triassic/Jurassic boundary was demonstrated by Dunning and Hodych [47]. Olsen et al. [131,132] emphasized the extent, age and short duration of these basalts (see also [110]). Using magnetostratigraphy and cyclostratigraphy, they were able to propose that the total duration of volcanism in the Newark and nearby basins did not exceed 580±100 ka. The onset of volcanism there appeared to be 30 m above the palynological T/J boundary, corresponding to only a few tens of ka at most. Volcanism itself was dated at 201±1 Ma [47,188], 199.5±2.0 Ma (40Ar/39Ar on dykes [67]), and more recently 197–201 Ma [116,117]. These authors showed that the CAMP actually extended to West Africa, southwestern Europe and northeastern South America, originally covering up to 7 Mkm2 (making it one of the widest in lateral extent) and exceeding 2 Mkm3 in volume, all of which suggest a temporal link with the T/J boundary. Palfy et al. [135] dated a tuff layer in marine sediments encompassing the T/J boundary; they obtained a UPb age on zircons of 199.6±0.3 Ma. Based on integration of ammonoid biostratigraphy and UPb ages (leading to a T/J age of 200±0.5 Ma), and on dating of T/J continental sections, Palfy et al. [135] suggested that the biotic crisis began on land a few 100 ka before the marine extinction. Hesselbo et al. [73] have studied in detail both a T/J marine section from the UK and a terrestrial section from Greenland. These authors were able to identify a strong δ13C drop in both sections, synchronous with changes in flora and fauna in the two environments. Combined bio- and isotope stratigraphy make the correlation and evidence for synchroneity robust, and incidentally underline inadequacies in the use of traditional ammonite markers for the base of the Jurassic. Hesselbo et al. also show that the δ13C disturbance corresponds to a ∼600-ka-long climatic (CO2) disturbance, which is the same order of magnitude as the duration of volcanism inferred by Olsen et al. [131], and is actually synchronous with the onset of CAMP eruptions, leading them to propose a causal link. The initial δ13C excursion is proposed as a suitable marker for the T/J boundary, and the minute timing differences emphasized by Olsen et al. [132] and Palfy et al. [135] remain to be evaluated on a global scale. Indeed, the fact that the first flows occur just slightly above the palynological T/J boundary (continental palynological boundaries are not always very reliable) in the Newark basin are no proof that volcanism had not started earlier somewhere outside of the small graben within the huge CAMP.

Olsen et al. [133] very recently analyzed tetrapod footprints from North America, and found that theropod dinosaurs appeared less than 10 ka after the T/J boundary. They also found (modest) iridium anomaly (140 ppt on average) and a fern spore spike, which they suggested were caused by a bolide impact. These authors concluded that an extrinsic environmental catastrophe occurred, which could have been an impact or a flood basalt. The evidence for impact is minimal and the time differences invoked are statistically insignificant at the scale of the whole CAMP, as stated above. Moreover, Olsen et al. mention that “the evolutionary hypothesis could be falsified by the discovery of large theropod bones”. A large sauropod has been found in the Late Triassic of Thailand by Buffetaut et al. [17]. Therefore, the proposal of a (10 ka) post T/J impact is not supported, and the correlation of the entire 600 ka period of intense bio-climatic disruption is much more reasonably attributed to CAMP volcanism and its environmental consequences.

12 The Siberian traps

The Siberian traps have now become among the better known of the huge flood basalt provinces. Although their central part now only covers some 0.4 Mkm2, there is evidence that their extent was much greater. To the west, the traps have been found in drill holes and may extend below part of the large Kazakhstan Basin, which may correspond to an aborted attempt at rifting subsequent to trap eruption (e.g., [37]). A tectonized remnant of the traps is exposed in the Taymir region, to the north [63]. To the east and southeast, sills extend the total area of the province to at least 1.5 Mkm2 [197]. Recently, Kravchinsky et al. [101] have shown that many of the kimberlite pipes lying east of the traps actually have the same paleomagnetic direction and age and correspond to early, highly explosive phases of the volcanism. Even more recently, Reichow et al. [147] have documented a subsurface extension of the traps nearly 1000 km west of the previously known limits of the province, in a drill core from the West Siberian basin. And Lyons et al. [108] show that magmatism of essentially the same age as the Siberian traps occurred as far south as central Kazakhstan. These suggest an area in excess of 4 Mkm2 for the Siberian traps, and a volume in excess of 3 Mkm3 and possibly significantly more [37,148]. In the central part, the traps are characterized by the occurrence of tuffs and numerous flows of the order of 102 up to 104 km3. The traps overlie Late Permian tuffs and have been dated by several authors in several locations. Renne and Basu [149] performed 40Ar/39Ar measurements on basalt flows extending over much of the main section of the traps and derived an age of 248.3±0.3 Ma and a total duration of 0.9±0.8 Ma. This was later shifted (by recalibrating the Fish Canyon Tuff sanidine standard) to 250.0±1.6 Ma [151]. Campbell et al. [21] dated zircons using UPb via the SHRIMP ion microprobe to obtain 251.1±3.6 Ma. Kamo et al. [90] obtained a compatible UPb age of 251.2±0.3 Ma on an intrusion in the lower part of the series. Magnetic stratigraphy [63,106] shows evidence for few reversals (only one is clear, with the possibility for other, shorter events which remain to be ascertained), consistent with a short total duration of volcanism. A compilation by Hofmann [76], paying particular attention to discrepancies between the ages of monitors used in several publications and producing some new ages, which considerably extend the surface of the sampling, confirms that the Siberian traps were extruded in probably less than 1 Ma at about 250 Ma. Venkatesan et al. [184] confirmed a short duration of less than 1 Ma from top to bottom of the pile, and their ages are consistent with the aforementioned 40Ar/39Ar results when normalized to the same standard.

The Permo-Triassic boundary has been dated thanks to the discovery of ash layers in the reference sections of Meishan and Shangsi in South China (minerals extracted from a bentonite), immediately below and above the paleontological boundary. The ash nearest the boundary (bed 25) at Meishan was dated at 251.2±3.4 Ma by Claoué-Long et al. [24] (UPb on zircon), at 249.9±1.5 Ma by Renne et al. [151] (40Ar/39Ar on sanidine), 251.4±0.3 Ma by Bowring et al. [15] (UPb on zircon) and at >253 Ma by Mundil et al. [125,126] (UPb on zircon). Comparison of the ages from different radioisotopic systems is problematic, as previously discussed, underscoring the importance of the dating of both ash layer and trap samples with the same method, which allowed Renne et al. [153] to conclude that the difference between the two was 0.0±0.4 Ma, establishing within a few hundred thousand years the synchroneity of the climax of Siberian trap volcanism with the PT boundary (see also [190]). In any case, the bulk of available data show that most of Siberian trap volcanism did not span much more than 1 Ma. There was no documented subsequent successful rifting (apart from possible continental rifting in the Kazakhstan basin [37]) which may in part be responsible for the absence of an ‘age tail’, as found for instance in the Paraná. Basu et al. [12] determined an 40Ar/39Ar age of 253.0±2.6 Ma in alkalic-ultramafic lavas infilling a pre-existing Late Permian graben in the Northeast; this might be an indication of a slightly older onset of volcanism, though we find little convincing evidence, for this (Wignall's figure 5 [190], comparing the timing of the various events, is misleading, because it ignores these uncertainties). The basal parts of the Siberian traps contain a high proportion of fragmental basaltic lavas. The source of these Siberian mafic tuffs is a matter of speculation (Nick Arndt, pers. comm., 2002). There may be a connection between them and the anhydrite- and coal-rich sedimentary sequence that these magmas passed through on their way to the surface. The unique size and richness of the Noril'sk–Talknakh ore deposits may be due to this interaction. The major impact that the Siberian traps have had on the environment could be linked with the explosive eruption of S- and CO2-rich basalts [21]. The kimberlite pipes to the east and the swath of silicic volcanic centers to the south (e.g., [108]) attest to the importance of this form of volcanism, with significant implications for transporting volcanic gases high into the upper atmosphere and ensuring subsequent global distribution.

Extinction patterns at the P/T boundary and extinction mechanisms have been reviewed by Wignall [190]. There now appears to be no doubt that the Siberian trap eruptions played a central role in what seems to be the largest Phanerozoic extinction event. Holser and Magaritz [80] had clearly emphasized the importance of events occurring in the 15 Ma period from the Late Permian to the Early Triassic, though until recently the absence of geochronological data has hindered quantitative understanding of the time scales of these events. They noted dramatic shifts in marine isotopic compositions of C, S and Sr. Several short-term excursions of δ13C, with a final drop at the P/T boundary, a sharp rise of 87Sr/86Sr after the boundary (because of increased continental weathering and acid rain; see the analysis by Dessert et al. [41] for the K/T boundary and Deccan traps summarized above), and most notably the waning of Late Paleozoic glaciations and rapid rise of sea level underlined the major climatic disturbances near the P/T boundary and their correlation with a major biotic event. It is now known that the time scale of these events is relatively compressed (i.e., of the order of 1 Ma between the regression and the P/T boundary [154]) but not instantaneous. The role of explosive volcanism that initially induces cooling was emphasized by Campbell et al. [21] (see also [100]). A major subsequent phase of global warming is then observed, and volcanic CO2 injection has been proposed as a driving mechanism [27,41,115]. This would also be responsible for a ‘superanoxic’ event in the marine realm [190]. The dramatic δ13C anomaly is now attributed to catastrophic release of highly volatile methane hydrates (chlathrates) buried at shallow depths [42], leading to a runaway greenhouse. This event is in turn assumed to have been triggered by the massive release of volcanic CO2. To be complete, we should mention the finding by Smith and Ward [168] of an ‘event bed’ in continental sections of the P/T boundary in South Africa, where mass extinction of terrestrial fauna and flora seems to have occurred in less than 50 ka, which the authors correlate with a catastrophic event. A pattern of gradual disappearance of fossils below the boundary is interpreted to be an artifact due to the Signor–Lipps effect [165]. However, the short time estimate of Smith and Ward [168] is based on a sedimentological indicator, namely estimates of flood plain accretion rates whose calibration is questionable, and there is as yet no available geochronologic control. Evidence for a bolide impact at P/T time has proven irreproducible [52,84] and contentious [98].

13 The Emeishan traps

Another, less advertised yet prominent flood basalt province of Late Permian age occurs in southwestern China. The Emeishan basalts outcrop over an area in excess of half a million square kilometers (e.g., [195,196]). They have been considered as being a true flood basalt province linked to a starting plume by Chung et al. [23]. Since their formation, the Emeishan traps have been severely broken up, deformed and eroded. Extrusion of Indochina to the southeast by more than 500 km, shear along the Ailao Shan–Red River fault zone and thrusting of Tibet along the Long Men Shan has resulted in major tectonic disruption of the former province, part of which can be traced far to the south, having been displaced by the Red River fault zone. Based on these, on the findings of the basalts in petroleum drill cores in the Sichuan basin and on observation of feeder dykes in the Yuanmou–Xichang region, Zhou et al. [196] estimate that the traps initially covered an area in excess of 2, and possibly as much as 5 Mkm2. Their thickness ranges from a few hundred meters up to 5 km, often in the 1–2-km range. The original volume therefore must have been in excess of 1 Mkm3.

The Emeishan basalts overlie the Early Permian Maokou Formation, and are overlain by the Late Permian Xuanwei and Wujiaping formations. The Wujiaping sedimentary sequence is of Wuchiapingian or Dzhulfian age [193]. The Dzhulfian immediately follows the Midian (and Wuchiapingian follows the Maokou); they are assumed to be lateral equivalents of the Guadalupian. Therefore, stratigraphic data suggest that the Emeishan traps were near the end of the Guadalupian, i.e. about 258 Ma old (see also [23,86]).

The Emeishan traps are interesting in that they illustrate in a way the applicability and ‘predictive’ power of the hypothesis that most major traps are linked to a major bioclimatic event (ocean anoxic event or mass extinction; e.g. [31,37,189]). Based on detailed analysis of the ratio of rates of extinction vs rates of origination, Stanley and Yang [169] discovered that the end of the Permian was actually marked not by one prolonged, but rather by two distinct and rather short extinction events. The one that preceded the terminal P/T boundary extinction occurred at the end of the Guadalupian, and some 5 to 8 Ma (depending on geological time scales, which in 1994 were considerably less accurate than implied by these numbers) before the Permo-Triassic boundary proper. Holser and Magaritz [80] had already pointed out that two sharp minima of sea level occurred at these two times. Wignall [190] notes that the earlier minimum was a major regional regression, and corresponded to an all-time low point of sea level in the Phanerozoic. Hallam and Wignall [66] and Courtillot et al. [37] independently proposed that the Emeishan traps were erupted at the end of the Guadalupian, causing the earlier phase of mass extinction, cooling and growth of continental ice, resulting sea-level drop and possibly rifting along the margins of the early Tethys. Based on magnetostratigraphic analysis (a single chron was found), Huang et al. [82] and Huang and Opdyke [81] have proposed that the overall duration of the event was short, as found in most other CFBs, probably less than 1 Ma.

Two recent studies have attempted to determine the absolute age of the Emeishan basalts. Zhou et al. [196] analyzed zircons from the Xinjie sill, which intrudes the traps and is interpreted as part of the feeder system of the main phase of eruption. They obtained a 206Pb/238U SHRIMP age of 259±3 Ma, consistent with an end-Guadalupian extinction. On the other hand, Lo et al. [107] used 40Ar/39Ar and inferred a main stage of flood magmatism at ∼251–253 Ma, and subordinate activity at ∼255 Ma. According to this interpretation, the main phase is somewhat older than the generally accepted 40Ar/39Ar age of the PT boundary and Siberian traps, yet younger than both the Guadalupian–Tatarian boundary and the age from Zhou et al. [196]. This is not consistent with a number of stratigraphic constraints, particularly the observation that the Emeishan Traps are unequivocally older than the end of the Wuchiapingian stage (see above), which has been dated recently at 255 Ma by 40Ar/39Ar [195] and 260 Ma by U/Pb [125,126]. It should be noted that the standard (LP-6) used as a neutron fluence monitor by Lo et al. [107] is known to be heterogeneous [11] and the basis for normalization to other standards may be compromised. We conclude that, although a correlation between the Emeishan Traps and the terminal Guadalupian extinction appears likely, inconsistencies in the dating must be resolved. Wignall [190] points out that the much smaller Panjal volcanics in northwestern India (12 000 km2, maximum thickness of 2.5 km) have essentially the same stratigraphic age.

14 The ‘Viluy’ traps

In his review, Wignall [190] notes the lack of pre-Permian LIPs, with no example found from the 240 Ma span from the Cambrian to the Middle Permian. Although Wignall also notes the absence of major rifting episodes during this interval, the large mass extinction at the Frasnian–Fammenian boundary (360 Ma) begs for a causative source. The crisis is marked by extinction of diverse marine groups, anoxia and rapid sea-level fluctuations. Minor, yet interesting volcanism is noted by several authors to have happened at about this time. Recent work [192] reveals basement uplift, magmatism and rifting in the Kola, Vyatka and Pripyat–Dniepr–Donets provinces, spanning almost 2000 km on the East European platform. Drilling and seismic data from the Pripyat–Dniepr–Donets rift system demonstrate rifting and intense volcanic activity in the Late Devonian. Two distinct sequences are recognized, respectively at the end of the Frasnian (364 Ma) and Famennian (354 Ma), when two major extinction events occurred (perhaps a double event as in the case of the end-Guadalupian and end-Permian extinctions?). Magmas with kimberlitic affinity are associated with the early stages. The period of most intense volcanism apparently coincides with a maximum of extension, and also with peak uplift on rift flanks. Dolerite dykes are widespread, whereas tholeiitic basaltic lavas occur only as erosional remnants of what Wilson et al. [192] assume to have been a much more extensive volcanic province. Lithospheric stretching factors appear too small for melting to have been driven by extension alone: volatiles in the lower lithosphere and asthenosphere, or an anomalously hot mantle due to a plume are invoked by the authors. This is supported by SrNd isotopic characteristics and large depths of origin (over 200 km) for at least some of the magmas. Therefore, volcanics in the Pripyat–Dnieper–Donets rift system have the appropriate age [141,191], but they are apparently volumetrically minor (<10000 km3).

Racki and House [142] review details of the transition, and note that “it is an inescapable conclusion (…) that all recently refined data support a long continued, multicausal interpretation of the F/F extinctions and an Earth-bound crisis rather than a worldwide cosmic cataclysm”. They emphasize the need for better radiometric dating of the contemporary volcanic activity, and of the age of the F/F boundary itself.

Kravchinsky et al. [101] studied basaltic sills and dykes, and kimberlite pipes from the eastern part of the Siberian platform. These are spread out over a few hundred kilometers in the Mir, Aikhal and Olenyek regions and in the Viluy and Markha basins, and Aikhal region. The sites can be divided in groups that yield distinct paleomagnetic poles. One group is consistent with the Siberian traps pole; the associated kimberlite pipes are evidence for an early violent phase of volcanism. The other group averages at a distinct position and corresponds to a separate family of kimberlite pipes.

Radioisotopic data for the kimberlites and biostratigraphic age estimates have been summarized in Brakhfogel [16], Krivonos [102], and Griffin et al. [61]. There are significant differences between the age estimates of different pipes obtained by different methods. Griffin et al. [61] emphasized this problem for different kimberlite fields, especially for the KAr method, and in several cases in contradiction with reliable geological dating, which suggests excess of argon. Presently, the age interval cannot be constrained to better than 377–350 Ma [101], which contains the age of the Frasnian–Fammenian extinction. It is therefore hard to escape the hypothesis that these kimberlite pipes could be all that remains of a major CFB that caused the extinction. Coeval volcanism occurs in the Donets and in the Kola Peninsula; hence, the original surface extent might have been similar to that of the CAMP. Samples have recently been obtained from the pipes and are being independently dated at the Orsay–IPGP and Berkeley facilities. Regarding the F/F extinctions, Uysal et al. [182] provided KAr data for clays from the Woodleigh impact structure in western Australia, which were interpreted to date the impact at ca 360 Ma. We refer to the problems with this interpretation that were raised by Renne et al. [155], and reiterate that an impact origin for this event is not supported by the available data.

15 Pre-Devonian traps

Although a trap that could be linked with the previous (first) largest Phanerozoic mass extinction at the Ordovician–Silurian boundary remains to be found, some mention can be made of pre-Devonian traps. The ∼723-Ma Natkusiak flood basalts on Victoria Island are located at a Neoproterozoic triple junction between Laurentia and Siberia [136]. It was noted [37] that this was close to the onset of silica biomineralization and to some major early phases of biological radiation of eukaryotic organisms. Very recently, Goddéris et al. [59] have built on the mechanism of Dessert et al. [41] to propose that the ∼700-Ma Snowball Earth event was triggered by massive flood basalt volcanism, as Rodinia was rifted to produce the proto-Pacific ocean. Other examples [3] include the ∼800-Ma ‘Antrim’ basalts of western and central Australia, the ∼1.1-Ga Keewanawan basalts, the ∼1.2-Ga Coppermine River basalts, the ∼1.8-Ga Eskimo basalts in the Belcher Islands and the oldest well-preserved suite of continental flood basalts at ∼2.7 Ga (the Fortescue and Ventersdopr basalts [4]). A recent SHRIMP age of 513±12 Ma has been determined by Hanley and Wingate [69] for an Early-Cambrian dolerite dyke corresponding to an intrusive phase of the Antrim Plateau volcanics. This is Australia's largest Phanerozoic flood basalt province, with an unknown original surface that must have been well in excess of 300 000 km2. This is very close to the major Archeocyatid extinction and Trilobite turnover that marks the Early–Middle Cambrian boundary (Joe Kirschvink, pers. comm., 2002). If petrological and geochemical arguments are accepted, most basalts and komatiites of Archean and Early-Proterozoic greenstone belts were once parts of oceanic plateaus: Arndt et al. [4] describe a long history of plume-related magmatism in western Australia, in which 3.2- and 3.5-Ga ultramafic and mafic volcanics apparently also formed as parts of oceanic plateaus such as Ontong Java. Ernst and Buchan [51] have reviewed a database of possible LIPs extending back to 3.8 Ga, and have recognized as many as 31 well-established events related to an arriving mantle plume head, and six clusters of synchronous plumes (lumping the Deccan and Greenland traps, the Ontong–Java young phase with Madagascar and Caribbean, the Ontong–Java older phase and Manihiki plateaus, the Parana and Etendeka, the Karoo and Ferrar, and finally the Mackenzie dyke swarm and Central Scandinavian dolerite complex at 1270 Ma). From this, they infer maximum size and time distribution in time and space of plumes, in particular an average rate of about one plume per 20 Ma [51].

16 Discussion and conclusion

Continental flood basalts, and the corresponding submarine oceanic plateaus, are quite impressive and unique geological features. Their rarity is remarkable, and a rather complete catalogue (of the order of a dozen) is becoming available for the last 300 or even 400 Ma (Table 1). Of course, a number of LIPs could have escaped detection, because they were subducted, accreted as allochtonous terranes, destroyed in collision zones, or buried by sediments (unlikely). Contrary to a number of other geodynamic phenomena, CFB volumes do not follow a scaling law: there are not far more smaller than larger events. On the contrary, CFBs (together with OPs, i.e. all LIPs) form a quasi unimodal distribution (Table 1): in terms of probable original volumes (e.g., [41]), the Ethiopian traps were in excess of 1 Mkm3, the NATVP, Deccan, Paraná, CAMP, Karoo and Emeishan in excess of 2 Mkm3, the Siberian traps in excess of 3 Mkm3, and the Caribbean and Ontong Java in excess of 4 Mkm3. Only the Columbia River, and possibly Panjal were an order of magnitude smaller. There are not, as might have been expected, a much larger number of Columbia-size traps than Deccan-size traps. This might be due to the fact that the (plume) process that leads to a CFB must have a minimum size in order to erupt through the lithosphere, and a maximum one linked to the maximum available energy. That a small plume such as the one that produced the Columbia FB could erupt through the lithosphere may be due to the fact that the region had been undergoing significant extension and thinning prior to eruption.

LIPs have been tentatively associated in one way or another (through time correlation) with events originating from the core (such as major changes in reversal frequency and long superchrons, e.g., [33]), through the mantle [123], to the lithosphere with continental breakup (e.g., [37,74]) and all the way to the biosphere with the proposed link with mass extinction and ocean anoxia events (e.g., [31,32,143,174,189]). These suggestions all rely on the accuracy of dating of the CFBs. We have shown in this review that, despite insufficient numbers of data and remaining uncertainties in available data (differences between laboratories, techniques, rocks measured, standards, alteration...), most if not all LIPs seem to share a common time pattern (a testable hypothesis), in which volcanism may span some 10 Ma, but where the bulk of the lava (say more than 80% in volume) is emitted in a duration of the order of or shorter than 1 million years. This in itself is an important geodynamical observation. If there were about 15 such events in the last 300 Ma of Earth history, we may say that the Earth was in a period of peak CFB volcanism five per cent of the time, assuming 1 Ma duration. Associated mean fluxes were from 1 to 5 km3 per year, and could have peaked at much higher values if the larger volume and shorter time estimates apply, and if the actual time distribution (bunching) of individual flows was non uniform, as is likely (see for instance the red bole distribution in the Deccan, or the accurate dates on silicic phases of volcanism in the Ethiopian traps). These rates can be compared to the annual production of oceanic crust, of the order of 20–25 km3/yr (e.g., [160]), or the annual flux from present day hot spots (i.e. plume tails, see [156]), of the order of 0.5 km3 yr−1 (e.g., [167]). They are clearly of major potential geodynamic significance. On the other hand, there is no indication of significant trends in (extrusive) crustal production rates, contrary to what is found by other authors (e.g., Fig. 5a in [48]). These ‘trends’ were largely biased by the heterogeneous estimate of the volume of the Ontong–Java plateau (see above).

Now, the present state of absolute dating of traps is also interesting. The correlation first proposed by Rampino and Stothers [143] and Courtillot [31] has steadily improved, with smaller uncertainties and more successful correlations (Fig. 1). The most recent of the largest mass extinctions (following Sepkoski [162]; modified following Stanley and Young [169]) correspond to a well dated trap: Deccan for the end-Cretaceous, CAMP for the end-Triassic, Siberian traps for the end-Permian and Emeishan traps for the end-Guadalupian. The next older one, the ‘Viluy’ traps may have been found and are currently being dated. Of all main Paleozoic mass extinctions, only the Ordovician one would remain to be found. Most other CFBs and other LIPs are now associated with either a second-order mass extinction, or a major bioclimatic event, or an ocean-anoxia event. Two apparent exceptions are the Ethiopian traps (which do not correspond to the Eocene–Oligocene boundary, yet this is a secondary bio-event and major bio-climatic disruptions may be coeval with the traps at the time of the Oi2 event), and the Paraná–Etendeka traps (which do not correlate with the Jurassic–Cretaceous boundary, which is not a major extinction level, but may correlate with the end-Valanginian biotic crisis). One might ask whether any CFB activity could be related to the Cambrian explosion. We have seen that the Antrim CFB has an age compatible with the biotic crisis at the end of the Early Cambrian. At the time of the explosion, the background rate of speciation was approximately 20 times larger than the average rate for the entire Mesozoic and over a dozen oscillations in inorganic δ13C, lasting less than 1 Ma each, correlate to biological evolutionary events (Kirschvink and Raub, this issue). Although individual events may bear some relation with features of individual CFBs, this unique succession of many events in a short time may make a CFB connection unlikely. In this issue, Kirschvink and Raub propose a scenario involving a ‘methane fuse’ to explain the Cambrian explosion, the carbon cycles, and related episodes of true polar wander.

Fig. 1

Correlation between the ages of LIPs (CFBs and OPs) on one hand, and those of mass extinctions and oceanic anoxia events on the other hand (all in Ma). This figure is updated from [31] and some later versions; see also [143] for what may be the first such plot. Values are from Table 1 and are discussed in the text. Uncertainties are visible only when they are larger than the diameters of the dots corresponding to individual events. The four largest recent mass extinctions and corresponding traps are in dark grey, the previous one in light grey is being radiometrically dated. Masquer

Correlation between the ages of LIPs (CFBs and OPs) on one hand, and those of mass extinctions and oceanic anoxia events on the other hand (all in Ma). This figure is updated from [31] and some later versions; see also Lire la suite

Corrélation entre les âges des grandes provinces magmatiques (LIP) et ceux des extinctions en masse et des événements anoxiques océaniques (tous en Ma). Cette figure complète et met à jour celle de la référence [31] et de versions ultérieures ; voir aussi [143] pour ce qui est sans doute la première version de ce type de figure. Les valeurs viennent du Tableau 1 et sont discutées dans le texte. Les barres d'incertitude ne sont visibles que quand elles sont supérieures au diamètre des points correspondant à chaque événement. Les quatre plus grandes extinctions récentes et les trapps correspondants sont en gris foncé, le précédent en gris clair étant en cours de datation radiométrique. Masquer

Corrélation entre les âges des grandes provinces magmatiques (LIP) et ceux des extinctions en masse et des événements anoxiques océaniques (tous en Ma). Cette figure complète et met à jour celle de la référence [31] et de versions ultérieures ; ... Lire la suite

One should of course at this point emphasize that the Chicxulub impact is thought by many authors to be the single cause of the end-Cretaceous extinction: these authors had naturally expected that other impacts would mark other extinctions. However, as noted by Alvarez [2], the Chicxulub impact remains the only one with a clear time correspondence to a mass extinction, despite two decades of hard work to find others. And there are a number of reasonably large and well-dated craters that correspond to no extinction or other geologically recorded bio-event. A recent paper by Jones et al. [89] proposes a model of impact-induced decompression melting as a possible mechanism for CFB generation. Based on hydrodynamic modeling, the authors propose instantaneous melting followed by long-lived mantle upwelling, and suggest that the end-Permian Siberian traps should be reconsidered as the result of a major impact. The mechanism may well be possible (analyzing it would be beyond the scope of this paper, and of our abilities), but it is easy to show that when the idea is applied to actual data, it is untenable for Earth LIPs. The paper unfortunately fails to quote a wealth of field, geochronologic, paleomagnetic and other published evidence on (i) the duration of LIP volcanism, (ii) the detailed dating of the Siberian traps and Meishan sections, (iii) the fact that the K/T Ir level is within the reversed chron 29R in the Deccan, hundreds of thousands of years after the onset of volcanism, (iv) the fact that field evidence for an impact at P/T time has been at best equivocal, attempts to replicate the results being unsuccessful... The discussion and conclusion of Jones et al. [89] are largely unsubstantiated, as can readily be seen from the data and observations recalled in the present review.

Climatic scenarios have been constructed to account for changes in the ocean and atmosphere imparted by a major impact (e.g., [137,138,178]) and a flood basalt or oceanic plateau event (see [41,59], or Fig. 6 in [190]). Pope [139] has actually shown that the original K/T impact extinction scenario, formulated in terms of the shutdown of photosynthesis by submicron size dust, was not valid. Although much work remains to be done, it appears that both types of phenomena can lead to disruption of the climate and biosphere on a global scale, via SO2 and CO2 emission, succeeding episodes of cooling and warming, acid rain, etc.

Our main point is that all major extinctions in the last 300 Ma have an associated trap, but only one has an impact. Few major flood basalts have no associated bio- or climatic disruption, whereas many impacts have no such associated sequence. We grant that the Chicxulub impact is the largest known on Earth, yet it might (given uncertainties) be the only such event in the whole Phanerozoic, i.e. a once per billion year event, rather than a once per 100 Ma event, as generally assumed – estimates of terrestrial meteoritic infall being extremely poorly calibrated. Also, we should point out that there is good evidence that a flood basalt alone can produce a mass extinction, whereas the only clear evidence for impact is at a time when a flood basalt event was already underway. Indeed, discovery of the Iridium anomaly in sediments in the Kutch region of the Deccan [14,38] shows that volcanism had been going on for a (few) hundred thousand years before the bolide hit. It can therefore be proposed that the impact immediately led to extinctions of large numbers of already stressed species, explaining at the same time why other large impacts have no associated extinction, and why the Chicxulub effect did have such large, quasi instantaneous effects. Therefore, the ‘impact’ and ‘volcanic’ hypotheses for mass extinctions should not be opposed. That the K/T impact did occur seems clear, as does the fact that the Deccan erupted around K/T time. But our analysis leads us to propose the hypothesis that LIP volcanism was the main agent of mass extinction in the Phanerozoic, whereas impacts were likely the prominent agent of change in the first billion years of Earth history. Should the above analysis be vindicated by further (much needed) work, it appears that ages of LIPs could be used as tie points and references for many key boundaries of the geological time scale at least at the 1 Ma absolute age uncertainty level. In that sense, much more joint geochronological (coupled with magnetostratigraphic, biostratigraphic and geochemical) work by several laboratories (cross-checking their instruments and standards) appears to be well worth the effort.

Altogether, three different time scales of extinction have been documented: the ultra-short one linked to impact (one example), the geologically catastrophic but slower one, of the order of 105 to 106 years, linked to the peak emission of a flood basalt province (some fifteen examples), and a slower geological one of the order of 107 years, corresponding to regression–transgression events. Some ten examples, often at the same general time as CFBs, are discussed in detail by Hallam and Wignall [65]. The end-Cretaceous extinction is associated with a major regression. Severe regression is also found at the end-Guadalupian and end-Triassic events. But the Frasnian–Famennian is a time of sea-level highstand, and the end-Permian extinction is argued by Hallam and Wignall [65] to have been a time of major transgression. These authors conclude that rapid high-amplitude regressive–transgressive couplets are frequently observed at times of mass extinctions. LIPs and regression or transgression events can be causally related through Earth convective processes of different speed and efficiency. Long-term regression and transgression are related to changes in mid-ocean ridge volumes through changes in global plate velocities. They reflect changes in the intensity of ‘normal’ mantle convection, but may also be related to the impingement of superplumes at the base of the lithosphere (e.g., [65]). Short-term LIPs are related to plumes, i.e. instabilities which provide another, sometimes more efficient, mode of evacuation of excess heat from the Earth's (deep) mantle (see, e.g., [20,62]). In a recent review of details in the pattern of extinctions at the Cretaceous–Tertiary boundary in the marine realm, Keller [91] argues that the boundary kill-effect was largely restricted to tropical and subtropical populations that had already been severely reduced and actually accounted for less than 10% of the total foraminiferal population. The paleontological record therefore seems to support both long-term (climate, sea level) and short-term (impact, volcanism) time scales in the mass extinction pattern [91]. The occurrence of impact and CFB at the K/T can only be a coincidence, and, as suggested above, the K/T impact effects may have been vastly amplified by pre-stressing due to the Deccan CFB and might not have been so noticeable otherwise.

In a bold paper, Morgan et al. [124] believe that geologic evidence for four coincidences between impact signals and flood basalts imply causal links (we believe only one such coincidence is well established). Morgan et al. propose a model in which conditions associated with cratonic flood basalts may trigger both a geologic ‘impact signal’ and a mass extinction. The link is a huge explosive carbon-rich gas release event triggered by plume incubation. These authors argue that explosive deep lithospheric blasts can create shock waves, cavitation and mass-jet formation, and transport a large mass of shocked crust into super-stratospheric trajectories. However novel and interesting, this suggestion needs be invoked only when ‘impact signals’ are observed, and we believe that such is the case only at the K/T boundary. Still, it is the first time an internal dynamic process is suggested that could produce shocked minerals, the best evidence for meteorite impact so far.

Finally, we note that details of the specific paleoenvironmental effects – the killing mechanisms – of CFB/LIP emplacement remain fuzzy because the atmospheric loading history of volcanogenic volatiles during these events is not known with sufficient resolution. It is therefore desirable, and should become a future research priority, to develop dating methods capable of resolving time within a sequence of flood basalt eruptions. Particularly promising are dating methods based on accumulation of cosmogenic nuclides, which could potentially measure the amount of time a given flow top is exposed before becoming shielded from cosmic radiation by the subsequent flow. Also, it remains a significant challenge to petrologists to quantify the amounts of various volatile species actually delivered by LIP's to the atmosphere. It is gratifying that this fundamental outstanding problem seems to be receiving some attention lately, and we look forward with optimism that improved estimates will be forthcoming.

Acknowledgements

Much of this paper was prepared while V.C. enjoyed a Moore Fellowship for which he is particularly grateful to Caltech, and to its Division of Planetary and Geological Sciences and to its Chairman Ed Stolper. We thank Louis de Bonis for pointing out the paper by Buffetaut et al. [17]. We thank Stuart Gilder and Xavier Quidelleur for careful reading and comments, Annie Arnaud-Vanneau for suggestions, and Nick Arndt and Mike Coffin for extensive comments and suggestions. IPGP Contribution NS 1853.


Bibliographie

[1] C.J. Allègre; J.L. Birck; F. Capmas; V. Courtillot Age of the Deccan traps using Re-187-Os-187 systematics, Earth Planet. Sci. Lett., Volume 170 (1999), pp. 197-204

[2] W. Alvarez, Compiling the evidence for impact at seven mass extinctions, abstract in Impacts and the origin, evolution, and extinction of life, Rubey colloquium, UCLA, 3–7, 2002

[3] N.T. Arndt; F. Albarède; E.G. Nisbet Mafic and ultramafic magmatism (M.J. de Wit; L.D. Ashwal, eds.), Greenstone Belts, Oxford Science Publications, Oxford, 1997, pp. 233-254

[4] N.T. Arndt; G. Bruzak; T. Reischmann The oldest continental and oceanic plateaus – Geochemistry of Basalts and Komatiites of the Pilbara Craton, Australia, Geol. Soc. Am. Spec. Pap., Volume 352 (2001), pp. 359-389

[5] M.P. Aubry, C.C. Swisher, D.V. Kent, W.A. Bergren, Paleogene time scale miscalibration: evidence from the dating of the North Atlantic igneous province. Comment, Geology (submitted)

[6] D. Ayalew; P. Barbey; B. Marty; L. Reisberg; G. Yirgu; R. Pik Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts, Geochim. Cosmochim. Acta, Volume 66 (2002), pp. 1429-1448

[7] S. Bajpai, Fossil records in the rich Deccan intertrappean beds, Anjar: data and inferences, Deccan trap basalts and the K/T boundary, Phys. Res. Lab., Ahmedabad, India, 1999, Abstracts, pp. 1–2

[8] S. Bajpai; G.V. Prasad Cretaceous age for Ir-rich Deccan intertrappean deposits: paleontological evidence from Anjar, western India, J. Geol. Soc. Lond., Volume 157 (2000), pp. 257-260

[9] J.L. Baker; M.M. Snee A brief Oligocene period of flood volcanism in Yemen: implications for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction, Earth Planet. Sci. Lett., Volume 138 (1996), pp. 39-55

[10] A.K. Baksi; E. Farrar Ar-40/Ar-39 dating of the Siberian traps, USSR – Evaluation of the ages of the 2 major extinction events relative to episodes of flood-basalt volcanism in the USSR and the Deccan traps, India, Geology, Volume 19 (1991), pp. 461-464

[11] A.K. Baksi; D.A. Archibald; E. Farrar Intercalibration of 40Ar/39Ar dating standards, Chem. Geol., Volume 129 (1996), pp. 307-324

[12] A.R. Basu; R.J. Poreda; P.R. Renne; F. Teichmann; Y.R. Vasiliev; N.V. Sobolev; B.D. Turrin High He3 plume origin and temporal-spatial evolution of the Siberian flood basalts, Science, Volume 269 (1995), pp. 822-825

[13] F. Begemann; K.R. Ludwig; G.W. Lugmair; K. Min; L.E. Nyquist; P.J. Patchett; P.R. Renne; C.-Y. Shih; I.M. Villa; R.J. Walker Call for an improved set of decay constants for geochronological use, Geochim. Cosmochim. Acta, Volume 65 (2001), pp. 111-121

[14] N. Bhandari; P.N. Shukla; Z.G. Ghevariya; S. Sundaram Impact did not trigger Deccan volcanism: evidence from Anjar K/T boundary intertrappean sediments, Geophys. Res. Lett., Volume 22 (1995), pp. 433-436

[15] S.A. Bowring; D.H. Erwin; Y. Jin; M.W. Martin; K. Davidek; W. Wang U/Pb zircon geochronology and tempo of the end-Permian mass extinction, Science, Volume 280 (1998), pp. 1039-1045

[16] F.F. Brakhfogel Geological aspects of kimberlite mag-matism in the northeastern Siberian Platform, Publishing of the Yakutian Institute of Geology, Russian Academy of Sciences, Yakutsk, 1984 463 p. (in Russian)

[17] E. Buffetaut et al. The first giant dinosaurs: a large sauropod from the Late Triassic of Thailand, C. R. Palevol, Volume 1 (2002), pp. 103-109

[18] K. Caldeira; M.R. Rampino Carbon-dioxide emissions from Deccan volcanism and a K/T-boundary greenhouse effect, Geophys. Res. Lett., Volume 17 (1990), pp. 1299-1302

[19] V.E. Camp; M.E. Ross Mapping the Steens–Columbia River basalt connection: implications for the extent, volume, and magma supply rate of CFB volcanism, Geol. Soc. Am. Abstr. with Programs, Volume 32 (2000) no. 7, p. A159

[20] I.H. Campbell; R.W. Griffiths Implications of mantle plume structure for the evolution of flood basalts, Earth Planet. Sci. Lett., Volume 99 (1990), pp. 79-93

[21] I.H. Campbell; G.K. Czamanske; V.A. Fedorenko; R.I. Hill; V. Stepanov Synchronism of the Siberian traps and the Permian–Triassic boundary, Science, Volume 258 (1992), pp. 1760-1763

[22] L.M. Chambers; M.S. Pringle Age and duration of activity at the Isle of Mull Tertiary igneous centre, Scotland, and confirmation of the existence of subchrons during Anomaly 26r, Earth Planet. Sci. Lett., Volume 193 (2001) no. 3–4, pp. 333-345

[23] S.L. Chung; B.M. Jahn; G. Wu; C.H. Lo; B. Cong The Emeishan flood basalt in SW China: a mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian–Triassic boundary, AGU Geodynamics Series, Volume 27 (1998), pp. 47-58

[24] J.C. Claoué-Long; Z. Zhang; G. Ma; S. Du The age of Permian–Triassic boundary, Earth Planet. Sci. Lett., Volume 105 (1991), pp. 182-190

[25] M.F. Coffin; O. Eldholm Large igneous provinces – Crustal structure, dimensions, and external consequences, Rev. Geophys., Volume 32 (1994), pp. 1-36

[26] M.L. Coffin; M.S. Pringle; R.A. Duncan; T.P. Gladczenko; M. Storey Kerguelen hot spot magma output since 130 Ma, J. Petrol., Volume 43 (2002), pp. 1121-1139

[27] P.J. Conaghan; S.E. Shaw; J.J. Veevers Sedimentary evidence of the Permian/Triassic global crisis induced by the Siberian hotyspot, Can. Soc. Pet. Geol. Mem., Volume 17 (1994), pp. 785-795

[28] E. Coulié, Chronologie 40Ar/39Ar et K/Ar de la déchirure continentale en Afar depuis 30 Ma, PhD thesis, University Paris-Sud, France, 2001, 331 p

[29] E. Coulié; X. Quidelleur; P.-Y. Gillot; V. Courtillot; J.-C. Lefèvre; S. Chiesa Comparative KAr and Ar/Ar dating of Ethiopian and Yemenite Oligocene volcanism: implications for timing and duration of the Ethiopian traps, Earth Planet. Sci. Lett., Volume 206 (2003), pp. 477-492

[30] V. Courtillot A volcanic eruption?, Sci. Am., Volume 263 (1990), pp. 85-92

[31] V. Courtillot Mass extinctions in the last 300 million years: One impact and seven flood basalts?, Isr. J. Earth Sci., Volume 43 (1994), pp. 255-266

[32] V. Courtillot Evolutionary Catastrophes: The Science of Mass Extinction, Cambridge University Press, Cambridge, 1999 (171 p)

[33] V. Courtillot; J. Besse Magnetic field reversals, polar wander, and core-mantle coupling, Science, Volume 237 (1987), pp. 1140-1147

[34] V. Courtillot; J. Besse; D. Vandamme; J.-J. Jaeger; R. Montigny Deccan trap volcanism as a cause of biologic extinctions at the Cretaceous–Tertiary boundary?, C. R. Acad. Sci. Paris, Ser. II, Volume 303 (1986), pp. 863-868

[35] V. Courtillot; J. Besse; D. Vandamme; R. Montigny; J.-J. Jaeger; H. Cappetta Deccan flood basalts at the Cretaceous/Tertiary boundary?, Earth Planet. Sci. Lett., Volume 80 (1986), pp. 361-374

[36] V. Courtillot; G. Féraud; H. Maluski; D. Vandamme; M.G. Moreau; J. Besse The Deccan flood basalts and the Cretaceous–Tertiary boundary, Nature, Volume 333 (1988), pp. 843-845

[37] V. Courtillot; C. Jaupart; I. Manighetti; P. Tapponnier; J. Besse On causal links between flood basalts and continental breakup, Earth Planet. Sci. Lett., Volume 166 (1999), pp. 177-195

[38] V. Courtillot; Y. Gallet; R. Rocchia; G. Féraud; E. Robin; C. Hofmann; N. Bhandari; Z.G. Ghevariya Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province, Earth Planet. Sci. Lett., Volume 182 (2000), pp. 137-156

[39] V. Courtillot; A. Davaille; J. Stock; J. Besse Three distinct types of hot spots in the Earth's mantle, Earth Planet. Sci. Lett., Volume 205 (2003), pp. 295-308

[40] J.-F. Deconinck; P.-Y. Gillot; M. Steinberg; A. Strasser Syn-depositional, low temperature illite formation at the Jurassic–Cretaceous boundary (Purbeckian) in the Jura Mountains (Switzerland and France); K/Ar and δ18O evidence, Bull. Soc. géol. France, Volume 172 (2001), pp. 343-348

[41] C. Dessert; B. Dupré; L.M. François; J. Schott; J. Gaillardet; G. Chakrapani; S. Bajpai Erosion of Deccan traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater, Earth Planet. Sci. Lett., Volume 188 (2001), pp. 459-474

[42] G.R. Dickens; C.K. Paull; P. Wallace Direct measurement of in-situ methane quantities in a large gas-hydrate reservoir, Nature, Volume 385 (1997), pp. 426-428

[43] A.P. Dickin The North Atlantic tertiary province (J.D. MacDougall, ed.), Flood Basalts, Kluwer Academic Publishers, Hingham, MA, 1988, pp. 111-149

[44] R.A. Duncan, A timeframe for construction of the Kerguelen Plateau and Broken Ridge, J. Petrol. (in press)

[45] R.A. Duncan; D.G. Pyle Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary, Nature, Volume 333 (1988), pp. 841-843

[46] R.A. Duncan; P.R. Hooper; J. Rehacek; J.S. Marsh; A.R. Duncan The timing and duration of the Karoo igneous event, southern Gondwana, J. Geophys. Res., Volume 102 (1997), pp. 18127-18138

[47] G.R. Dunning; J.P. Hodych U/Pb zircon and baddeleytic ages for the Palisades and Gettysburg sills of the northeastern United States: implications for the age of the Jurassic/Triassic boundary, Geology, Volume 18 (1990), pp. 795-798

[48] O. Eldholm; M.F. Coffin Large Igneous Provinces and Plate Tectonics, The History and Dynamics of Global Plate Motions, Geophys. Monogr., 121, 2000, pp. 309-326

[49] J. Encarnacion; T.H. Fleming; D.H. Elliot; H.V. Eales Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana, Geology, Volume 24 (1996), pp. 535-538

[50] M. Ernesto; M.I.B. Raposo; L.S. Marques; P.R. Renne; L.A. Diogo; A. de Min Paleomagnetism, geochemistry and 40Ar/39Ar dating of the north-eastern Paraná Magmatic Province: tectonic implications, J. Geodyn., Volume 28 (1999), pp. 321-340

[51] R.E. Ernst; K.L. Buchan Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces, J. Geodyn., Volume 34 (2002), pp. 309-342

[52] K.A. Farley; S. Mukhopadyay An extraterrestrial impact at the Permian–Triassic boundary?, Science, Volume 293 (2002), p. 2343a (technical comments, www.sciencemag.org)

[53] G. Féraud; V. Courtillot Did Deccan volcanism pre-date the Cretaceous–Tertiary transition – Comment, Earth Planet. Sci. Lett., Volume 122 (1994), pp. 259-262

[54] F. Fluteau; G. Ramstein; J. Besse Simulating the evolution of the African and Indian monsoons during the past 30 Ma using atmospheric general circulation model, J. Geophys. Res., Volume 104 (1999), pp. 11995-12018

[55] F.A. Frey; N.J. McNaughton; D.R. Nelson; J.R. de Laeter; R.A. Duncan Petrogenesis of the Bunbury basalt, western Australia: interaction between the Kerguelen plume and Gondwana lithosphere?, Earth Planet. Sci. Lett., Volume 144 (1996), pp. 163-183

[56] F.A. Frey et al. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian ocean, Earth Planet. Sci. Lett., Volume 176 (2000), pp. 73-89

[57] L. Geoffroy; J.-P. Callot; S. Scaillet; A. Skuce; J.-P. Gélard; M. Ravilly; J. Angelier; B. Bonin; C. Cayet; K. Perrot; C. Lepvrier Southeast Baffin volcanic margin and the North American–Greenland plate separation, Tectonics, Volume 20 (2001), pp. 566-584

[58] T.P. Gladczenko; K. Hinz; O. Eldholm; H. Meyer; S. Neben; J. Skojseid South Atlantic volcanic margins, J. Geol. Soc. Lond., Volume 154 (1997), pp. 465-470

[59] Y. Goddéris, Y. Donnadieu, A. Nédélec, B. Dupré, C. Dessert, A. Grard, G. Ramstein, L.M. François, The Sturtian ‘snowball’ glaciation: fire and ice, Earth Planet. Sci. Lett. (submitted)

[60] F.M. Gradstein; F.P. Agterberg; J.G. Ogg; J. Hardenbol; P. van Veen; J. Thierry; Z. Huang A Mesozoic time scale, J. Geophys. Res., Volume 99 (1994), pp. 24051-24074

[61] W.L. Griffin; C.G. Ryan; F.V. Kaminsky; S.Y. O'Reilly; L.M. Natapov; T.T. Win; P.D. Kinny; I.P. Ilupin The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton, Tectonophysics, Volume 310 (1999), pp. 1-35

[62] R.W. Griffiths; I.H. Campbell Interaction of mantle plume heads with the Earth's surface and onset of small-scale convection, J. Geophys. Res., Volume 96 (1991), pp. 18295-18310

[63] E. Gurevitch; M. Westphal; J. Daragan-Suchov; H. Feinberg; J.-P. Pozzi; A.N. Khramov Paleomagnetism and magnetostratigraphy of the traps from western Taymir (northern Siberia) and the Permo-Triassic crisis, Earth Planet. Sci. Lett., Volume 136 (1995), pp. 461-473

[64] A. Hallam Cyclothems, transgressions and faunal change in the Lias of North West Europe, Trans. Edinburgh Geol. Soc., Volume 18 (1961), pp. 132-174

[65] A. Hallam Mass Extinctions and their Aftermath, Oxford University Press, Oxford, UK, 1997 (320 p)

[66] A. Hallam; P.B. Wignall Mass extinctions and sea-level changes, Earth Sci. Rev., Volume 48 (1999), pp. 217-250

[67] W.E. Hames; P.R. Renne; C.R. Ruppel New evidence for geologically-instantaneous emplacement of Earliest Jurassic Central Atlantic magmatic province basalts on the North American margin, Geology, Volume 28 (2000), pp. 859-862

[68] M.A. Hamilton; D.G. Pearson; R.N. Thompson; S.P. Kelley; C.H. Emeleus Rapid eruption of Skye lavas inferred from precise UPb and ArAr dating of the Rum and Cuillin plutonic complexes, Nature, Volume 394 (1998) no. 6690, pp. 260-263

[69] L. Hanley; M. Wingate SHRIMP zircon age for an Early Cambrian dolerite dyke: an intrusive phase of the Antrim Plateau Volcanics of northern Australia, Austr. J. Earth Sci., Volume 47 (2000) no. 6, pp. 1029-1040

[70] H.J. Hansen; D.M. Mohabey; P. Toft No K/T boundary at Anjar, Gujarat, India: evidence from magnetic susceptibility and carbon isotopes, Proc. Indian Acad. Sci. (Earth Planet. Sci.), Volume 110 (2001), pp. 133-142

[71] B.U. Haq; J. Hardenbol; P.R. Vail Chronology of fluctuating sea levels since the Triassic, Science, Volume 235 (1987), pp. 1156-1166

[72] S.P. Hesselbo; D.R. Gröcke; H.C. Jenkyns; C.J. Bjerrum; P. Farrimond; H.S. Morgans Bell; O.R. Green Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event, Nature, Volume 406 (2000), pp. 392-416

[73] S.P. Hesselbo; S.A. Robinson; F. Surlyk; S. Piasecki Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism?, Geology, Volume 30 (2002), pp. 251-254

[74] R.I. Hill Starting plumes and continental breakup, Earth Planet. Sci. Lett., Volume 104 (1991), pp. 398-416

[75] K. Hinz A hypothesis on terrestrial catastrophes wedges of very thick oceanward dipping layers beneath passive margins, Geol. Jahrb., Volume 22 (1981), pp. 5-28

[76] C. Hofmann, Datation 40Ar/39Ar et paléomagnétisme des traps d'Éthiopie, du Deccan et de Sibérie, Thesis, University Paris-7–IPGP, Paris, France, 1997, 200 p

[77] C. Hofmann; V. Courtillot; G. Féraud; P. Rochette; G. Yirgu; E. Ketefo; R. Pik Timing of the Ethiopian flood basalt event and implications for plume birth and global change, Nature, Volume 389 (1997), pp. 838-841

[78] C. Hofmann; G. Féraud; V. Courtillot Ar-40/Ar-39 dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan Traps, Earth Planet. Sci. Lett., Volume 180 (2000), pp. 13-27

[79] W.S. Holbrook; H.C. Larsen; J. Korenaga; T. Dahl-Jensen; J.D. Reid; P.R. Kelemen; J.R. Hopper; G.M. Kent; D. Lizzaralde; S. Bernstein; R.S. Detrick Mantle thermal structure and active upwelling during continental breakup in the North Atlantic, Earth Planet. Sci. Lett., Volume 190 (2001), pp. 251-266

[80] W.T. Holser; M. Magaritz Events near the Permian–Triassic boundary, Mod. Geol., Volume 11 (1987), pp. 155-180

[81] K. Huang; N.D. Opdyke Magnetostratigraphic investigations of an Emeishan basalts section in western Guizhou Province, southwest China, Abstract, Fall Meeting, American Geophysical Union, Transactions AGU, Volume 77 (1996), p. F171

[82] K. Huang; N.D. Opdyke; X. Peng; J. Li Paleomagnetic results from the Upper Permian of the eastern Qiangtang terrane of Tibet and their tectonic implications, Earth Planet. Sci. Lett., Volume 111 (1992), pp. 1-10

[83] S. Ingle; D. Weis; J.S. Scoates; F.A. Frey Relationship between the early Kerguelen plume and continental flood basalts pf the paleo-Eastern Gondwanan margins, Earth Planet. Sci. Lett., Volume 197 (2002), pp. 35-50

[84] Y. Isozaki An extraterrestrial impact at the Permian–Triassic boundary?, Science, Volume 293 (2002), p. 2343a (technical comments, www.sciencemag.org)

[85] H.C. Jenkyns Mesozoic anoxic events and palaeoclimate, Zentralbl. Geol. Palaeontol., Volume 1 (1999), pp. 943-949

[86] Y. Jin; J. Shang The Permian of China and its interregional correlation (H. Yin; J.M. Dickins; G.R. Shi; J. Tong, eds.), Permian–Triassic evolution of Tethys and western circum-Pacific, Developments in Paleontology and Stratigraphy, 18, Elsevier, Amsterdam, 2000, pp. 71-98

[87] D.W. Jolley; B. Clarke; S. Kelley Paleogene timescale miscalibration: evidence from the dating of the North Atlantic igneous province, Geology, Volume 30 (2002), pp. 7-10

[88] D.L. Jones; R.A. Duncan; J.C. Briden; D.E. Randall; C. McNiocaill Age of the Batoka basalts, northern Zimbabwe, and the duration of the Karoo Large Igneous province magmatism, Geochem. Geophys. Geosyst., Volume 2 (2001) (Pap. No. 2000GC000110)

[89] A.P. Jones; G.D. Price; N.J. Price; P.S. DeCarli; R.A. Clegg Impact-induced melting and the development of large igneous provinces, Earth Planet. Sci. Lett., Volume 202 (2002), pp. 541-561

[90] S.L. Kamo; G.K. Czamanske; T.E. Krogh A minimum UPb age for Siberian flood basalt volcanism, Geochim. Cosmochim. Acta, Volume 60 (1996), pp. 3505-3511

[91] G. Keller The end-Cretaceous mass extinction in the marine realm: year 2000 assessment, Planet. Space Sci., Volume 49 (2001), pp. 817-830

[92] R.W. Kent, M.S. Pringle, R.D. Müller, A.D. Saunders, N.C. Ghose, 40Ar/39Ar geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau, J. Petrol. (in press)

[93] A.C. Kerr Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary, J. Geol. Soc. Lond., Volume 155 (1998), pp. 619-626

[94] A. Kerr; J. Tarney; G. Marriner; A. Nivia; A. Saunders The Caribbean–Colombian Cretaceous Igneous Province: the internal anatomy of an oceanic plateau (J.J. Mahoney; M.F. Coffin, eds.), Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism, American Geophysical Union, Washington, 1997, pp. 123-144

[95] B. Kieffer, N. Arndt, H. Lapierre, F. Bastien, A. Pécher, F. Keller, C. Meugniot, G. Yirgu, D. Ayalew, D. Bosch, D. Weis, D.A. Jerram, The transition from plateau to shield volcanism in Ethiopia: a petrological and geochemical study, J. Petrol. (submitted)

[96] K.B. Knight, P.R. Renne, A. Halkett, N. White, 40Ar/39Ar dating of the Rajahmundry Traps, eastern India, and their relationship to the Deccan Traps, Earth Planet. Sci. Lett. (in press)

[97] C. Koeberl; R.A. Armstrong; W.U. Reimold Morokweng, South Africa: a large impact structure of Jurassic–Cretaceous boundary age, Geology, Volume 25 (1997), pp. 731-734

[98] C. Koeberl; L. Gilmour; W.U. Reimold; P. Claeys; B. Ivanov End-Permian catastrophe by bolide impact: Evidence of a gigantic release of sulfur from the mantle: comment, Geology, Volume 30 (2002), pp. 855-856

[99] M.A. Kominz; S.F. Pekar Oligocene eustacy from two-dimensional sequence startigraphic backstripping, Geol. Soc. Am. Bull., Volume 113 (2002)

[100] H.W. Kozur Some aspects of the Permian–Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 143 (1998), pp. 227-272

[101] V.A. Kravchinsky; K.M. Konstantinov; V. Courtillot; J.I. Savrasov; J.-P. Valet; S. Chernyi; S. Mishenin; B. Parasotka Paleomagnetism of East Siberian traps and kimberlites: two new poles and paleogeographic reconstructions at about 360 and 250 Ma, Geophys. J. Int., Volume 148 (2002), pp. 1-33

[102] V.F. Krivonos Relative and absolute age of kimberlites, Otechestvennaya Geologiya, Volume 1 (1997), pp. 41-51 (in Russian)

[103] R.A. Lange Constraints on the preeruptive volatile concentrations in the Columbia River flood basalts, Geology, Volume 30 (2002), pp. 179-182

[104] H.C. Larsen; A.D. Saunders Tectonism and volcanism at the southeast Greenland rifted margin: a record of plume impact and later continental rupture, Proc. ODP, Sci. Results, College Station, TX (A.D. Saunders; H.C. Larsen; S.W. Wise, eds.) (Ocean Drilling Program), Volume 152 (1998), pp. 503-533

[105] S.W. Leavitt Annual volcanic carbon dioxide emission: an estimate from eruption chronologies, Environ. Geol., Volume 4 (1982), pp. 15-21

[106] E.N. Lind; S.V. Kropotov; G.K. Czamanske; S.C. Grommé; V.A. Fedorenko Paleomagnetism of the Siberian flood basalts of the Noril'sk area: a constraint on eruption duration, Int. Geol. Rev., Volume 36 (1994), pp. 1139-1150

[107] C.H. Lo; S.L. Chung; T.Y. Lee; G. Wu Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events, Earth Planet. Sci. Lett., Volume 198 (2002), pp. 449-458

[108] J.O. Lyons; R.S. Coe; X. Zhao; P.R. Renne; A.Y. Kazansky; A.E. Izokh; L.V. Kungurtsev; D.V. Mitrokhin Paleomagnetism of the Early Triassic Semitau Igneous Series E. Kazakhstan, J. Geophys. Res., Volume 107 (2002) (10.1029/2001JB000521)

[109] G.R. McGhee The ‘multiple impact hypothesis’ for mass extinction: a comparison of the Late Devonian and the Late Eocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 176 (2001), pp. 47-58

[110] J.G. McHone Broad-terrane Jurassic flood basalts across northwestern North America, Geology, Volume 24 (1996), pp. 319-322

[111] D.M. McLean Mantle degassing unification of the Trans-KT geobiological record, Evol. Biol., Volume 19 (1985), pp. 287-313

[112] J.J. Mahoney; M.F. Coffin Large igneous provinces: continental, oceanic, and planetary flood volcanism, Geophys. Monogr., Volume 100 (1997), pp. 1-438

[113] J.J. Mahoney; M. Storey; R.A. Duncan; K.J. Spencer; M. Pringle Geochemistry and geochronology of Leg130 basement lavas: nature and origin of the Ontong–Java Plateau, in: W.H. Berger (Ed.), Proc. Ocean Drilling Prog., Volume 130 (1993), pp. 3-22

[114] J.J. Mahoney; R.A. Duncan; W. Khan; E. Gnos; G.R. McCormick Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hot spot and Deccan traps, Earth Planet. Sci. Lett., Volume 203 (2002), pp. 295-310

[115] E.E. Martin; J.J. Macdougall Sr and Nd isotopes at the Permian/Triassic boundary: a record of climate change, Chem. Geol., Volume 125 (1995), pp. 73-100

[116] A. Marzoli; P.R. Renne; E.M. Piccirillo; M. Ernesto; G. Bellieni; A. De Min Extensive 200 million year old continental flood basalts of the central Atlantic magmatic province, Science, Volume 284 (1999), pp. 616-618

[117] A. Marzoli; L. Melluso; V. Morra; P.R. Renne; I. Sgrosso; M. D'Antonio; L. Duarte; E.A.A. Morais; E.A.A. Morais; G. Ricci Geochronology and petrology of cretaceous basaltic magmatism in the Kwanza Basin (western Angola), and relationships with the Paraná–Etendeka flood basalt province, J. Geodyn., Volume 28 (1999), pp. 341-356

[118] M.A. Menzies; J. Baker; D. Bosence; C. Dart; I. Davison; A. Hurford; M. Al'Kadasi; K. McClay; G. Nichols; A. Al Subbary; A. Yelland The timing of magmatism, uplift and crustal extension: preliminary observations from Yemen, Geol. Soc. Spec. Publ., Volume 68 (1992), pp. 293-304

[119] K.G. Miller; J.D. Wright; R.G. Fairbanks Unlocking the ice-house: Oligocene–Miocene oxygen isotopes, eustacy and margin erosion, J. Geophys. Res., Volume 96 (1991), pp. 6829-6848

[120] K. Min; R. Mundil; P.R. Renne; K.R. Ludwig A test for systematic errors in 40Ar/39Ar geochronology through comparison with U–Pb analysis of a 1.1-Ga rhyolite, Geochim. Cosmochim. Acta, Volume 64 (2000) no. 1, pp. 73-98

[121] P. Mohr; B. Zanettin The Ethiopian flood basalt province (J.D. MacDougall, ed.), Continental Flood Basalts, Kluwer, Dordrecht, The Netherlands, 1998, pp. 63-110

[122] A. Montanari; A. Deino; R. Coccio; V.E. Langenheim; R. Capo; S. Monechi Geochronolgy, Sr isotope analysis, magnetostratigraphy, and plankton stratigraphy across the Oligocene–Miocene boundary in the Contessa section (Gubbio, Italy), Newslett. Stratigr., Volume 23 (1991), pp. 151-180

[123] W.J. Morgan Hot spot tracks and the opening of the Atlantic and Indian oceans (C. Emiliani, ed.), The Sea, 7, Wiley Interscience, New York, 1981, pp. 443-487

[124] J.P. Morgan, T.J. Reston, C.R. Ranero, Mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced ‘Verneshots’ the causal link?, Earth Planet. Sci. Lett. (submitted)

[125] R. Mundil; I. Metcalfe; K.R. Ludwig; P.R. Renne; F. Oberli; R.S. Nicoll Timing of the Permian–Triassic biotic crisis: implications for new zircon U/Pb age data (and their limitations), Earth Planet. Sci. Lett., Volume 187 (2001), pp. 133-147

[126] R. Mundil; K. Ludwig; P.R. Renne; I. Metcalf Constraints on the timing of the Permian–Triassic biotic crisis: new U/Pb zircon ages, EOS Trans. Am. Geophys. Un., Volume 82 (2001), p. 1384

[127] C.R. Neal; J.J. Mahoney; L.W. Kroenke; R.A. Duncan; M.G. Petterson The Ontong–Java Plateau (J.J. Mahoney; M.F. Coffin, eds.), Large igneous provinces: continental, oceanic and planetary flood volcanism, Am. Geophys. Union, Washington, DC, 1997, pp. 183-216

[128] R.D. Norris; U. Rohl Carbon cycling and chronology of climate warming during the Paleocene–Eocene transition, Nature, Volume 401 (1999), pp. 775-778

[129] G.S. Odin Geological time scale, C. R. Acad. Sci. Paris, Ser. II, Volume 318 (1994), pp. 59-71

[130] J.G. Ogg; W. Lowrie Magnetostratigraphy of the Jurassic/Cretaceous boundary, Geology, Volume 14 (1986), pp. 547-550

[131] P.E. Olsen; R.W. Schlische; M.S. Fedosh 580-Kyr duration of the Early Jurassic flood basalt event in eastern North America estimated using Milankovitch cyclostratigraphy, The Continental Jurassic Museum of Northern Arizona Bull., Volume 60 (1996), pp. 11-22

[132] P.E. Olsen; D.V. Kent; S.J. Fowell Causal association of the Triassic–Jurassic mass extinction and Pangean flood basalt – a matter of timing, 1997 Am. Geophys. Union Fall Meeting, Abstract volume, EOS Transactions AGU, Volume 78 (1997), p. F721 (abstract)

[133] P.E. Olsen; D.V. Kent; H.D. Sues; C. Koeberl; H. Huber; A. Montanari; E.C. Rainforth; S.J. Fowell; M.J. Szajna; B.W. Hartline Ascent of dinosaurs linked to an iridium anomaly at the Triassic–Jurassic boundary, Science, Volume 296 (2002), pp. 1305-1307

[134] J. Palfy; P.L. Smith Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism, Geology, Volume 28 (2000), pp. 747-750

[135] J. Palfy; P.L. Smith; J.K. Mortensen A UPb and 40Ar/39Ar time scale for the Jurassic, Can. J. Earth Sci., Volume 37 (2000), pp. 923-944

[136] S.M. Pelechaty Stratigraphic evidence for the Siberia–Laurentia connection and Early Cambrian rifting: reply, Geology, Volume 25 (1997), pp. 571-572

[137] E. Pierazzo, Climatic effects produced by stratospheric loading of S-bearing gases released in the Chicxulub impact event, abstract in Impacts and the origin, evolution, and extinction of life, Rubey colloquium, UCLA, 2002, pp. 45–46

[138] E. Pierazzo; D.A. Kring; H.J. Melosh Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases, J. Geophys. Res., Volume 103 (1998), pp. 28607-28625

[139] K.O. Pope Impact dust not the cause of the Cretaceous–Tertiary mass extinction, Geology, Volume 30 (2002), pp. 99-102

[140] D.R. Prothero The Late Eocene–Oligocene extinctions, Annu. Rev. Earth Planet. Sci., Volume 22 (1994), pp. 145-165

[141] G. Racki Frasnian–Fammenian biotic crisis: undervalued tectonic control?, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 141 (1998), pp. 177-198

[142] G. Racki; M.R. House Foreword (to special issue on Frasnian–Famennian transition), Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 181 (2002), pp. 1-4

[143] M.R. Rampino; R.B. Stothers Flood basalt volcanism during the past 250 million years, Science, Volume 241 (1988), pp. 663-668

[144] G.V.S.P. Rao; K.J.P. Lakshmi Palaeomagnetism of Deccan traps from the Killari borehole flows, Curr. Sci., Volume 77 (1999), pp. 964-967

[145] M.I.B. Raposo; M. Ernesto; P.R. Renne Paleomagnetism and 40Ar/39Ar dating of the Florianópolis dike swarm, Santa Catarina Island, Brazil, Phys. Earth Planet. Inter., Volume 108 (1998), pp. 275-290

[146] D.M. Raup; J.J. Sepkoski Periodicity of Extinctions in the Geologic Past, Proc. Natl. Acad. Sci. Biol., Volume 81 (1984), pp. 801-805

[147] M.K. Reichow; A.D. Saunders; R.V. White; M.S. Pringle; A.I. Al'Mukhamedov; A.I. Medvedev; N.P. Kirda Ar-40/Ar-39 dates from the West Siberian Basin: Siberian flood basalt province doubled, Science, Volume 296 (2002), pp. 1846-1849

[148] P.R. Renne Flood basalts: bigger and badder, Science, Volume 296 (2002), pp. 1812-1813

[149] P.R. Renne; A.R. Basu Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary, Science, Volume 253 (1991), pp. 176-179

[150] P.R. Renne; M. Ernesto; I.G. Pacca; R.S. Coe; J.M. Glen; M. Prévot; M. Perrin The age of Parana flood volcanism, rifting of Gondwanaland, and the Jurassic–Cretaceous boundary, Science, Volume 258 (1992), pp. 975-979

[151] P.R. Renne; Z. Zichao; M.A. Richards; M.T. Black; A. Basu Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism, Science, Volume 269 (1995), pp. 1413-1415

[152] P.R. Renne; K. Deckart; M. Ernesto; G. Féraud; E.M. Piccirillo Age of the Ponta Grossa dike swarm (Brazil), and implications to Parana flood volcanism, Earth Planet. Sci. Lett., Volume 144 (1996), pp. 199-211

[153] P.R. Renne; C.C. Swisher; A.L. Deino; D.B. Karner; T. Owens; D.J. DePaolo Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating, Chem. Geol. (Isot. Geosci. Sect.), Volume 145 (1998), pp. 117-152

[154] P.R. Renne; W.D. Sharp; I.P. Montanez; T.A. Becker; R.A. Zierenberg Ar-40/Ar-39 dating of Late Permian evaporites, southeastern New Mexico, USA, Earth Planet. Sci. Lett., Volume 193 (2001), pp. 539-547

[155] P.R. Renne; W.U. Reimold; C. Koeberl; R. Hough; P. Claeys Critical comment on: I.T. Uysal et al. ‘KAr evidence from illitic clays of a Late Devonian age for the 120-km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia’, Earth Planet. Sci. Lett., Volume 201 (2002) no. 1–2, pp. 247-252

[156] M.A. Richards; R.A. Duncan; V. Courtillot Flood basalts and hot spot tracks: plume heads and tails, Science, Volume 246 (1989), pp. 103-107

[157] T.R. Riley; K.B. Knight Age of pre-break-up Gondwana magmatism, Antarct. Sci., Volume 13 (2001) no. 2, pp. 99-110

[158] P. Rochette; E. Tamrat; G. Feraud; R. Pik; V. Courtillot; E. Ketefo; C. Coulon; C. Hofmann; D. Vandamme; G. Yirgu Magnetostratigraphy and timing of the Oligocene Ethiopian traps, Earth Planet. Sci. Lett., Volume 164 (1998), pp. 497-510

[159] A.D. Saunders; J. Tarney; A.C. Kerr; R.W. Kent The formation and fate of large oceanic igneous provinces, Lithos, Volume 37 (1996), pp. 81-95

[160] J.G. Sclater; C. Jaupart; D. Galson The heat flow through oceanic and continental crust, and the heat loss of the Earth, Rev. Geophys. Sp. Phys., Volume 18 (1980), pp. 269-311

[161] S. Self; T. Thordarson; L. Keszthelyi Emplacement of continental flood basalts lava flows, Geophys. Monogr., Volume 100 (1997), pp. 381-410

[162] J.J. Sepkoski The taxonomic structure of periodic extinction, Geol. Soc. Am. Spec. Pap., Volume 247 (1990), pp. 33-44

[163] H.C. Sheth; K. Pande; R. Bhutani 40Ar/39Ar ages of Bombay trachytes: evidence for a Palaeocene phase of Deccan volcanism, Geophys. Res. Lett., Volume 28 (2001), pp. 3513-3516

[164] P.N. Shukla; N. Bhandari; A. Das; A.D. Shukla; J.S. Ray High iridium concentration of alkaline rocks of Deccan and implications to K/T boundary, Proc. Indian Acad. Sci. (Earth Planet. Sci. Lett.), Volume 110 (2001), pp. 103-110

[165] P.W. Signor; J.H. Lipps Sampling bias, gradual extinction patterns, and catastrophes in the fossil record, Geol. Soc. Am. Spec. Pap., Volume 190 (1982), pp. 291-296

[166] C.W. Sinton; R.A. Duncan; M. Storey; J. Lewis; J.J. Estrada An oceanic flood basalt province within the Caribbean plate, Earth Planet. Sci. Lett., Volume 155 (1998), pp. 221-235

[167] N.H. Sleep Time dependence of mantle plumes: some simple theory, J. Geophys. Res., Volume 97 (1992), pp. 20007-20019

[168] R.M.H. Smith; P.D. Ward Pattern of vertebrate extinctions across an event bed at the Permian–Triassic boundary in the Karoo Basin of South Africa, Geology, Volume 29 (2001), pp. 1147-1150

[169] S.M. Stanley; X. Yang A double mass extinction at the end of the Paleozoic era, Science, Volume 266 (1994), pp. 1340-1344

[170] K. Stewart; S. Turner; S. Kelley; C. Hawkesworth; L. Kirstein; M. Mantovani 3-D, 40Ar–39Ar geochronology in the Parana continental flood basalt province, Earth Planet. Sci. Lett., Volume 143 (1996), pp. 95-109

[171] M. Storey; J.J. Mahoney; A.D. Saunders; R.A. Duncan; S.P. Kelley; M.F. Coffin Timing of hot spot related volcanism and the breakup of Madagascar and India, Science, Volume 267 (1995), pp. 852-855

[172] M. Storey et al. Impact and rapid flow of the Iceland plume beneath Greenland at 61 Ma (abstract), Fall Meeting, American Geophysical Union, EOS Trans. AGU, Volume 77 (1996) no. Suppl. 1, p. F839

[173] M. Storey; R.A. Duncan; A.K. Pedersen; L.M. Larsen; H.C. Larsen Ar-40/Ar-39 geochronology of the West Greenland Tertiary volcanic province, Earth Planet. Sci. Lett., Volume 160 (1998), pp. 569-586

[174] R.B. Stothers Flood basalts and extinction events, Geophys. Res. Lett., Volume 20 (1993), pp. 1399-1402

[175] J.A. Tarduno; W.V. Sliter; L. Kroenke; M. Leckie; H. Mayer; J.J. Mahoney; R. Musgrave; M. Storey; E.L. Winterer Rapid formation of Ontong–Java plateau by Aptian mantle plume volcanism, Science, Volume 254 (1991), pp. 399-403

[176] C. Tegner; R.A. Duncan; S. Bernstein; C.K. Brooks; D.K. Bird; M. Storey 40Ar/39Ar geochronology of Tertiary mafic intrusions along the East Greenland rifted margin: relation to flood basalts and the Iceland hot spot track, Earth Planet. Sci. Lett., Volume 156 (1998), pp. 75-88

[177] T.L. Tolan; S.P. Reidel; M.H. Beeson; J.L. Anderson; K.R. Fecht; D.A. Swanson Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group, Geol. Soc. Am. Spec. Pap., Volume 239 (1989), pp. 1-20

[178] O.B. Toon; K. Zahnle; D. Morrison; R.P. Turco; C. Covey Environmental perturbations caused by impacts of asteroids and comets, Rev. Geophys., Volume 35 (1997), pp. 41-78

[179] Y. Touchard, Trapps d'Éthiopie à 30 Ma : identification de retombées volcaniques à grandes distances et leur impact climatique, PhD thesis, University Aix–Marseille-3, 2002, 268 p

[180] Y. Touchard, P. Rochette, M.P. Aubry, A. Michard, High-resolution magnetostratigraphic and biostratigraphic study of Ethiopian traps related products in leg 115 Oligocene sediments, Earth Planet. Sci. Lett. (submitted)

[181] I.A. Ukstins; P.R. Renne; E. Wolfenden; J. Baker; D. Ayalew; M. Menzies Matching conjugate volcanic rifted margins: 40Ar/39Ar chrono-stratigraphy of pre- and syn-rift bimodal flood volcanism in Ethiopia and Yemen, Earth Planet. Sci. Lett., Volume 198 (2002), pp. 289-306

[182] I.T. Uysal; S.D. Golding; A.Y. Glikson; A.J. Mory; M. Glikson K–Ar evidence from illitic clays of a Late Devonian age for the 120-km-diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia, Earth Planet. Sci. Lett., Volume 192 (2001) no. 3, pp. 281-289

[183] T.R. Venkatesan; K. Pande; K. Gopalan Did Deccan volcanism pre-date the Cretaceous/Tertiary transition?, Earth Planet. Sci. Lett., Volume 119 (1993), pp. 181-189

[184] T.R. Venkatesan; K. Pande; Z.G. Ghevariya Ar-40–Ar-39 ages of Anjar traps, western Deccan Province (India) and its relation to the Cretaceous–Tertiary boundary events, Curr. Sci., Volume 70 (1996), pp. 990-996

[185] P.R. Vogt Evidence for global synchronism in mantle plume convection, and possible significance for geology, Nature, Volume 240 (1972), pp. 338-342

[186] T. Waight; J. Baker; B. Willigers Rb-isotope dilution analyses by MC–ICPMS using Zr to correct for mass fractionation: towards improved RbSr geochronology?, Chem. Geol., Volume 186 (2002) no. 1–2, pp. 99-116

[187] B. Walter Au Valanginien supérieur, une crise de la faune des bryozoaires : indication d'un important refroidissement dans le Jura, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 74 (1989), pp. 255-263

[188] R.E. Weems; P.E. Olsen Synthesis and revision of groups within the Newark supergroup, eastern North America, Bull. Geol. Soc. Am., Volume 109 (1997), pp. 195-209

[189] M. Widdowson Palaeosurfaces: recognition, reconstruction, and palaeoenvironmental interpretation, Geol. Soc. Lond. Spec. Publ., Volume 120 (1997)

[190] P.B. Wignall Large igneous provinces and mass extinctions, Earth Sci. Rev., Volume 53 (2001), pp. 1-33

[191] M. Wilson; Z.M. Lyashkevitch Magmatism and the geodynamics of rifting of the Prypiat–Dnieper–Donets rift, East European Platform, Tectonophysics, Volume 268 (1996), pp. 65-81

[192] M. Wilson, N. Kusznir, Z.M. Lyashkevich, A.M. Nikishin, Late Devonian magmatic activity associated with the Pripyat–Dniepr–Donets rift, Europrobe Georift Conference, Abstract, Vol. 18, Zürich, Switzerland, 16–19 October 1997

[193] H. Yin; S. Huang; K. Zhang; H.J. Hansen; F. Yang; M. Ding; X. Bie The effects of volcanism of the Permo-Triassic mass extinction in South China (W.C. Sweet; Y. Zunyi; J.M. Dickins; Y. Hongfu, eds.), Permo-Triassic Events in the Eastern Tethys (stratigraphy, classification, and relations with the western Tethys), World Regional Geology, 2, Cambridge University Press, Cambridge, UK, 1992, p. 181

[194] J. Zachos; M. Pagani; L. Sloan; E. Thomas; K. Billups Trends, rhythms, and aberrations in global climate 65 Ma to Present, Science, Volume 292 (2001), pp. 686-693

[195] Z. Zhou; P.R. Renne; R. Mundil 40Ar/39Ar dating of Permo-Triassic bentonites from the Shangsi section, China, EOS Trans. Am. Geophys. Un., Volume 82 (2001) no. 47, p. 1385

[196] M.F. Zhou; J. Malpas; X.Y. Song; P.T. Robinson; M. Sun; A.K. Kennedy; C.M. Lesher; R.R. Keays A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction, Earth Planet. Sci. Lett., Volume 196 (2002), pp. 113-122

[197] V.V. Zolotukhin; A.I. Al'Mukhamedov Traps of the Siberian platform (J.D. Mahoney, ed.), Continental Flood Basalts, Kluwer Academic Publishing, Amsterdam, 1988, pp. 273-310


Cité par

  • Lucas M. M. Rossetti; John M. Millett; Marcos M. M. Rossetti; Gabriel Medeiros Marins; Matheus S. Simões; Ben Manton; Isabela de Oliveira Carmo; Evandro F. de Lima Subsurface Geology of the Paraná‐Etendeka Large Igneous Province: Implications to Province Stratigraphy and CO2 Storage, Basin Research, Volume 37 (2025) no. 3 | DOI:10.1111/bre.70038
  • Anjali Kumari; Shubham Choudhary Decoding paleoenvironment through pedogenic and diagenetic characteristics of pre-volcanic Maastrichtian paleosols of the Lameta Formation, Central India, CATENA, Volume 251 (2025), p. 108800 | DOI:10.1016/j.catena.2025.108800
  • S. Jung; R.L. Romer; J.A. Pfänder On the coexistence of rift-related silica-undersaturated and silica-saturated alkaline rocks – The cretaceous Messum alkaline complex (Namibia) revisited, Chemical Geology, Volume 673 (2025), p. 122479 | DOI:10.1016/j.chemgeo.2024.122479
  • Guangyou Zhu; Haiping Huang; Steve Larter Impact of Permian Tarim and Emeishan Large Igneous Provinces on Petroleum Systems and Gas Emissions in Tarim and Sichuan Basins, Earth-Science Reviews, Volume 263 (2025), p. 105072 | DOI:10.1016/j.earscirev.2025.105072
  • Mansour M. Abdelmalak; Lucas M. Rossetti; John M. Millett; Sverre Planke; Dougal A. Jerram; Jan Inge Faleide; Stéphane Polteau Breakup Magmatism in the South Atlantic: Mechanisms and Implications, Earth-Science Reviews, Volume 264 (2025), p. 105088 | DOI:10.1016/j.earscirev.2025.105088
  • A. Baranov; A. Bobrov; R. Tenzer; A. Chuvaev Evolution of lateral tectonophysical stresses in the spherical shell convection with an immobile supercontinent, Frontiers in Earth Science, Volume 13 (2025) | DOI:10.3389/feart.2025.1452399
  • Malcolm B. Hart; Sietske J. Batenburg; Brian T. Huber; Gregory D. Price; Nicolas Thibault; Michael Wagreich; Irek P. Walaszczyk The Cretaceous World, Geological Society, London, Special Publications, Volume 544 (2025) no. 1, p. 1 | DOI:10.1144/sp544-2024-67
  • L. M. E. Percival; H. Matsumoto; S. Callegaro; E. Erba; A. C. Kerr; J. Mutterlose; K. Suzuki Cretaceous large igneous provinces: from volcanic formation to environmental catastrophes and biological crises, Geological Society, London, Special Publications, Volume 544 (2025) no. 1, p. 299 | DOI:10.1144/sp544-2023-88
  • Christopher R. Scotese; Christian Vérard; Landon Burgener; Reece P. Elling; Adam T. Kocsis The Cretaceous world: plate tectonics, palaeogeography and palaeoclimate, Geological Society, London, Special Publications, Volume 544 (2025) no. 1, p. 31 | DOI:10.1144/sp544-2024-28
  • Anton Latyshev; Ivan Panchenko; Maria Smirnova; Peter Kulikov; Yuliya Trushkova; Elena Sapogova; Alexey Bakulin The Permian-Triassic volcanic activity in the West Siberian basin: A buried silicic LIP coeval to the Siberian Traps, Gondwana Research, Volume 141 (2025), p. 246 | DOI:10.1016/j.gr.2025.02.019
  • Guillaume LE HIR Modeling the Biosphere and Its Interactions with the Geosphere, Interactions between the Geosphere and the Biosphere (2025), p. 219 | DOI:10.1002/9781394361830.ch7
  • Roger Adam Close; Bouwe Rutger Reijenga Tetrapod species–area relationships across the Cretaceous–Paleogene mass extinction, Proceedings of the National Academy of Sciences, Volume 122 (2025) no. 13 | DOI:10.1073/pnas.2419052122
  • Bhuvan K. Tamta; Vamdev Pathak; J. P. Shrivastava; Arun Kumar Gupta; Girish Ch. Kothyari Flow-by-Flow Paleofield and Virtual Dipole Moment Analysis in the Mandla Lobe, Eastern Deccan Volcanic Province, Pure and Applied Geophysics, Volume 182 (2025) no. 2, p. 571 | DOI:10.1007/s00024-025-03679-1
  • Meng Wang; Xuguang Dai; Shuxun Sang; Shiqi Liu; Sijian Zheng; Wenxin Zhou; Zixian Zhengyan; Yuxin Qiu; Xinhe Song; Xuan Shi; Yu Song; Guangjun Feng; Veerle Vandeginste CO2 mineralization projects, techniques, mechanisms, potential and future outlook in basalt: a review, Renewable and Sustainable Energy Reviews, Volume 221 (2025), p. 115920 | DOI:10.1016/j.rser.2025.115920
  • Thomas Westerhold; Edoardo Dallanave; Donald Penman; Blair Schoene; Ursula Röhl; Nikolaus Gussone; Junichiro Kuroda Earth orbital rhythms links timing of Deccan trap volcanism phases and global climate change, Science Advances, Volume 11 (2025) no. 10 | DOI:10.1126/sciadv.adr8584
  • Cinzia G. FARNETANI Hotspots, Large Igneous Provinces and Global Mantle Dynamics, Structure and Dynamics of the Earth's Interior 1 (2025), p. 115 | DOI:10.1002/9781394361748.ch4
  • Hengrui Zhu; Tao Wu; Shuangshuang Chen; Gareth N. Fabbro; Jianggu Lu; Ming Yang; Yidi Hong; Xueting Zhao; Haoyang Liu Large Igneous Province magma plumbing system processes: insights from mineral chemistry and diffusion chronometry from the Shatsky Rise Oceanic Plateau, Northwest Pacific, Bulletin of Volcanology, Volume 87 (2024) no. 1 | DOI:10.1007/s00445-024-01789-7
  • Thomas Munier; Laurent Riquier; Sidonie Révillon; Armand Metgalchi; François Baudin Variations in weathering conditions related to sea level changes during the Albian-Santonian interval in the Western Australian margin as evidenced by clay minerals and Nd/Sr isotopes, Chemical Geology, Volume 654 (2024), p. 122061 | DOI:10.1016/j.chemgeo.2024.122061
  • Alexei V. Ivanov Correlating 300 million years of catastrophes, Earth and Planetary Science Letters, Volume 647 (2024), p. 119058 | DOI:10.1016/j.epsl.2024.119058
  • C. Djeutchou; M. de Kock; R.E. Ernst; F.G. Ossa Ossa; A. Bekker A review of the Intraplate Mafic Magmatic Record of the Greater Congo craton, Earth-Science Reviews, Volume 249 (2024), p. 104649 | DOI:10.1016/j.earscirev.2023.104649
  • Yuping Zhou; Yong Li; Wang Zheng; Shunlin Tang; Songqi Pan; Jiubin Chen; Xiao-Fang He; Jun Shen; Thomas J. Algeo The role of LIPs in Phanerozoic mass extinctions: An Hg perspective, Earth-Science Reviews, Volume 249 (2024), p. 104667 | DOI:10.1016/j.earscirev.2023.104667
  • Bingshuang Zhao; Xiaoping Long; Chao Chang Early Cambrian sedimentary rocks in South China: A link between oceanic oxygenation and biological explosion, Earth-Science Reviews, Volume 250 (2024), p. 104708 | DOI:10.1016/j.earscirev.2024.104708
  • Oussama Moutbir; El Mostafa Aarab; Nasrrddine Youbi; Abdelhak Ait Lahna; Colombo Celso Gaeta Tassinari; João Mata; Ross N. Mitchell; Andreas Gärtner; Alvar Soesoo; Mohamed Khalil Bensalah; Abderrahmane Soulaimani; Moulay Ahmed Boumehdi; Ulf Linnemann Evidence of a large igneous province at ca. 347–330 Ma along the northern Gondwana margin linked to the assembly of Pangea: Insights from U–Pb zircon geochronology and geochemistry of the South-Western Branch of the Variscan Belt (Morocco), Earth-Science Reviews, Volume 258 (2024), p. 104905 | DOI:10.1016/j.earscirev.2024.104905
  • B. V. Lakshmi; K. Deenadayalan; A. P. Dimri Magnetic fabrics of west coast dyke swarm from Deccan volcanic province, Maharashtra, India and their relationship with magma flow direction, Environmental Earth Sciences, Volume 83 (2024) no. 16 | DOI:10.1007/s12665-024-11771-3
  • Philip J. Heron; Erkan Gün; Grace E. Shephard; Juliane Dannberg; Rene Gassmöller; Erin Martin; Aisha Sharif; Russell N. Pysklywec; R. Damian Nance; J. Brendan Murphy The role of subduction in the formation of Pangaean oceanic large igneous provinces, Geological Society, London, Special Publications, Volume 542 (2024) no. 1, p. 105 | DOI:10.1144/sp542-2023-12
  • Olivier Galland; Héctor J. Villar; José Mescua; Dougal A. Jerram; Grégoire Messager; Adrian Medialdea; Ivar Midtkandal; J. Octavio Palma; Sverre Planke; Lars Eivind Augland; Alain Zanella Structural control of igneous intrusions on fluid migration in sedimentary basins: the case study of large bitumen seeps at Cerro Alquitrán and Cerro La Paloma, northern Neuquén Basin, Argentina, Geological Society, London, Special Publications, Volume 547 (2024) no. 1, p. 231 | DOI:10.1144/sp547-2023-115
  • Ben Hayes; Lewis D. Ashwal; Khulekani B. Khumalo; Linda M. Iaccheri Major, trace element and Sr-Nd isotope evidence for a sublithospheric mantle source for the Umkondo large igneous province, Geoscience Frontiers, Volume 15 (2024) no. 1, p. 101719 | DOI:10.1016/j.gsf.2023.101719
  • Eduardo Garzanti; Guido Pastore; Sergio Andò; Marta Barbarano; Alberto Resentini; Giovanni Vezzoli; Pieter Vermeesch; Pedro Dinis; Annette Hahn; Errol Wiles; Lindani Ncube; Helena-Johanna Van Niekerk Pyroxene-rich Orange sand highway from basaltic highlands to the ocean: Modern sediment-routing system of an Early Jurassic river, Geosystems and Geoenvironment, Volume 3 (2024) no. 4, p. 100311 | DOI:10.1016/j.geogeo.2024.100311
  • A. Clutier; F. Parat; B. Gibert; M. Grégoire; C. Tiberi; S. Gautier Seismic properties of mantle metasomatism from mantle xenoliths beneath the North Tanzania Divergence, East African Rift, Gondwana Research, Volume 131 (2024), p. 278 | DOI:10.1016/j.gr.2024.03.008
  • Alcides N. Sial; Jiubin Chen; Silvio Heriberto Peralta; Claudio Gaucher; Christoph Korte; Valderez P. Ferreira; Luiz D. Lacerda; José A. Barbosa; Natan S. Pereira; Paulo R. Riedel; Jessica Gómez C, N, Hg isotopes and elemental chemostratigraphy across the Ordovician–Silurian transition in the Argentine Precordillera: Implications for the link between volcanism and extinctions, Gondwana Research, Volume 133 (2024), p. 270 | DOI:10.1016/j.gr.2024.06.008
  • Xiong Duan; Zhiqiang Shi Sedimentary records of sea level fall during the end-Permian in the upper Yangtze region (southern China): Implications for the mass extinction, Heliyon, Volume 10 (2024) no. 10, p. e31226 | DOI:10.1016/j.heliyon.2024.e31226
  • Subham Patra; Gerta Keller; Eric Font; Thierry Adatte; Jahnavi Punekar Untangling the biotic stress in the late Maastrichtian Deccan-benchmark interval of Bidart (France), Journal of Palaeogeography, Volume 13 (2024) no. 2, p. 181 | DOI:10.1016/j.jop.2024.02.003
  • C.P. Sooraj; Shweta Gupta; Jahnavi Punekar Spatio-temporal variability in microfossil and geochemical records of Cenomanian-Turonian oceanic anoxic event-2: a review, Journal of Palaeogeography, Volume 13 (2024) no. 4, p. 646 | DOI:10.1016/j.jop.2024.06.002
  • Breno L. Waichel; Bruna T. Wormsbecker; Evandro F. de Lima; Isabela de Oliveira Carmo; Lucas Del Mouro; Edinei Koester; Juliano Kuchle Exploring the formation of Tangará sill: A single-pulse intrusion feeding CAMP lava flows in Parecis Basin, Brazil, Journal of South American Earth Sciences, Volume 141 (2024), p. 104921 | DOI:10.1016/j.jsames.2024.104921
  • Gerson Fauth; Oscar Strohschoen; Simone Baecker-Fauth; Fernanda Luft-Souza; Marcos Antonio Batista dos Santos Filho; Alessandra Santos; Mauro Daniel Rodrigues Bruno; Patrícia Mescolotti; Guilherme Krahl; Mitsuru Arai; Francisco Henrique de Oliveira Lima; Mario Luis Assine Multiple short-lived marine incursions into the interior of Southwest Gondwana during the Aptian, Marine Micropaleontology, Volume 191 (2024), p. 102389 | DOI:10.1016/j.marmicro.2024.102389
  • Qiang Jiang; Fred Jourdan Obtaining accurate ages of basaltic rocks using 40Ar/39Ar techniques, Methods and Applications of Geochronology (2024), p. 345 | DOI:10.1016/b978-0-443-18803-9.00003-1
  • Benjamin A. Black; Leif Karlstrom; Benjamin J. W. Mills; Tamsin A. Mather; Maxwell L. Rudolph; Jack Longman; Andrew Merdith Cryptic degassing and protracted greenhouse climates after flood basalt events, Nature Geoscience, Volume 17 (2024) no. 11, p. 1162 | DOI:10.1038/s41561-024-01574-3
  • Gaofei Liu; Rong Liu; Neng Wang; Meijing Xu; Hongliang Dang Response to palaeoclimate by Early Cretaceous terrestrial organic-rich shales in the Yin'e Basin: Evidence from sporopollen, n-alkanes and their compound carbon isotopes, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 637 (2024), p. 112031 | DOI:10.1016/j.palaeo.2024.112031
  • Arun K. Ojha; D.P. Monika Saini; Amar Agarwal; Ambrish K. Pandey Tectonic development in Singhbhum Craton, NE India decrypted from dyke swarms: A window to understand magma dynamics in Archean-Proterozoic supercontinents, Physics of the Earth and Planetary Interiors, Volume 350 (2024), p. 107169 | DOI:10.1016/j.pepi.2024.107169
  • Gabriel Negrucci Dragone; Mauricio de Souza Bologna Magmatic underplating, plumbing system, and carbon-enhanced electrical conductivity in the Paraná Magmatic Province, Physics of the Earth and Planetary Interiors, Volume 351 (2024), p. 107185 | DOI:10.1016/j.pepi.2024.107185
  • Dennis V. Kent; Paul E. Olsen; Huapei Wang; Morgan F. Schaller; Mohammed Et-Touhami Correlation of sub-centennial-scale pulses of initial Central Atlantic Magmatic Province lavas and the end-Triassic extinctions, Proceedings of the National Academy of Sciences, Volume 121 (2024) no. 46 | DOI:10.1073/pnas.2415486121
  • Quanyou Liu; Peng Li; Lei Jiang; Zhijun Jin; Xinping Liang; Dongya Zhu; Qian Pang; Rui Zhang; Jiayi Liu Distinctive volcanic ash–rich lacustrine shale deposition related to chemical weathering intensity during the Late Triassic: Evidence from lithium contents and isotopes, Science Advances, Volume 10 (2024) no. 11 | DOI:10.1126/sciadv.adi6594
  • A. Erbello; C. Colleps; D. Melnick; E. R. Sobel; B. Bookhagen; H. Pingel; G. Zeilinger; P. van der Beek; M. R. Strecker Magma‐Assisted Continental Rifting: The Broadly Rifted Zone in SW Ethiopia, East Africa, Tectonics, Volume 43 (2024) no. 1 | DOI:10.1029/2022tc007651
  • Ragini Kumari; Jyotirmoy Mallik; Garima Shukla Tectonomagmatic evolution of Pune – Nasik Deccan Dykes: Insights from structure and dimension scaling, Tectonophysics, Volume 891 (2024), p. 230539 | DOI:10.1016/j.tecto.2024.230539
  • Bertrand Martin-Garin; Lucien F. Montaggioni The Highs and Lows of the Reef Phenomenon, Corals and Reefs, Volume 16 (2023), p. 121 | DOI:10.1007/978-3-031-16887-1_5
  • Borhan Bagherpour; Andy F. Nkemata; Hossein Vaziri–Moghaddam; Thomas M. Blattmann; Mahyar Mohtadi Paleoenvironmental significance of the carbon isotope record across the Cenomanian–Turonian transition and the Oceanic Anoxic Event 2 (OAE2) in the southeastern Neotethys, Zagros, Iran, Cretaceous Research, Volume 150 (2023), p. 105574 | DOI:10.1016/j.cretres.2023.105574
  • Susanne J.H. Buiter; Sascha Brune; Derek Keir; Gwenn Peron-Pinvidic Rifting Continents, Dynamics of Plate Tectonics and Mantle Convection (2023), p. 459 | DOI:10.1016/b978-0-323-85733-8.00016-0
  • Guozhen Xu; Jun Shen; Thomas J. Algeo; Jianxin Yu; Qinglai Feng; Tracy D. Frank; Christopher R. Fielding; Jiaxin Yan; Jean-François Deconink; Yong Lei Limited change in silicate chemical weathering intensity during the Permian–Triassic transition indicates ineffective climate regulation by weathering feedbacks, Earth and Planetary Science Letters, Volume 616 (2023), p. 118235 | DOI:10.1016/j.epsl.2023.118235
  • Henrik H. Svensen; Morgan T. Jones; Lawrence M.E. Percival; Stephen E. Grasby; Tamsin A. Mather Release of mercury during contact metamorphism of shale: Implications for understanding the impacts of large igneous province volcanism, Earth and Planetary Science Letters, Volume 619 (2023), p. 118306 | DOI:10.1016/j.epsl.2023.118306
  • Qiang Jiang; Fred Jourdan; Hugo K.H. Olierook; Renaud E. Merle An appraisal of the ages of Phanerozoic large igneous provinces, Earth-Science Reviews, Volume 237 (2023), p. 104314 | DOI:10.1016/j.earscirev.2023.104314
  • Saranya R. Chandran; S. James; J. Aswathi; Devika Padmakumar; T. Sadeeda Marjan; R.B. Binoj Kumar; Anil Chavan; Subhash Bhandari; K.S. Sajinkumar A compendium of the best-preserved terrestrial hypervelocity impact crater in a basaltic terrain: The Lonar, India, Earth-Science Reviews, Volume 243 (2023), p. 104508 | DOI:10.1016/j.earscirev.2023.104508
  • Sean P. Gaynor; Joshua H.F.L. Davies; Urs Schaltegger High-Precision Geochronology of LIP Intrusions: Records of Magma–Sediment Interaction, Elements, Volume 19 (2023) no. 5, p. 302 | DOI:10.2138/gselements.19.5.302
  • Nicholas Arndt; Daniele L. Pinti Trapps, Encyclopedia of Astrobiology (2023), p. 3113 | DOI:10.1007/978-3-662-65093-6_1610
  • Ruixuan Li; Shi Sun; Wenpeng Xia; Anqing Chen; James G. Ogg; Shuai Yang; Shenglin Xu; Zhiwei Liao; Di Yang; Mingcai Hou Late Guadalupian–early Lopingian marine geochemical records from the Upper Yangtze, South China: Implications for climate-biocrisis events, Frontiers in Earth Science, Volume 10 (2023) | DOI:10.3389/feart.2022.1077017
  • Sylvain Delerce; Matylda Heřmanská; Pascale Bénézeth; Jacques Schott; Eric H. Oelkers Experimental determination of the reactivity of basalts as a function of their degree of alteration, Geochimica et Cosmochimica Acta, Volume 360 (2023), p. 106 | DOI:10.1016/j.gca.2023.09.007
  • Honami Sato; Tatsuo Nozaki; Tetsuji Onoue; Akira Ishikawa; Katsuhito Soda; Kazutaka Yasukawa; Jun-Ichi Kimura; Qing Chang; Yasuhiro Kato; Manuel Rigo Rhenium-osmium isotope evidence for the onset of volcanism in the central Panthalassa Ocean during the Norian “chaotic carbon episode”, Global and Planetary Change, Volume 229 (2023), p. 104239 | DOI:10.1016/j.gloplacha.2023.104239
  • Matheus Silva Simões; Carla Cecília Treib Sarmento; Carlos Augusto Sommer; Evandro Fernandes de Lima; Lucas de Magalhães May Rossetti; Edinei Koester Petrogenesis of low-Ti dolerite sills from Paraná-Etendeka LIP in Cerro do Coronel region, southernmost Brazil, International Geology Review, Volume 65 (2023) no. 10, p. 1745 | DOI:10.1080/00206814.2022.2106585
  • Guilherme Krahl; Karlos Guilherme Diemer Kochhann; Marlone Heliara Hunning Bom; Gerson Fauth Mercury stratigraphy of early Danian sediments from the Rio Grande Rise and the timing of Deccan volcanism, Journal of South American Earth Sciences, Volume 128 (2023), p. 104488 | DOI:10.1016/j.jsames.2023.104488
  • S. Planke; C. Berndt; C.A. Alvarez Zarikian; A. Agarwal; G.D.M. Andrews; P. Betlem; J. Bhattacharya; H. Brinkhuis; S. Chatterjee; M. Christopoulou; V.J. Clementi; E.C. Ferré; I.Y. Filina; J. Frieling; P. Guo; D.T. Harper; M.T. Jones; S. Lambart; J. Longman; J.M. Millett; G. Mohn; R. Nakaoka; R.P. Scherer; C. Tegner; N. Varela; M. Wang; W. Xu; S.L. Yager Expedition 396 summary, Mid-Norwegian Margin Magmatism and Paleoclimate Implications, Volume 396 (2023) | DOI:10.14379/iodp.proc.396.101.2023
  • Maria V. Stifeeva; Ekaterina B. Salnikova; Valentina B. Savelyeva; Alexander B. Kotov; Yulia V. Danilova; Ekaterina P. Bazarova; Boris S. Danilov Timing of Carbonatite Ultramafic Complexes of the Eastern Sayan Alkaline Province, Siberia: U–Pb (ID–TIMS) Geochronology of Ca–Fe Garnets, Minerals, Volume 13 (2023) no. 8, p. 1086 | DOI:10.3390/min13081086
  • Sascha Brune; Folarin Kolawole; Jean-Arthur Olive; D. Sarah Stamps; W. Roger Buck; Susanne J. H. Buiter; Tanya Furman; Donna J. Shillington Geodynamics of continental rift initiation and evolution, Nature Reviews Earth Environment, Volume 4 (2023) no. 4, p. 235 | DOI:10.1038/s43017-023-00391-3
  • Valerio Acocella; Maurizio Ripepe; Eleonora Rivalta; Aline Peltier; Federico Galetto; Erouscilla Joseph Towards scientific forecasting of magmatic eruptions, Nature Reviews Earth Environment, Volume 5 (2023) no. 1, p. 5 | DOI:10.1038/s43017-023-00492-z
  • Madeleine L. Vickers; Mads E. Jelby; Kasia K. Śliwińska; Lawrence M.E. Percival; Feiyue Wang; Hamed Sanei; Gregory D. Price; Clemens V. Ullmann; Stephen E. Grasby; Lutz Reinhardt; Tamsin A. Mather; Joost Frieling; Christoph Korte; Rhodri M. Jerrett; Morgan T. Jones; Ivar Midtkandal; Jennifer M. Galloway Volcanism and carbon cycle perturbations in the High Arctic during the Late Jurassic – Early Cretaceous, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 613 (2023), p. 111412 | DOI:10.1016/j.palaeo.2023.111412
  • Theodore Green; Paul R. Renne; C. Brenhin Keller Reply to Henehan and Witts: Continental flood basalts drive extinctions after the mid-Mesozoic, Proceedings of the National Academy of Sciences, Volume 120 (2023) no. 21 | DOI:10.1073/pnas.2304194120
  • Slah Boulila; Shanan E. Peters; R. Dietmar Müller; Bilal U. Haq; Nathan Hara Earth’s interior dynamics drive marine fossil diversity cycles of tens of millions of years, Proceedings of the National Academy of Sciences, Volume 120 (2023) no. 29 | DOI:10.1073/pnas.2221149120
  • Elizabeth A. Jagodzinski; Anthony J. Reid; James L. Crowley; Claire E. Wade; Stacey Curtis Precise zircon U-Pb dating of the Mesoproterozoic Gawler large igneous province, South Australia, Results in Geochemistry, Volume 10 (2023), p. 100020 | DOI:10.1016/j.ringeo.2022.100020
  • Brenda C. Rocha; Sean P. Gaynor; Valdecir A. Janasi; Joshua H.F.L. Davies; Luana M. Florisbal; Breno L. Waichel; Urs Schaltegger New U-Pb baddeleyite ID-TIMS ages from the intrusive high-Ti-Sr rocks of the Southern Paraná LIP, Brazil: Implications for correlations with environmental disturbances during the Early Cretaceous, Results in Geochemistry, Volume 10 (2023), p. 100023 | DOI:10.1016/j.ringeo.2023.100023
  • R.R.B. Bacha; J.E. Mungall; R.E. Ernst Petrogenesis of the Katangan mafic rocks, Zambia: Insights from lithogeochemistry, large igneous province classification, and petrological modeling, Results in Geochemistry, Volume 12 (2023), p. 100027 | DOI:10.1016/j.ringeo.2023.100027
  • Alexander A. Cox; C. Brenhin Keller A Bayesian inversion for emissions and export productivity across the end-Cretaceous boundary, Science, Volume 381 (2023) no. 6665, p. 1446 | DOI:10.1126/science.adh3875
  • Francesca Galasso; Ulrich Heimhofer; Elke Schneebeli-Hermann The Cenomanian/Turonian boundary in light of new developments in terrestrial palynology, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-30072-6
  • Xavier Le Pichon; A. M. Celal Şengör; Mark Jellinek; Adrian Lenardic; Caner İmren Breakup of Pangea and the Cretaceous Revolution, Tectonics, Volume 42 (2023) no. 2 | DOI:10.1029/2022tc007489
  • Colby M. Ostberg; Scott D. Guzewich; Stephen R. Kane; Erika Kohler; Luke D. Oman; Thomas J. Fauchez; Ravi K. Kopparapu; Jacob Richardson; Patrick Whelley The Prospect of Detecting Volcanic Signatures on an ExoEarth Using Direct Imaging, The Astronomical Journal, Volume 166 (2023) no. 5, p. 199 | DOI:10.3847/1538-3881/acfe12
  • Hassan Khozyem; Thierry Adatte; Gerta Keller Climatic and Environmental Changes During Paleocene-Eocene Thermal Maximum in Egypt: An Overview, The Phanerozoic Geology and Natural Resources of Egypt (2023), p. 305 | DOI:10.1007/978-3-030-95637-0_12
  • Andrew Yoram Glikson Phanerozoic Mass Extinctions, The Trials of Gaia (2023), p. 47 | DOI:10.1007/978-3-031-23709-6_7
  • R. Damian Nance The supercontinent cycle and Earth's long‐term climate, Annals of the New York Academy of Sciences, Volume 1515 (2022) no. 1, p. 33 | DOI:10.1111/nyas.14849
  • Anja Schmidt; Benjamin A. Black Reckoning with the Rocky Relationship Between Eruption Size and Climate Response: Toward a Volcano-Climate Index, Annual Review of Earth and Planetary Sciences, Volume 50 (2022) no. 1, p. 627 | DOI:10.1146/annurev-earth-080921-052816
  • Bhart Singh; Seema Singh; Uday Bhan Oceanic anoxic events in the Earth’s geological history and signature of such event in the Paleocene-Eocene Himalayan foreland basin sediment records of NW Himalaya, India, Arabian Journal of Geosciences, Volume 15 (2022) no. 3 | DOI:10.1007/s12517-021-09180-y
  • C. Antoine; R.A. Spikings; D. Miletic; J.S. Marsh; S.P. Gaynor; U. Schaltegger 40Ar/39Ar geochronology of the Drakensberg continental flood basalts: Understanding large argon isotopic variations in mafic groundmass and plagioclase size fractions, Chemical Geology, Volume 610 (2022), p. 121086 | DOI:10.1016/j.chemgeo.2022.121086
  • Maxence Guillermic; Sambuddha Misra; Robert Eagle; Aradhna Tripati Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific, Climate of the Past, Volume 18 (2022) no. 2, p. 183 | DOI:10.5194/cp-18-183-2022
  • Fernanda Luft-Souza; Gerson Fauth; Mauro D.R. Bruno; Marcelo A. De Lira Mota; Bernardo Vázquez-García; Marcos A.B. Santos Filho; Gerson J.S. Terra Sergipe-Alagoas Basin, Northeast Brazil: A reference basin for studies on the early history of the South Atlantic Ocean, Earth-Science Reviews, Volume 229 (2022), p. 104034 | DOI:10.1016/j.earscirev.2022.104034
  • Shane D. Schoepfer; Thomas J. Algeo; Bas van de Schootbrugge; Jessica H. Whiteside The Triassic–Jurassic transition – A review of environmental change at the dawn of modern life, Earth-Science Reviews, Volume 232 (2022), p. 104099 | DOI:10.1016/j.earscirev.2022.104099
  • Nicholas Arndt; Daniele L. Pinti Trapps, Encyclopedia of Astrobiology (2022), p. 1 | DOI:10.1007/978-3-642-27833-4_1610-4
  • Expedition 396 Preliminary Report: Mid-Norwegian Margin Magmatism and Paleoclimate Implications, 396, 2022 | DOI:10.14379/iodp.pr.396.2022
  • J. Smit The KPg boundary Chicxulub impact-extinction hypothesis: The winding road towards a solid theory, From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez (2022), p. 391 | DOI:10.1130/2022.2557(19)
  • Shuan-Hong Zhang; Richard E. Ernst; Tim J. Munson; Junling Pei; Guohui Hu; Jian-Min Liu; Qi-Qi Zhang; Yu-Hang Cai; Yue Zhao Comparisons of the Paleo-Mesoproterozoic large igneous provinces and black shales in the North China and North Australian cratons, Fundamental Research, Volume 2 (2022) no. 1, p. 84 | DOI:10.1016/j.fmre.2021.10.009
  • Yu-Ting Zhong; Zhen-Yu Luo; Roland Mundil; Xun Wei; Hai-Quan Liu; Bin He; Xiao-Long Huang; Wei Tian; Yi-Gang Xu Constraining the duration of the Tarim flood basalts (northwestern China): CA-TIMS zircon U-Pb dating of tuffs, GSA Bulletin, Volume 134 (2022) no. 1-2, p. 325 | DOI:10.1130/b36053.1
  • Kim Senger; Olivier Galland Stratigraphic and Spatial Extent of HALIP Magmatism in Central Spitsbergen, Geochemistry, Geophysics, Geosystems, Volume 23 (2022) no. 11 | DOI:10.1029/2021gc010300
  • Changhong Wang; Zhaochong Zhang; Andrea Giuliani; Ronghua Cai; Zhiguo Cheng; Jingao Liu New insights into the mantle source of a large igneous province from highly siderophile element and Sr-Nd-Os isotope compositions of carbonate-rich ultramafic lamprophyres, Geochimica et Cosmochimica Acta, Volume 326 (2022), p. 77 | DOI:10.1016/j.gca.2022.04.004
  • Alexander Bobrov; Alexey Baranov; Robert Tenzer Evolution of stress fields during the supercontinent cycle, Geodesy and Geodynamics, Volume 13 (2022) no. 4, p. 363 | DOI:10.1016/j.geog.2022.01.004
  • Rajesh K. Srivastava; Richard E. Ernst; Kenneth L. Buchan; Michiel de Kock An overview of the plumbing systems of large igneous provinces and their significance, Geological Society, London, Special Publications, Volume 518 (2022) no. 1, p. 1 | DOI:10.1144/sp518-2021-167
  • Liam O’Connor; Dawid Szymanowski; Michael P. Eddy; Kyle M. Samperton; Blair Schoene A red bole zircon record of cryptic silicic volcanism in the Deccan Traps, India, Geology, Volume 50 (2022) no. 4, p. 460 | DOI:10.1130/g49613.1
  • Michael M. Joachimski; Johann Müller; Timothy M. Gallagher; Gregor Mathes; Daoliang L. Chu; Fedor Mouraviev; Vladimir Silantiev; Yadong D. Sun; Jinnan N. Tong Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction, Geology, Volume 50 (2022) no. 6, p. 650 | DOI:10.1130/g49714.1
  • Scott D. Guzewich; Luke D. Oman; Jacob A. Richardson; Patrick L. Whelley; Sandra T. Bastelberger; Kelsey E. Young; Jacob E. Bleacher; Thomas J. Fauchez; Ravi K. Kopparapu Volcanic Climate Warming Through Radiative and Dynamical Feedbacks of SO2 Emissions, Geophysical Research Letters, Volume 49 (2022) no. 4 | DOI:10.1029/2021gl096612
  • Manfredo Capriolo; Benjamin J.W. Mills; Robert J. Newton; Jacopo Dal Corso; Alexander M. Dunhill; Paul B. Wignall; Andrea Marzoli Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction, Global and Planetary Change, Volume 209 (2022), p. 103731 | DOI:10.1016/j.gloplacha.2021.103731
  • Maxime Tremblin; Hassan Khozyem; Thierry Adatte; Jorge E. Spangenberg; Charlotte Fillon; Arnaud Grauls; Teodoro Hunger; Andres Nowak; Charlotte Läuchli; Eric Lasseur; Jean-Yves Roig; Olivier Serrano; Sylvain Calassou; François Guillocheau; Sébastien Castelltort Mercury enrichments of the Pyrenean foreland basins sediments support enhanced volcanism during the Paleocene-Eocene thermal maximum (PETM), Global and Planetary Change, Volume 212 (2022), p. 103794 | DOI:10.1016/j.gloplacha.2022.103794
  • Chuan Xu; Xuanlong Shan; Wentong He The fluctuation of warm paleoclimatic controls on lacustrine carbonate deposition in the Late Cretaceous (late Santonian), Southern Songliao Basin, Northeast China, International Journal of Earth Sciences, Volume 111 (2022) no. 1, p. 85 | DOI:10.1007/s00531-021-02100-1
  • Shi Sun; Anqing Chen; Mingcai Hou; Shuai Yang; James G. Ogg; Hao Zou; Shenglin Xu; Qian Li; Yifan Huang; Ruixuan Li; Hongde Chen Rapid climatic fluctuations during the Guadalupian-Lopingian transition: Implications from weathering indices recorded in acid-insoluble residues of carbonate rocks, South China, Journal of Asian Earth Sciences, Volume 230 (2022), p. 105222 | DOI:10.1016/j.jseaes.2022.105222
  • Chuang Zhang; Antonin Richard; Weilin Hao; Chiheng Liu; Zhishuai Tang Trace metals in saline waters and brines from China: Implications for tectonic and climatic controls on basin-related mineralization, Journal of Asian Earth Sciences, Volume 233 (2022), p. 105263 | DOI:10.1016/j.jseaes.2022.105263
  • Pankaj Kumar; Anil Kumar Chaubey Réunion plume associated flood basalt volcanism on the northwestern continental margin of India and related tectonics, Journal of Asian Earth Sciences, Volume 237 (2022), p. 105352 | DOI:10.1016/j.jseaes.2022.105352
  • Jian-Bo Cheng; Ya-Lin Li; Shuai Li; Si-Qi Xiao; Wen-Jun Bi; Yu Zou Reconstruction of the South Qiangtang–Zhongba–Tethyan Himalaya continental margin system along the northern Indian Plate: Insights from the paleobiogeography of the Zhongba microterrane, Journal of Asian Earth Sciences, Volume 240 (2022), p. 105376 | DOI:10.1016/j.jseaes.2022.105376
  • Soumi Chattopadhaya; Biswajit Ghosh; Debaditya Bandyopadhyay; Manojit Koley; Archisman Dhar; Sankhadeep Roy Multistage evolution of subcontinental lithospheric mantle of northwestern Deccan volcanic province, India: Constraints from the ultramafic xenoliths in alkali magma, Journal of Earth System Science, Volume 131 (2022) no. 1 | DOI:10.1007/s12040-021-01793-x
  • Frances M Deegan; Jean H Bédard; Stephen E Grasby; Keith Dewing; Harri Geiger; Valeria Misiti; Manfredo Capriolo; Sara Callegaro; Henrik H Svensen; Chris Yakymchuk; László E Aradi; Carmela Freda; Valentin R Troll Magma–Shale Interaction in Large Igneous Provinces: Implications for Climate Warming and Sulfide Genesis, Journal of Petrology, Volume 63 (2022) no. 9 | DOI:10.1093/petrology/egac094
  • Mauro Daniel Rodrigues Bruno; Gerson Fauth; David K. Watkins; Michele Goulart da Silva Caramez; Andressa Nauter-Alves; Jairo Francisco Savian Paleoceanographic evolution in the South Atlantic Ocean (Kwanza Basin, Angola) during its post-salt foundering, Marine and Petroleum Geology, Volume 144 (2022), p. 105852 | DOI:10.1016/j.marpetgeo.2022.105852
  • Hamad-ur- Rahim; Shazia Qamar; Mumtaz Muhammad Shah; Mercè Corbella; Juan Diego Martín-Martín; Hammad Tariq Janjuhah; Dídac Navarro-Ciurana; Vasiliki Lianou; George Kontakiotis Processes Associated with Multiphase Dolomitization and Other Related Diagenetic Events in the Jurassic Samana Suk Formation, Himalayan Foreland Basin, NW Pakistan, Minerals, Volume 12 (2022) no. 10, p. 1320 | DOI:10.3390/min12101320
  • Timothy Chapman; Luke A. Milan; Ian Metcalfe; Phil L. Blevin; Jim Crowley Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction, Nature Geoscience, Volume 15 (2022) no. 5, p. 411 | DOI:10.1038/s41561-022-00934-1
  • Xiaochuan Tian; W. Roger Buck Intrusions induce global warming before continental flood basalt volcanism, Nature Geoscience, Volume 15 (2022) no. 5, p. 417 | DOI:10.1038/s41561-022-00939-w
  • Lei Xiang; Shane D. Schoepfer; Dong-Xun Yuan; Quan-Feng Zheng; Hua Zhang Oceanic redox evolution across the end-Permian mass extinction at Penglaitan section, South China, Palaeoworld, Volume 31 (2022) no. 1, p. 93 | DOI:10.1016/j.palwor.2021.02.003
  • Qiang Jiang; Fred Jourdan; Hugo K. H. Olierook; Renaud E. Merle; Julien Bourdet; Denis Fougerouse; Belinda Godel; Alex T. Walker Volume and rate of volcanic CO 2 emissions governed the severity of past environmental crises, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 31 | DOI:10.1073/pnas.2202039119
  • Theodore Green; Paul R. Renne; C. Brenhin Keller Continental flood basalts drive Phanerozoic extinctions, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 38 | DOI:10.1073/pnas.2120441119
  • Francesca Galasso; Susanne Feist-Burkhardt; Elke Schneebeli-Hermann The palynology of the Toarcian Oceanic Anoxic Event at Dormettingen, southwest Germany, with emphasis on changes in vegetational dynamics, Review of Palaeobotany and Palynology, Volume 304 (2022), p. 104701 | DOI:10.1016/j.revpalbo.2022.104701
  • Eric Font; Luís Vítor Duarte; Mark J. Dekkers; Celine Remazeilles; Ramon Egli; Jorge E. Spangenberg; Alicia Fantasia; Joana Ribeiro; Elsa Gomes; José Mirão; Thierry Adatte Rapid light carbon releases and increased aridity linked to Karoo–Ferrar magmatism during the early Toarcian oceanic anoxic event, Scientific Reports, Volume 12 (2022) no. 1 | DOI:10.1038/s41598-022-08269-y
  • Taufeeq Dhansay; Thulani Maupa; Mthokozisi Twala; Zamampondo Sibewu; Vhuhwavhohau Nengovhela; Pertunia Mudau; Marietjie Schalenkamp; Nthabiseng Mashale; Thomas Muedi; Clement Ndou; Nosibulelo Zilibokwe; Themba Mothupi; Musarrat Safi; Nigel Hicks CO2 storage potential of basaltic rocks, Mpumalanga: Implications for the Just Transition, South African Journal of Science, Volume 118 (2022) no. 7/8 | DOI:10.17159/sajs.2022/12396
  • Prakash R. Golani Challenges in Mineral Exploration, Assessment of Ore Deposit Settings, Structures and Proximity Indicator Minerals in Geological Exploration (2021), p. 353 | DOI:10.1007/978-3-030-65125-1_6
  • Aristle Monteiro; Raymond A. Duraiswami; Tushar Mittal; Shrishail Pujari; Upananda Low; Ahsan Absar Cooling history and emplacement dynamics within rubbly lava flows, southern Deccan Traps: insights from textural variations and crystal size distributions, Bulletin of Volcanology, Volume 83 (2021) no. 11 | DOI:10.1007/s00445-021-01485-w
  • James M.D. Day; Kimberley L.R. Nutt; Brendon Mendenhall; Bradley J. Peters Temporally variable crustal contributions to primitive mantle-derived Columbia River Basalt Group magmas, Chemical Geology, Volume 572 (2021), p. 120197 | DOI:10.1016/j.chemgeo.2021.120197
  • Malcolm B. Hart The mid-Cretaceous debate: Evidence from the foraminifera, Cretaceous Research, Volume 128 (2021), p. 104964 | DOI:10.1016/j.cretres.2021.104964
  • Mathieu Rodriguez; Maëlis Arnould; Nicolas Coltice; Mathieu Soret Long-term evolution of a plume-induced subduction in the Neotethys realm, Earth and Planetary Science Letters, Volume 561 (2021), p. 116798 | DOI:10.1016/j.epsl.2021.116798
  • C.L. Colleps; N.R. McKenzie; W.R. Guenthner; M. Sharma; T.M. Gibson; D.F. Stockli Apatite (U-Th)/He thermochronometric constraints on the northern extent of the Deccan large igneous province, Earth and Planetary Science Letters, Volume 571 (2021), p. 117087 | DOI:10.1016/j.epsl.2021.117087
  • Christopher R. Scotese; Haijun Song; Benjamin J.W. Mills; Douwe G. van der Meer Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years, Earth-Science Reviews, Volume 215 (2021), p. 103503 | DOI:10.1016/j.earscirev.2021.103503
  • Ze Liu; Liming Dai; Sanzhong Li; Liangliang Wang; Huilin Xing; Yongjiang Liu; Fangfang Ma; Hao Dong; Fakun Li When plateau meets subduction zone: A review of numerical models, Earth-Science Reviews, Volume 215 (2021), p. 103556 | DOI:10.1016/j.earscirev.2021.103556
  • Allan Silva Gomes; Paulo Marcos Vasconcelos Geochronology of the Paraná-Etendeka large igneous province, Earth-Science Reviews, Volume 220 (2021), p. 103716 | DOI:10.1016/j.earscirev.2021.103716
  • Slah Boulila; Bilal U. Haq; Nathan Hara; R. Dietmar Müller; Bruno Galbrun; Guillaume Charbonnier Potential encoding of coupling between Milankovitch forcing and Earth's interior processes in the Phanerozoic eustatic sea-level record, Earth-Science Reviews, Volume 220 (2021), p. 103727 | DOI:10.1016/j.earscirev.2021.103727
  • Eric Font; David P.G. Bond Volcanism and Mass Extinction, Encyclopedia of Geology (2021), p. 596 | DOI:10.1016/b978-0-12-409548-9.12108-6
  • Richard E. Ernst Large Igneous Provinces, Encyclopedia of Geology (2021), p. 60 | DOI:10.1016/b978-0-12-409548-9.12528-x
  • George R McGhee; Grzegorz Racki Extinction: Late Devonian Mass Extinction, Encyclopedia of Life Sciences (2021), p. 1 | DOI:10.1002/9780470015902.a0029301
  • Cinzia G. Farnetani; Albrecht W. Hofmann Mantle Plumes, Encyclopedia of Solid Earth Geophysics (2021), p. 1094 | DOI:10.1007/978-3-030-58631-7_132
  • Expedition 396 Scientific Prospectus: Mid-Norwegian Continental Margin Magmatism, 396, 2021 | DOI:10.14379/iodp.sp.396.2021
  • Alcides Nóbrega Sial; Jiubin Chen; Christoph Korte; Manoj Kumar Pandit; Jorge E. Spangenberg; Juan Carlos Silva-Tamayo; Luiz Drude de Lacerda; Valderez Pinto Ferreira; José Antônio Barbosa; Claudio Gaucher; Natan Silva Pereira; Paulo Ricardo Riedel Hg Isotopes and Enhanced Hg Concentration in the Meishan and Guryul Ravine Successions: Proxies for Volcanism Across the Permian-Triassic Boundary, Frontiers in Earth Science, Volume 9 (2021) | DOI:10.3389/feart.2021.651224
  • Chenguang Zhang; Renyu Zeng; Changming Li; Jian Jiang; Tianguo Wang; Xingjun Shi Late Permian High-Ti Basalt in Western Guangxi, SW China and Its Link With the Emeishan Large Igneous Province: Geochronological and Geochemical Perspectives, Frontiers in Earth Science, Volume 9 (2021) | DOI:10.3389/feart.2021.729955
  • N. M. Sushchevskaya; A. V. Sobolev; G. L. Leitchenkov; V. G. Batanova; B. V. Belyatsky; A. V. Zhilkina Role of Pyroxenite Mantle in the Formation of the Mesozoic Karoo Plume Melts: Evidence from the Western Queen Maud Land, East Antarctica, Geochemistry International, Volume 59 (2021) no. 4, p. 357 | DOI:10.1134/s001670292104008x
  • Rhea K. Foreman; Karin M. Björkman; Carolina P. Funkey; Nicholas J. Hawco; Samuel T. Wilson; Tully Rohrer; Angelicque E. White; Seth G. John; David M. Karl Phosphate Scavenging During Lava‐Seawater Interaction Offshore of Kīlauea Volcano, Hawaii, Geochemistry, Geophysics, Geosystems, Volume 22 (2021) no. 7 | DOI:10.1029/2021gc009754
  • Sanna Holm-Alwmark; Fred Jourdan; Ludovic Ferrière; Carl Alwmark; Christian Koeberl Resolving the age of the Puchezh-Katunki impact structure (Russia) against alteration and inherited 40Ar* – No link with extinctions, Geochimica et Cosmochimica Acta, Volume 301 (2021), p. 116 | DOI:10.1016/j.gca.2021.03.001
  • Carla Cecília Treib Sarmento; Carlos Augusto Sommer; Evandro Fernandes de Lima; Carla Joana Santos Barreto; Lucas de Magalhães May Rossetti; Jean Michel Lafon Mafic subvolcanic intrusions from the southern Paraná‐Etendeka Large Igneous Province, Brazil: Insights from geochemistry and Sr–Nd–Pb isotopes, Geological Journal, Volume 56 (2021) no. 2, p. 1143 | DOI:10.1002/gj.3993
  • B. Eid; F. Lhuillier; S. A. Gilder; J. A. Pfänder; E. F. Gebru; D. Aßbichler Exceptionally High Emplacement Rate of the Afar Mantle Plume Head, Geophysical Research Letters, Volume 48 (2021) no. 23 | DOI:10.1029/2021gl094755
  • Manuel Pérez-Pueyo; Penélope Cruzado-Caballero; Miguel Moreno-Azanza; Bernat Vila; Diego Castanera; José Manuel Gasca; Eduardo Puértolas-Pascual; Beatriz Bádenas; José Ignacio Canudo The Tetrapod Fossil Record from the Uppermost Maastrichtian of the Ibero-Armorican Island: An Integrative Review Based on the Outcrops of the Western Tremp Syncline (Aragón, Huesca Province, NE Spain), Geosciences, Volume 11 (2021) no. 4, p. 162 | DOI:10.3390/geosciences11040162
  • Xiangdong Wang; Peter A. Cawood; Stephen E. Grasby; Laishi Zhao; Zhong-Qiang Chen; Shunling Wu; Huang Yuangeng Characteristics of Hg concentrations and isotopes in terrestrial and marine facies across the end-Permian mass extinction, Global and Planetary Change, Volume 205 (2021), p. 103592 | DOI:10.1016/j.gloplacha.2021.103592
  • Jiang Zhu; Zhaochong Zhang; M. Santosh; Shucheng Tan; Ziliang Jin Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: Implication for end-Guadalupian extinction of marine biota, Gondwana Research, Volume 92 (2021), p. 228 | DOI:10.1016/j.gr.2020.12.025
  • Gerta Keller; Madan L. Nagori; Maya Chaudhary; A. Nallapa Reddy; B.C. Jaiprakash; Jorge E. Spangenberg; Paula Mateo; Thierry Adatte Cenomanian-Turonian sea-level transgression and OAE2 deposition in the Western Narmada Basin, India, Gondwana Research, Volume 94 (2021), p. 73 | DOI:10.1016/j.gr.2021.02.013
  • Upul Premarathne; Lalindra V. Ranaweera Continental flood basalt magmatism contemporaneous with Deccan traps in the Mannar basin, offshore Sri Lanka, Island Arc, Volume 30 (2021) no. 1 | DOI:10.1111/iar.12409
  • A. V. Latyshev; A. A. Lapkovskii; R. V. Veselovskiy; A. M. Fetisova; N. A. Krivolutskaya Paleomagnetism of the Permian–Triassic Siberian Traps Intrusions from the Kulumbe River Valley, Northwestern Siberian Platform, Izvestiya, Physics of the Solid Earth, Volume 57 (2021) no. 3, p. 375 | DOI:10.1134/s1069351321030083
  • Tushar Mittal; Mark A. Richards; Isabel M. Fendley The Magmatic Architecture of Continental Flood Basalts I: Observations From the Deccan Traps, Journal of Geophysical Research: Solid Earth, Volume 126 (2021) no. 12 | DOI:10.1029/2021jb021808
  • Tushar Mittal; Mark A. Richards The Magmatic Architecture of Continental Flood Basalts: 2. A New Conceptual Model, Journal of Geophysical Research: Solid Earth, Volume 126 (2021) no. 12 | DOI:10.1029/2021jb021807
  • Sheng-Sheng Chen; Wei-Ming Fan; Ren-Deng Shi; Ji-Feng Xu; Yong-Min Liu The Tethyan Himalaya Igneous Province: Early Melting Products of the Kerguelen Mantle Plume, Journal of Petrology, Volume 62 (2021) no. 11 | DOI:10.1093/petrology/egab069
  • Ana Paula A. Benigno; Antônio Á.F. Saraiva; Alcides N. Sial; Luiz D. Lacerda Mercury chemostratigraphy as a proxy of volcanic-driven environmental changes in the Aptian-Albian transition, Araripe Basin, northeastern Brazil, Journal of South American Earth Sciences, Volume 107 (2021), p. 103020 | DOI:10.1016/j.jsames.2020.103020
  • Guilherme Krahl; Karlos G.D. Kochhann; Gerson Fauth; Alcides N. Sial; Luiz Drude de Lacerda Evaluation of deep-water environmental conditions during the latest Maastrichtian-early Danian: Insights from the western south atlantic ocean, Journal of South American Earth Sciences, Volume 112 (2021), p. 103630 | DOI:10.1016/j.jsames.2021.103630
  • Richard E. Ernst; David P. G. Bond; Shuan‐Hong Zhang; Kenneth L. Buchan; Stephen E. Grasby; Nasrrddine Youbi; Hafida El Bilali; Andrey Bekker; Luc S. Doucet Large Igneous Province Record Through Time and Implications for Secular Environmental Changes and Geological Time‐Scale Boundaries, Large Igneous Provinces (2021), p. 1 | DOI:10.1002/9781119507444.ch1
  • Nasrrddine Youbi; Richard E. Ernst; Ross N. Mitchell; Moulay A. Boumehdi; Warda El Moume; Abdelhak Ait Lahna; Mohamed K. Bensalah; Ulf Söderlund; Miguel Doblas; Colombo C. G. Tassinari Preliminary Appraisal of a Correlation Between Glaciations and Large Igneous Provinces Over the Past 720 Million Years, Large Igneous Provinces (2021), p. 169 | DOI:10.1002/9781119507444.ch8
  • Steven C. Bergman; James S. Eldrett; Daniel Minisini Phanerozoic Large Igneous Province, Petroleum System, and Source Rock Links, Large Igneous Provinces (2021), p. 191 | DOI:10.1002/9781119507444.ch9
  • Alexander J. Dickson; Anthony S. Cohen; Marc Davies The Osmium Isotope Signature of Phanerozoic Large Igneous Provinces, Large Igneous Provinces (2021), p. 229 | DOI:10.1002/9781119507444.ch10
  • Lawrence M. E. Percival; Bridget A. Bergquist; Tamsin A. Mather; Hamed Sanei Sedimentary Mercury Enrichments as a Tracer of Large Igneous Province Volcanism, Large Igneous Provinces (2021), p. 247 | DOI:10.1002/9781119507444.ch11
  • Jennifer Kasbohm; Blair Schoene; Seth Burgess Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement, Large Igneous Provinces (2021), p. 27 | DOI:10.1002/9781119507444.ch2
  • Jun Chen; Yi‐Gang Xu Permian Large Igneous Provinces and Their Paleoenvironmental Effects, Large Igneous Provinces (2021), p. 417 | DOI:10.1002/9781119507444.ch18
  • Peter E. Marshall; Luke E. Faggetter; Mike Widdowson Was the Kalkarindji Continental Flood Basalt Province a Driver of Environmental Change at the Dawn of the Phanerozoic?, Large Igneous Provinces (2021), p. 435 | DOI:10.1002/9781119507444.ch19
  • Shuan‐Hong Zhang; Richard E. Ernst; Jun‐Ling Pei; Yue Zhao; Guo‐Hui Hu Large Igneous Provinces (LIPs) and Anoxia Events in “The Boring Billion”, Large Igneous Provinces (2021), p. 449 | DOI:10.1002/9781119507444.ch20
  • David P. G. Bond; Yadong Sun Global Warming and Mass Extinctions Associated With Large Igneous Province Volcanism, Large Igneous Provinces (2021), p. 83 | DOI:10.1002/9781119507444.ch3
  • Lucas M.M. Rossetti; Malcolm J. Hole; Evandro F. de Lima; Matheus S. Simões; John M. Millett; Marcos M.M. Rossetti Magmatic evolution of Low-Ti lavas in the southern Paraná-Etendeka Large Igneous Province, Lithos, Volume 400-401 (2021), p. 106359 | DOI:10.1016/j.lithos.2021.106359
  • Jiang Zhu; Zhaochong Zhang; Shucheng Tan; Ziliang Jin; M. Santosh Intracontinental rift-related magmatism in the eastern Emeishan Large Igneous Province traced by zircon oxygen isotopes, Lithos, Volume 406-407 (2021), p. 106515 | DOI:10.1016/j.lithos.2021.106515
  • Jeroen Ritsema; Ross Maguire; Laura Cobden; Saskia Goes Seismic Imaging of Deep Mantle Plumes, Mantle Convection and Surface Expressions (2021), p. 353 | DOI:10.1002/9781119528609.ch14
  • Trond H. Torsvik; Henrik H. Svensen; Bernhard Steinberger; Dana L. Royer; Dougal A. Jerram; Morgan T. Jones; Mathew Domeier Connecting the Deep Earth and the Atmosphere, Mantle Convection and Surface Expressions (2021), p. 413 | DOI:10.1002/9781119528609.ch16
  • Youssef Biari; Frauke Klingelhoefer; Dieter Franke; Thomas Funck; Lies Loncke; Jean-Claude Sibuet; Christophe Basile; James A. Austin; Caesar Augusto Rigoti; Mohamed Sahabi; Massinissa Benabdellouahed; Walter R. Roest Structure and evolution of the Atlantic passive margins: A review of existing rifting models from wide-angle seismic data and kinematic reconstruction, Marine and Petroleum Geology, Volume 126 (2021), p. 104898 | DOI:10.1016/j.marpetgeo.2021.104898
  • Maria Tsekhmistrenko; Karin Sigloch; Kasra Hosseini; Guilhem Barruol A tree of Indo-African mantle plumes imaged by seismic tomography, Nature Geoscience, Volume 14 (2021) no. 8, p. 612 | DOI:10.1038/s41561-021-00762-9
  • Benjamin A. Black; Leif Karlstrom; Tamsin A. Mather The life cycle of large igneous provinces, Nature Reviews Earth Environment, Volume 2 (2021) no. 12, p. 840 | DOI:10.1038/s43017-021-00221-4
  • Cole G. Kingsbury; Martin B. Klausen; Ulf Söderlund; Wladyslaw Altermann; Richard E. Ernst Identification of a new 485 Ma post-orogenic mafic dyke swarm east of the Pan-African Saldania-Gariep Belt of South Africa, Precambrian Research, Volume 354 (2021), p. 106043 | DOI:10.1016/j.precamres.2020.106043
  • Gerson Fauth; Mauro Daniel Rodrigues Bruno; Jorge Villegas-Martín; Jairo Francisco Savian; Rodrigo do Monte Guerra; Guilherme Krahl; Francisco Henrique de Oliveira Lima; Oscar Strohschoen Jr.; Raquel Gewehr de Mello; Fernando Marcanth Lopes; Carolina Gonçalves Leandro; Eduardo da Silva Aguiar Drilling the Aptian–Albian of the Sergipe–Alagoas Basin, Brazil: paleobiogeographic and paleoceanographic studies in the South Atlantic, Scientific Drilling, Volume 29 (2021), p. 1 | DOI:10.5194/sd-29-1-2021
  • Bibliographie, Volcanologie (2021), p. 287 | DOI:10.3917/dunod.bardi.2021.01.0287
  • WU FuYuan; WAN Bo; ZHAO Liang; XIAO WenJiao; ZHU RiXiang Tethyan geodynamics, Acta Petrologica Sinica, Volume 36 (2020) no. 6, p. 1627 | DOI:10.18654/1000-0569/2020.06.01
  • Juan Bautista Spacapan; Alejandro D´Odorico; Octavio Palma; Olivier Galland; Kim Senger; Remigio Ruiz; Rene Manceda; Hector Armando Leanza Low resistivity zones at contacts of igneous intrusions emplaced in organic‐rich formations and their implications on fluid flow and petroleum systems: A case study in the northern Neuquén Basin, Argentina, Basin Research, Volume 32 (2020) no. 1, p. 3 | DOI:10.1111/bre.12363
  • Hassan Khozyem An Overview of Paleo-Climate Evidence in Egypt, Climate Change Impacts on Agriculture and Food Security in Egypt (2020), p. 21 | DOI:10.1007/978-3-030-41629-4_2
  • Michael P. Eddy; Blair Schoene; Kyle M. Samperton; Gerta Keller; Thierry Adatte; Syed F.R. Khadri U-Pb zircon age constraints on the earliest eruptions of the Deccan Large Igneous Province, Malwa Plateau, India, Earth and Planetary Science Letters, Volume 540 (2020), p. 116249 | DOI:10.1016/j.epsl.2020.116249
  • Asish R. Basu; Puloma Chakrabarty; Dawid Szymanowski; Mauricio Ibañez-Mejia; Blair Schoene; Nilotpal Ghosh; R. Bastian Georg Widespread silicic and alkaline magmatism synchronous with the Deccan Traps flood basalts, India, Earth and Planetary Science Letters, Volume 552 (2020), p. 116616 | DOI:10.1016/j.epsl.2020.116616
  • Mariano N. Remírez; Thomas J. Algeo Paleosalinity determination in ancient epicontinental seas: A case study of the T-OAE in the Cleveland Basin (UK), Earth-Science Reviews, Volume 201 (2020), p. 103072 | DOI:10.1016/j.earscirev.2019.103072
  • Mariano N. Remírez; Thomas J. Algeo Carbon-cycle changes during the Toarcian (Early Jurassic) and implications for regional versus global drivers of the Toarcian oceanic anoxic event, Earth-Science Reviews, Volume 209 (2020), p. 103283 | DOI:10.1016/j.earscirev.2020.103283
  • Vandana Kumari; S.K. Tandon; Nithin Kumar; Arundhuti Ghatak Epicontinental Permian-Cretaceous seaways in central India: The debate for the Narmada versus Godavari rifts for the Cretaceous-Tertiary incursion, Earth-Science Reviews, Volume 211 (2020), p. 103284 | DOI:10.1016/j.earscirev.2020.103284
  • Cinzia G. Farnetani; Albrecht W. Hofmann Mantle Plumes, Encyclopedia of Solid Earth Geophysics (2020), p. 1 | DOI:10.1007/978-3-030-10475-7_132-1
  • N. E. Moore; A. L. Grunder; W. A. Bohrson; R. W. Carlson; I. N. Bindeman Changing Mantle Sources and the Effects of Crustal Passage on the Steens Basalt, SE Oregon: Chemical and Isotopic Constraints, Geochemistry, Geophysics, Geosystems, Volume 21 (2020) no. 8 | DOI:10.1029/2020gc008910
  • A.S. Gale; J. Mutterlose; S. Batenburg; F.M. Gradstein; F.P. Agterberg; J.G. Ogg; M.R. Petrizzo The Cretaceous Period, Geologic Time Scale 2020 (2020), p. 1023 | DOI:10.1016/b978-0-12-824360-2.00027-9
  • R.E. Ernst; D.P.G. Bond; S.H. Zhang Influence of Large Igneous Provinces, Geologic Time Scale 2020 (2020), p. 345 | DOI:10.1016/b978-0-12-824360-2.00012-7
  • Liyu Zhang; Daizhao Chen; Taiyu Huang; Hao Yu; Xiqiang Zhou; Jianguo Wang An abrupt oceanic change and frequent climate fluctuations across the Frasnian–Famennian transition of Late Devonian: Constraints from conodont Sr isotope, Geological Journal, Volume 55 (2020) no. 6, p. 4479 | DOI:10.1002/gj.3657
  • Poonam Jalal; Jyoti Bora Pandey; Syed Masood Ahmad; Som Dutt; Uma Kant Shukla; Balakrishna Maddodi Effect of Deccan lava flows on the sedimentological evolution of Gurmatkal intertrappeans Karnataka, Southern India, Geological Journal, Volume 55 (2020) no. 6, p. 4681 | DOI:10.1002/gj.3711
  • Payel Dey; Jyotisankar Ray; Dinesh Pandit; Christian Koeberl; Sohini Ganguly; Sounak Chakraborty; Mehuli Ghosh; Indu Ray Petrogenetic aspects and role of liquid immiscibility from parts of eastern Deccan volcanic province, India, Geological Journal, Volume 55 (2020) no. 7, p. 5619 | DOI:10.1002/gj.3704
  • L Geoffroy; H Guan; L Gernigon; G R Foulger; P Werner The extent of continental material in oceans: C-Blocks and the Laxmi Basin example, Geophysical Journal International, Volume 222 (2020) no. 3, p. 1471 | DOI:10.1093/gji/ggaa215
  • Nagarjuna Danda; C.K. Rao; Amit Kumar; P. Rama Rao; P.B.V. Subba Rao Implications for the lithospheric structure of Cambay rift zone, western India: Inferences from a magnetotelluric study, Geoscience Frontiers, Volume 11 (2020) no. 5, p. 1743 | DOI:10.1016/j.gsf.2020.01.014
  • Richard E. Ernst; Sergei A. Rodygin; Oleg M. Grinev Age correlation of Large Igneous Provinces with Devonian biotic crises, Global and Planetary Change, Volume 185 (2020), p. 103097 | DOI:10.1016/j.gloplacha.2019.103097
  • Agnieszka Pisarzowska; Michał Rakociński; Leszek Marynowski; Marek Szczerba; Marie Thoby; Mariusz Paszkowski; Maria Cristina Perri; Claudia Spalletta; Hans-Peter Schönlaub; Nina Kowalik; Manfred Gereke Large environmental disturbances caused by magmatic activity during the Late Devonian Hangenberg Crisis, Global and Planetary Change, Volume 190 (2020), p. 103155 | DOI:10.1016/j.gloplacha.2020.103155
  • Emma Blanka Kovács; Micha Ruhl; Attila Demény; István Fórizs; István Hegyi; Zsófia Rita Horváth-Kostka; Ferenc Móricz; Zsolt Vallner; József Pálfy Mercury anomalies and carbon isotope excursions in the western Tethyan Csővár section support the link between CAMP volcanism and the end-Triassic extinction, Global and Planetary Change, Volume 194 (2020), p. 103291 | DOI:10.1016/j.gloplacha.2020.103291
  • Gerta Keller; Paula Mateo; Johannes Monkenbusch; Nicolas Thibault; Jahnavi Punekar; Jorge E. Spangenberg; Sigal Abramovich; Sarit Ashckenazi-Polivoda; Blair Schoene; Michael P. Eddy; Kyle M. Samperton; Syed F.R. Khadri; Thierry Adatte Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction, Global and Planetary Change, Volume 194 (2020), p. 103312 | DOI:10.1016/j.gloplacha.2020.103312
  • Jonathan L. Payne; Aviv Bachan; Noel A. Heim; Pincelli M. Hull; Matthew L. Knope The evolution of complex life and the stabilization of the Earth system, Interface Focus, Volume 10 (2020) no. 4, p. 20190106 | DOI:10.1098/rsfs.2019.0106
  • Xing Yu The petrogenetic interrelationship of Wajilitag complex components in the early Permian Tarim large igneous province, NW China, International Geology Review, Volume 62 (2020) no. 10, p. 1343 | DOI:10.1080/00206814.2019.1647466
  • Carolina Fonseca; João Graciano Mendonça Filho; Carine Lézin; Luís V. Duarte Organic facies variability and paleoenvironmental changes on the Moroccan Atlantic coast across the Cenomanian—Turonian Oceanic Anoxic Event (OAE2), International Journal of Coal Geology, Volume 230 (2020), p. 103587 | DOI:10.1016/j.coal.2020.103587
  • Amr S. Zaky; Michael A. Kaminski; Rodolfo Coccioni; Sherif Farouk; Mohamed A. Khalifa; Cesare A. Papazzoni; Mohamed M. Abu El-Hassan; Fabrizio Frontalini The Maastrichtian–Danian transition in the northern Farafra Oasis, Western Desert (Egypt): Implications from foraminiferal paleobathymetry and paleoenvironmental reconstructions, Journal of African Earth Sciences, Volume 168 (2020), p. 103853 | DOI:10.1016/j.jafrearsci.2020.103853
  • Mathieu Rodriguez; Philippe Huchon; Nicolas Chamot-Rooke; Marc Fournier; Matthias Delescluse; Jeroen Smit; Alexis Plunder; Gérôme Calvès; Dia Ninkabou; Manuel Pubellier; Thomas François; Philippe Agard; Christian Gorini Successive shifts of the India-Africa transform plate boundary during the Late Cretaceous-Paleogene interval: Implications for ophiolite emplacement along transforms, Journal of Asian Earth Sciences, Volume 191 (2020), p. 104225 | DOI:10.1016/j.jseaes.2019.104225
  • Alena Ebinghaus; Ross Taylor; Aaron Barker; Adrian J. Hartley; David W. Jolley; Malcolm J. Hole Development of inter-lava drainage systems in LIPs: The Columbia River Flood Basalt Province (U.S.A.) as a case study, Journal of Sedimentary Research, Volume 90 (2020) no. 10, p. 1346 | DOI:10.2110/jsr.2020.64
  • Ronald E. Martin; Thomas Servais Did the evolution of the phytoplankton fuel the diversification of the marine biosphere?, Lethaia, Volume 53 (2020) no. 1, p. 5 | DOI:10.1111/let.12343
  • Sneha Manda; Jahnavi Punekar Experimental validation of the planktic foraminifera fragmentation index as proxy for the end-Cretaceous Ocean Acidification, Marine Micropaleontology, Volume 155 (2020), p. 101821 | DOI:10.1016/j.marmicro.2020.101821
  • Zhanghu Wang; Jingqiang Tan; Richard Boyle; Jason Hilton; Zhongliang Ma; Wenhui Wang; Qiao Lyu; Xun Kang; Wenbin Luo Evaluating episodic hydrothermal activity in South China during the early Cambrian: Implications for biotic evolution, Marine and Petroleum Geology, Volume 117 (2020), p. 104355 | DOI:10.1016/j.marpetgeo.2020.104355
  • Guillaume Le Hir; Frédéric Fluteau; Baptiste Suchéras-Marx; Yves Goddéris Amplifying factors leading to the collapse of primary producers during the Chicxulub impact and Deccan Traps eruptions, Mass Extinctions, Volcanism, and Impacts: New Developments (2020), p. 223 | DOI:10.1130/2020.2544(09)
  • Nasrrddine Youbi; Richard E. Ernst; Ulf Söderlund; Moulay Ahmed Boumehdi; Abdelhak Ait Lahna; Colombo Celso Gaeta Tassinari; Warda El Moume; Mohamed Khalil Bensalah The Central Iapetus magmatic province: An updated review and link with the ca. 580 Ma Gaskiers glaciation, Mass Extinctions, Volcanism, and Impacts: New Developments (2020), p. 35 | DOI:10.1130/2020.2544(02)
  • Guillaume Charbonnier*; Thierry Adatte; Stéphanie Duchamp-Alphonse; Jorge E. Spangenberg; Karl B. Föllmi Global mercury enrichment in Valanginian sediments supports a volcanic trigger for the Weissert episode, Mass Extinctions, Volcanism, and Impacts: New Developments (2020), p. 85 | DOI:10.1130/2019.2544(04)
  • H.G. Dill A geological and mineralogical review of clay mineral deposits and phyllosilicate ore guides in Central Europe – A function of geodynamics and climate change, Ore Geology Reviews, Volume 119 (2020), p. 103304 | DOI:10.1016/j.oregeorev.2019.103304
  • Asmahane Benamara; Guillaume Charbonnier; Thierry Adatte; Jorge E. Spangenberg; Karl B. Föllmi Precession-driven monsoonal activity controlled the development of the early Albian Paquier oceanic anoxic event (OAE1b): Evidence from the Vocontian Basin, SE France, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 537 (2020), p. 109406 | DOI:10.1016/j.palaeo.2019.109406
  • A.N. Sial; Jiubin Chen; L.D. Lacerda; C. Korte; J.E. Spangenberg; J.C. Silva-Tamayo; C. Gaucher; V.P. Ferreira; J.A. Barbosa; N.S. Pereira; A.P. Benigno Globally enhanced Hg deposition and Hg isotopes in sections straddling the Permian–Triassic boundary: Link to volcanism, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 540 (2020), p. 109537 | DOI:10.1016/j.palaeo.2019.109537
  • Lei Xiang; Hua Zhang; Shane D. Schoepfer; Chang-qun Cao; Quan-feng Zheng; Dong-xun Yuan; Yao-feng Cai; Shu-zhong Shen Oceanic redox evolution around the end-Permian mass extinction at Meishan, South China, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 544 (2020), p. 109626 | DOI:10.1016/j.palaeo.2020.109626
  • D.V. Kent; G. Muttoni Pangea B and the Late Paleozoic Ice Age, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 553 (2020), p. 109753 | DOI:10.1016/j.palaeo.2020.109753
  • Jun Chen; Shu-zhong Shen; Yi-chun Zhang; Lucia Angiolini; Mohammad Nabi Gorgij; Gaia Crippa; Wei Wang; Hua Zhang; Dong-xun Yuan; Xian-hua Li; Yi-gang Xu Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 560 (2020), p. 109973 | DOI:10.1016/j.palaeo.2020.109973
  • Yan Feng; Haijun Song; David P. G. Bond Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions, Paleobiology, Volume 46 (2020) no. 4, p. 511 | DOI:10.1017/pab.2020.37
  • Raíssa Santiago; Fabrício de Andrade Caxito; Mirna Aparecida Neves; Elton Luiz Dantas; Edgar Batista de Medeiros Júnior; Gláucia Nascimento Queiroga Two generations of mafic dyke swarms in the Southeastern Brazilian coast: reactivation of structural lineaments during the gravitational collapse of the Araçuaí-Ribeira Orogen (500 Ma) and West Gondwana breakup (140 Ma), Precambrian Research, Volume 340 (2020), p. 105344 | DOI:10.1016/j.precamres.2019.105344
  • Alfio Alessandro Chiarenza; Alexander Farnsworth; Philip D. Mannion; Daniel J. Lunt; Paul J. Valdes; Joanna V. Morgan; Peter A. Allison Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 29, p. 17084 | DOI:10.1073/pnas.2006087117
  • Marco L. Fiorentini; Craig O’Neill; Andrea Giuliani; Eunjoo Choi; Roland Maas; Franco Pirajno; Stephen Foley Bushveld superplume drove Proterozoic magmatism and metallogenesis in Australia, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-76800-0
  • Ruimin Wang; Xianguo Lang; Weiming Ding; Yarong Liu; Tianzheng Huang; Wenbo Tang; Bing Shen The coupling of Phanerozoic continental weathering and marine phosphorus cycle, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-62816-z
  • Radhakrishna T.; Asanulla R. Mohamed; Venkateshwarlu M.; Soumya G. S. Low geomagnetic field strength during End-Cretaceous Deccan volcanism and whole mantle convection, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-67245-6
  • Michael R. Rampino*; Ken Caldeira; Andreas Prokoph# What causes mass extinctions? Large asteroid/comet impacts, flood-basalt volcanism, and ocean anoxia—Correlations and cycles, 250 Million Years of Earth History in Central Italy: Celebrating 25 Years of the Geological Observatory of Coldigioco (2019), p. 271 | DOI:10.1130/2019.2542(14)
  • Lin Zou; Lin Dong; Meng Ning; Kangjun Huang; Yongbo Peng; Shujian Qin; Honglin Yuan; Bing Shen Quantifying the carbon source of pedogenic calcite veins in weathered limestone: implications for the terrestrial carbon cycle, Acta Geochimica, Volume 38 (2019) no. 4, p. 481 | DOI:10.1007/s11631-019-00348-8
  • Matthew E. Clapham; Paul R. Renne Flood Basalts and Mass Extinctions, Annual Review of Earth and Planetary Sciences, Volume 47 (2019) no. 1, p. 275 | DOI:10.1146/annurev-earth-053018-060136
  • L.E. Faggetter; P.B. Wignall; S.B. Pruss; D.S. Jones; S. Grasby; M. Widdowson; R.J. Newton Mercury chemostratigraphy across the Cambrian Series 2 – Series 3 boundary: evidence for increased volcanic activity coincident with extinction?, Chemical Geology, Volume 510 (2019), p. 188 | DOI:10.1016/j.chemgeo.2019.02.006
  • Zeyang Liu; David Selby; Hua Zhang; Quanfeng Zheng; Shuzhong Shen; Bradley B. Sageman; Stephen E. Grasby; Benoit Beauchamp Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval, Chemical Geology, Volume 529 (2019), p. 119313 | DOI:10.1016/j.chemgeo.2019.119313
  • Morgan T. Jones; Lawrence M. E. Percival; Ella W. Stokke; Joost Frieling; Tamsin A. Mather; Lars Riber; Brian A. Schubert; Bo Schultz; Christian Tegner; Sverre Planke; Henrik H. Svensen Mercury anomalies across the Palaeocene–Eocene Thermal Maximum, Climate of the Past, Volume 15 (2019) no. 1, p. 217 | DOI:10.5194/cp-15-217-2019
  • Erik H. Hauri; Elizabeth Cottrell; Katherine A. Kelley; Jonathan M. Tucker; Kei Shimizu; Marion Le Voyer; Jared Marske; Alberto E. Saal Carbon in the Convecting Mantle, Deep Carbon (2019), p. 237 | DOI:10.1017/9781108677950.009
  • Stephen E. Grasby; Theodore R. Them; Zhuoheng Chen; Runsheng Yin; Omid H. Ardakani Mercury as a proxy for volcanic emissions in the geologic record, Earth-Science Reviews, Volume 196 (2019), p. 102880 | DOI:10.1016/j.earscirev.2019.102880
  • Benjamin A. Black; Sally A. Gibson Deep Carbon and the Life Cycle of Large Igneous Provinces, Elements, Volume 15 (2019) no. 5, p. 319 | DOI:10.2138/gselements.15.5.319
  • Millard F. Coffin; Olav Eldholm Large Igneous Provinces, Encyclopedia of Ocean Sciences (2019), p. 337 | DOI:10.1016/b978-0-12-409548-9.11329-6
  • Karen McBride The Planet Earth: A Review of the Influence of Cratering on the Geological Evolution of our Planet, Encyclopedic Atlas of Terrestrial Impact Craters (2019), p. 29 | DOI:10.1007/978-3-030-05451-9_4
  • Leif Karlstrom; Kendra E. Murray; Peter W. Reiners Bayesian Markov-Chain Monte Carlo Inversion of Low-Temperature Thermochronology Around Two 8 − 10 m Wide Columbia River Flood Basalt Dikes, Frontiers in Earth Science, Volume 7 (2019) | DOI:10.3389/feart.2019.00090
  • Kevin Wong; Emily Mason; Sascha Brune; Madison East; Marie Edmonds; Sabin Zahirovic Deep Carbon Cycling Over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings, Frontiers in Earth Science, Volume 7 (2019) | DOI:10.3389/feart.2019.00263
  • Vladimir E. Pavlov; Frederic Fluteau; Anton V. Latyshev; Anna M. Fetisova; Linda T. Elkins‐Tanton; Ben A. Black; Seth D. Burgess; Roman V. Veselovskiy Geomagnetic Secular Variations at the Permian‐Triassic Boundary and Pulsed Magmatism During Eruption of the Siberian Traps, Geochemistry, Geophysics, Geosystems, Volume 20 (2019) no. 2, p. 773 | DOI:10.1029/2018gc007950
  • C. Jain; A. B. Rozel; P. J. Tackley Quantifying the Correlation Between Mobile Continents and Elevated Temperatures in the Subcontinental Mantle, Geochemistry, Geophysics, Geosystems, Volume 20 (2019) no. 3, p. 1358 | DOI:10.1029/2018gc007586
  • D. E. Heaton; A. A. P. Koppers High‐Resolution40Ar/39Ar Geochronology of the Louisville Seamounts IODP Expedition 330 Drill Sites: Implications for the Duration of Hot Spot‐related Volcanism and Age Progressions, Geochemistry, Geophysics, Geosystems, Volume 20 (2019) no. 8, p. 4073 | DOI:10.1029/2018gc007759
  • Vivesh V. Kapur; Ashu Khosla; M. Santosh Faunal elements from the Deccan volcano‐sedimentary sequences of India: A reappraisal of biostratigraphic, palaeoecologic, and palaeobiogeographic aspects, Geological Journal, Volume 54 (2019) no. 5, p. 2797 | DOI:10.1002/gj.3379
  • HYOSANG KWON; MUN GI KIM; YONG IL LEE Mercury evidence from the Sino-Korean block for Emeishan volcanism during the Capitanian mass extinction, Geological Magazine, Volume 156 (2019) no. 06, p. 1105 | DOI:10.1017/s0016756818000481
  • Philip J. Heron Mantle plumes and mantle dynamics in the Wilson cycle, Geological Society, London, Special Publications, Volume 470 (2019) no. 1, p. 87 | DOI:10.1144/sp470-2018-97
  • Jun Chen; Yi-gang Xu Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies, Gondwana Research, Volume 75 (2019), p. 68 | DOI:10.1016/j.gr.2019.04.008
  • Hassan Khozyem; Abdel Aziz Tantawy; Abdullah Mahmoud; Ashraf Emam; Thierry Adatte Biostratigraphy and geochemistry of the Cretaceous-Paleogene (K/Pg) and early danian event (Dan-C2), a possible link to deccan volcanism: New insights from Red Sea, Egypt, Journal of African Earth Sciences, Volume 160 (2019), p. 103645 | DOI:10.1016/j.jafrearsci.2019.103645
  • Léo A. Hartmann; Sérgio B. Baggio; Matheus P. Brückmann; Daniel B. Knijnik; Cristiano Lana; Hans-Joachim Massonne; Joachim Opitz; Viter M. Pinto; Kei Sato; Colombo C.G. Tassinari; Karine R. Arena U-Pb geochronology of Paraná volcanics combined with trace element geochemistry of the zircon crystals and zircon Hf isotope data, Journal of South American Earth Sciences, Volume 89 (2019), p. 219 | DOI:10.1016/j.jsames.2018.11.026
  • Alejandro Blanco Igdabatis marmiisp. nov. (Myliobatiformes) from the lower Maastrichtian (Upper Cretaceous) of north-eastern Spain: an Ibero-Armorican origin for a Gondwanan batoid, Journal of Systematic Palaeontology, Volume 17 (2019) no. 10, p. 865 | DOI:10.1080/14772019.2018.1472673
  • R.E. Ernst; D.A. Liikane; S.M. Jowitt; K.L. Buchan; J.A. Blanchard A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions, Journal of Volcanology and Geothermal Research, Volume 384 (2019), p. 75 | DOI:10.1016/j.jvolgeores.2019.07.007
  • Y.D. Sun; S. Richoz; L. Krystyn; Z.T. Zhang; M.M. Joachimski Perturbations in the carbon cycle during the Carnian Humid Episode: carbonate carbon isotope records from southwestern China and northern Oman, Journal of the Geological Society, Volume 176 (2019) no. 1, p. 167 | DOI:10.1144/jgs2017-170
  • Antje Dürkefälden; Kaj Hoernle; Folkmar Hauff; Jo-Anne Wartho; Paul van den Bogaard; Reinhard Werner Age and geochemistry of the Beata Ridge: Primary formation during the main phase ( 89 Ma) of the Caribbean Large Igneous Province, Lithos, Volume 328-329 (2019), p. 69 | DOI:10.1016/j.lithos.2018.12.021
  • Stephen M. Jones; Murray Hoggett; Sarah E. Greene; Tom Dunkley Jones Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change, Nature Communications, Volume 10 (2019) no. 1 | DOI:10.1038/s41467-019-12957-1
  • T. Matys Grygar; K. Mach; P. Schnabl; M. Martinez; C. Zeeden Orbital forcing and abrupt events in a continental weathering proxy from central Europe (Most Basin, Czech Republic, 17.7–15.9 Ma) recorded beginning of the Miocene Climatic Optimum, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 514 (2019), p. 423 | DOI:10.1016/j.palaeo.2018.10.034
  • Yuangeng Huang; Zhong-Qiang Chen; Laishi Zhao; George D. Stanley; Jiaxin Yan; Yu Pei; Wanrong Yang; Junhua Huang Restoration of reef ecosystems following the Guadalupian–Lopingian boundary mass extinction: Evidence from the Laibin area, South China, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 519 (2019), p. 8 | DOI:10.1016/j.palaeo.2017.08.027
  • Malcolm B. Hart The ‘Black Band’: local expression of a global event, Proceedings of the Yorkshire Geological Society, Volume 62 (2019) no. 3, p. 217 | DOI:10.1144/pygs2017-007
  • S. Kutterolf; J.C. Schindlbeck; M. Jegen; A. Freundt; S.M. Straub Milankovitch frequencies in tephra records at volcanic arcs: The relation of kyr-scale cyclic variations in volcanism to global climate changes, Quaternary Science Reviews, Volume 204 (2019), p. 1 | DOI:10.1016/j.quascirev.2018.11.004
  • A.V. Latyshev; P.S. Ul’yakhina; R.V. Veselovskii Reconstruction of Magma Flow in Permo–Triassic Intrusions of the Angara–Taseeva Syneclise (Siberian Platform) Based on Magnetic Susceptibility Anisotropy Data, Russian Geology and Geophysics, Volume 60 (2019) no. 4, p. 400 | DOI:10.15372/rgg2019029
  • Seth Burgess Deciphering mass extinction triggers, Science, Volume 363 (2019) no. 6429, p. 815 | DOI:10.1126/science.aaw0473
  • Blair Schoene; Michael P. Eddy; Kyle M. Samperton; C. Brenhin Keller; Gerta Keller; Thierry Adatte; Syed F. R. Khadri U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction, Science, Volume 363 (2019) no. 6429, p. 862 | DOI:10.1126/science.aau2422
  • Courtney J. Sprain; Paul R. Renne; Loÿc Vanderkluysen; Kanchan Pande; Stephen Self; Tushar Mittal The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary, Science, Volume 363 (2019) no. 6429, p. 866 | DOI:10.1126/science.aav1446
  • Justyna Smolarek-Lach; Leszek Marynowski; Wiesław Trela; Paul B. Wignall Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event: An Example from a Deep Shelf of the Peri-Baltic Region, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-019-39333-9
  • Xavier Le Pichon; A. M. Celâl Şengör; Caner İmren Pangea and the Lower Mantle, Tectonics, Volume 38 (2019) no. 10, p. 3479 | DOI:10.1029/2018tc005445
  • Fábio Braz Machado; Eduardo Reis Viana Rocha-Júnior; Leila Soares Marques; Antonio José Ranalli Nardy; Larissa Vieira Zezzo; Natasha Sarde Marteleto Geochemistry of the Northern Paraná Continental Flood Basalt (PCFB) Province: implications for regional chemostratigraphy, Brazilian Journal of Geology, Volume 48 (2018) no. 2, p. 177 | DOI:10.1590/2317-4889201820180098
  • Emily J. Chin Deep crustal cumulates reflect patterns of continental rift volcanism beneath Tanzania, Contributions to Mineralogy and Petrology, Volume 173 (2018) no. 10 | DOI:10.1007/s00410-018-1512-z
  • Michał Rakociński; Michał Zatoń; Leszek Marynowski; Przemysław Gedl; Jens Lehmann Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway, Cretaceous Research, Volume 89 (2018), p. 126 | DOI:10.1016/j.cretres.2018.02.014
  • Xiangdong Wang; Peter A. Cawood; He Zhao; Laishi Zhao; Stephen E. Grasby; Zhong-Qiang Chen; Paul B. Wignall; Zhengyi Lv; Chen Han Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments, Earth and Planetary Science Letters, Volume 496 (2018), p. 159 | DOI:10.1016/j.epsl.2018.05.044
  • Claire L. Cooper; Graeme T. Swindles; Ivan P. Savov; Anja Schmidt; Karen L. Bacon Evaluating the relationship between climate change and volcanism, Earth-Science Reviews, Volume 177 (2018), p. 238 | DOI:10.1016/j.earscirev.2017.11.009
  • J. G. Shellnutt; Thuy T. Pham Mantle Potential Temperature Estimates and Primary Melt Compositions of the Low-Ti Emeishan Flood Basalt, Frontiers in Earth Science, Volume 6 (2018) | DOI:10.3389/feart.2018.00067
  • Philip J. Heron Mantle plumes and mantle dynamics in the Wilson cycle, Geological Society, London, Special Publications (2018), p. SP470.18 | DOI:10.1144/sp470.18
  • Jyoti Chandra; Debajyoti Paul; Shrinivas G. Viladkar; Sarajit Sensarma Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan Large Igneous Province, Geological Society, London, Special Publications, Volume 463 (2018) no. 1, p. 137 | DOI:10.1144/sp463.3
  • Alisson L. Oliveira; Márcio M. Pimentel; Reinhardt A. Fuck; Diógenes C. Oliveira Petrology of Jurassic and Cretaceous basaltic formations from the Parnaíba Basin, NE Brazil: correlations and associations with large igneous provinces, Geological Society, London, Special Publications, Volume 472 (2018) no. 1, p. 279 | DOI:10.1144/sp472.21
  • Louis Johansson; Sabin Zahirovic; R. Dietmar Müller The Interplay Between the Eruption and Weathering of Large Igneous Provinces and the Deep‐Time Carbon Cycle, Geophysical Research Letters, Volume 45 (2018) no. 11, p. 5380 | DOI:10.1029/2017gl076691
  • N.E. Moore; A.L. Grunder; W.A. Bohrson The three-stage petrochemical evolution of the Steens Basalt (southeast Oregon, USA) compared to large igneous provinces and layered mafic intrusions, Geosphere, Volume 14 (2018) no. 6, p. 2505 | DOI:10.1130/ges01665.1
  • Anke M. Friedrich; Hans-Peter Bunge; Stefanie M. Rieger; Lorenzo Colli; Siavash Ghelichkhan; Rainer Nerlich Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps, Gondwana Research, Volume 53 (2018), p. 159 | DOI:10.1016/j.gr.2017.06.003
  • Youjuan Li; Huaiyu He; Alexei V. Ivanov; Elena I. Demonterova; Yongxin Pan; Chenglong Deng; Dewen Zheng; Rixiang Zhu 40Ar/39Ar age of the onset of high-Ti phase of the Emeishan volcanism strengthens the link with the end-Guadalupian mass extinction, International Geology Review, Volume 60 (2018) no. 15, p. 1906 | DOI:10.1080/00206814.2017.1405748
  • Michael R. Rampino; Ken Caldeira Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study, International Journal of Earth Sciences, Volume 107 (2018) no. 2, p. 601 | DOI:10.1007/s00531-017-1513-6
  • K R Hari; Vikas Swarnkar; M P Manu Prasanth Significance of assimilation and fractional crystallization (AFC) process in the generation of basaltic lava flows from Chhotaudepur area, Deccan Large Igneous Province, NW India, Journal of Earth System Science, Volume 127 (2018) no. 6 | DOI:10.1007/s12040-018-0985-5
  • Yingchao Xu; Zhenyu Yang; Ya‐Bo Tong; Xianqing Jing Paleomagnetic Secular Variation Constraints on the Rapid Eruption of the Emeishan Continental Flood Basalts in Southwestern China and Northern Vietnam, Journal of Geophysical Research: Solid Earth, Volume 123 (2018) no. 4, p. 2597 | DOI:10.1002/2017jb014757
  • Bryant D Ware; Fred Jourdan; Renaud Merle; Massimo Chiaradia; Kyle Hodges The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the Oldest and Most Compositionally Homogenous Province of the Phanerozoic, Journal of Petrology, Volume 59 (2018) no. 4, p. 635 | DOI:10.1093/petrology/egy040
  • Fernando Estevão Rodrigues Crincoli Pacheco; Fabricio de Andrade Caxito; Lucia Castanheira de Moraes; Yara Regina Marangoni; Roberto Paulo Zanon dos Santos; Antonio Carlos Pedrosa-Soares Basaltic ring structures of the Serra Geral Formation at the southern Triângulo Mineiro, Água Vermelha region, Brazil, Journal of Volcanology and Geothermal Research, Volume 355 (2018), p. 136 | DOI:10.1016/j.jvolgeores.2017.06.019
  • Peter E. Marshall; Alison M. Halton; Simon P. Kelley; Mike Widdowson; Sarah C. Sherlock New 40 Ar/ 39 Ar dating of the Antrim Plateau Volcanics, Australia: clarifying an age for the eruptive phase of the Kalkarindji continental flood basalt province, Journal of the Geological Society, Volume 175 (2018) no. 6, p. 974 | DOI:10.1144/jgs2018-035
  • Benjamin A. Black; Ryan R. Neely; Jean-François Lamarque; Linda T. Elkins-Tanton; Jeffrey T. Kiehl; Christine A. Shields; Michael J. Mills; Charles Bardeen Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing, Nature Geoscience, Volume 11 (2018) no. 12, p. 949 | DOI:10.1038/s41561-018-0261-y
  • Masoud Asgharian Rostami; R. Mark Leckie; Eric Font; Fabrizio Frontalini; David Finkelstein; Christian Koeberl The Cretaceous-Paleogene transition at Galanderud (northern Alborz, Iran): A multidisciplinary approach, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 493 (2018), p. 82 | DOI:10.1016/j.palaeo.2018.01.001
  • Nadia Sabatino; Serena Ferraro; Rodolfo Coccioni; Maria Bonsignore; Marianna Del Core; Vincenzo Tancredi; Mario Sprovieri Mercury anomalies in upper Aptian-lower Albian sediments from the Tethys realm, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 495 (2018), p. 163 | DOI:10.1016/j.palaeo.2018.01.008
  • Sara Satolli; Luca Lanci; Giovanni Muttoni; Andrea Di Cencio The Lower Toarcian Serrone Marls (Northern Apennines, Italy): A 3.5 Myr record of marl deposition in the aftermath of the T-OAE, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 508 (2018), p. 35 | DOI:10.1016/j.palaeo.2018.07.011
  • Mingming Li; Shijie Zhong; Peter Olson Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation, Physics of the Earth and Planetary Interiors, Volume 277 (2018), p. 10 | DOI:10.1016/j.pepi.2018.01.010
  • David R. Mole; Stephen J. Barnes; Zhuosen Yao; Alistair J.R. White; R. Maas; Christopher L. Kirkland The Archean Fortescue large igneous province: A result of komatiite contamination by a distinct Eo-Paleoarchean crust, Precambrian Research, Volume 310 (2018), p. 365 | DOI:10.1016/j.precamres.2018.02.017
  • Jennifer Kasbohm; Blair Schoene Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum, Science Advances, Volume 4 (2018) no. 9 | DOI:10.1126/sciadv.aat8223
  • L. M. E. Percival; J. H. F. L. Davies; U. Schaltegger; D. De Vleeschouwer; A.-C. Da Silva; K. B. Föllmi Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-27847-7
  • P.G. Meintjes; W.A. van der Westhuizen Borehole LLE1 – an intra-caldera succession of the Goedgenoeg and Makwassie Formations, Ventersdorp Supergroup, South African Journal of Geology, Volume 121 (2018) no. 4, p. 363 | DOI:10.25131/sajg.121.0034
  • A.V. Latyshev; R.V. Veselovskiy; A.V. Ivanov Paleomagnetism of the Permian-Triassic intrusions from the Tunguska syncline and the Angara-Taseeva depression, Siberian Traps Large Igneous Province: Evidence of contrasting styles of magmatism, Tectonophysics, Volume 723 (2018), p. 41 | DOI:10.1016/j.tecto.2017.11.035
  • O. Galland; H.S. Bertelsen; C.H. Eide; F. Guldstrand; Ø.T. Haug; Héctor A. Leanza; K. Mair; O. Palma; S. Planke; O. Rabbel; B. Rogers; T. Schmiedel; A. Souche; J.B. Spacapan Storage and Transport of Magma in the Layered Crust—Formation of Sills and Related Flat-Lying Intrusions, Volcanic and Igneous Plumbing Systems (2018), p. 113 | DOI:10.1016/b978-0-12-809749-6.00005-4
  • Lori S. Glaze; Stephen Self; Anja Schmidt; Stephen J. Hunter Assessing eruption column height in ancient flood basalt eruptions, Earth and Planetary Science Letters, Volume 457 (2017), p. 263 | DOI:10.1016/j.epsl.2014.07.043
  • Benjamin A. Black; Michael Manga Volatiles and the tempo of flood basalt magmatism, Earth and Planetary Science Letters, Volume 458 (2017), p. 130 | DOI:10.1016/j.epsl.2016.09.035
  • Karthik Iyer; Daniel W. Schmid; Sverre Planke; John Millett Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate, Earth and Planetary Science Letters, Volume 467 (2017), p. 30 | DOI:10.1016/j.epsl.2017.03.023
  • J. D. Scaife; M. Ruhl; A. J. Dickson; T. A. Mather; H. C. Jenkyns; L. M. E. Percival; S. P. Hesselbo; J. Cartwright; J. S. Eldrett; S. C. Bergman; D. Minisini Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid‐Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous), Geochemistry, Geophysics, Geosystems, Volume 18 (2017) no. 12, p. 4253 | DOI:10.1002/2017gc007153
  • Eva Bredow; Bernhard Steinberger; Rene Gassmöller; Juliane Dannberg How plume‐ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track, Geochemistry, Geophysics, Geosystems, Volume 18 (2017) no. 8, p. 2930 | DOI:10.1002/2017gc006875
  • Eleanor S. Jennings; Sally A. Gibson; John Maclennan; Jussi S. Heinonen Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas, Geochimica et Cosmochimica Acta, Volume 196 (2017), p. 36 | DOI:10.1016/j.gca.2016.09.015
  • DANIELE MASETTI; BILLY FIGUS; HUGH C. JENKYNS; FILIPPO BARATTOLO; EMANUELA MATTIOLI; RENATO POSENATO Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: evidence from the Southern Alps (Northern Italy), Geological Magazine, Volume 154 (2017) no. 3, p. 625 | DOI:10.1017/s0016756816000273
  • Souvik Mitra; Kaushik Mitra; Saibal Gupta; Satadru Bhattacharya; Prakash Chauhan; Nirmala Jain Alteration and submergence of basalts in Kachchh, Gujarat, India: implications for the role of the Deccan Traps in the India–Seychelles break-up, Geological Society, London, Special Publications, Volume 445 (2017) no. 1, p. 47 | DOI:10.1144/sp445.9
  • Camilla M. Wilkinson; Morgan Ganerød; Bart W. H. Hendriks; Elizabeth A. Eide Compilation and appraisal of geochronological data from the North Atlantic Igneous Province (NAIP), Geological Society, London, Special Publications, Volume 447 (2017) no. 1, p. 69 | DOI:10.1144/sp447.10
  • David S. Jones; Anna M. Martini; David A. Fike; Kunio Kaiho A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia, Geology, Volume 45 (2017) no. 7, p. 631 | DOI:10.1130/g38940.1
  • Maximilian D. Fischer; Gabriele Uenzelmann-Neben; Guillaume Jacques; Reinhard Werner The Mozambique Ridge: a document of massive multistage magmatism, Geophysical Journal International, Volume 208 (2017) no. 1, p. 449 | DOI:10.1093/gji/ggw403
  • Elke Schneebeli-Hermann; Peter A. Hochuli; Hugo Bucher Palynofloral associations before and after the Permian–Triassic mass extinction, Kap Stosch, East Greenland, Global and Planetary Change, Volume 155 (2017), p. 178 | DOI:10.1016/j.gloplacha.2017.06.009
  • Yves Goddéris; Guillaume Le Hir; Mélina Macouin; Yannick Donnadieu; Lucie Hubert-Théou; Guillaume Dera; Markus Aretz; Frédéric Fluteau; Z.X. Li; Galen P. Halverson Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic, Gondwana Research, Volume 42 (2017), p. 151 | DOI:10.1016/j.gr.2016.09.013
  • M. Moulin; F. Fluteau; V. Courtillot; J. Marsh; G. Delpech; X. Quidelleur; M. Gérard Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change, Journal of Geophysical Research: Solid Earth, Volume 122 (2017) no. 2, p. 738 | DOI:10.1002/2016jb013354
  • Charles D Beard; James S Scoates; Dominique Weis; Jean H Bédard; Trent A Dell’Oro Geochemistry and Origin of the Neoproterozoic Natkusiak Flood Basalts and Related Franklin Sills, Victoria Island, Arctic Canada, Journal of Petrology, Volume 58 (2017) no. 11, p. 2191 | DOI:10.1093/petrology/egy004
  • T. M. Owen-Smith; L. D. Ashwal; M. Sudo; R. B. Trumbull Age and Petrogenesis of the Doros Complex, Namibia, and Implications for Early Plume-derived Melts in the Paraná–Etendeka LIP, Journal of Petrology, Volume 58 (2017) no. 3, p. 423 | DOI:10.1093/petrology/egx021
  • K.E. Fristad; H.H. Svensen; A. Polozov; S. Planke Formation and evolution of the end-Permian Oktyabrsk volcanic crater in the Tunguska Basin, Eastern Siberia, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 468 (2017), p. 76 | DOI:10.1016/j.palaeo.2016.11.025
  • Paula Mateo; Gerta Keller; Jahnavi Punekar; Jorge E. Spangenberg Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 478 (2017), p. 121 | DOI:10.1016/j.palaeo.2017.01.027
  • David P.G. Bond; Stephen E. Grasby On the causes of mass extinctions, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 478 (2017), p. 3 | DOI:10.1016/j.palaeo.2016.11.005
  • Richard E. Ernst; Nasrrddine Youbi How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 478 (2017), p. 30 | DOI:10.1016/j.palaeo.2017.03.014
  • T. Matys Grygar; M. Hošek; K. Mach; P. Schnabl; M. Martinez Climatic instability before the Miocene Climatic Optimum reflected in a Central European lacustrine record from the Most Basin in the Czech Republic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 485 (2017), p. 930 | DOI:10.1016/j.palaeo.2017.08.011
  • Qing Gong; Xiangdong Wang; Laishi Zhao; Stephen E. Grasby; Zhong-Qiang Chen; Lei Zhang; Yang Li; Ling Cao; Zhihong Li Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-05524-5
  • Hugh C. Jenkyns; Alexander J. Dickson; Micha Ruhl; Sander H. J. M. van den Boorn; Ulrich Heimhofer Basalt‐seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous), Sedimentology, Volume 64 (2017) no. 1, p. 16 | DOI:10.1111/sed.12305
  • Jessica H. Whiteside; Kliti Grice Biomarker Records Associated with Mass Extinction Events, Annual Review of Earth and Planetary Sciences, Volume 44 (2016) no. 1, p. 581 | DOI:10.1146/annurev-earth-060115-012501
  • P. Reynolds; R. J. Brown; T. Thordarson; E. W. Llewellin The architecture and shallow conduits of Laki-type pyroclastic cones: insights into a basaltic fissure eruption, Bulletin of Volcanology, Volume 78 (2016) no. 5 | DOI:10.1007/s00445-016-1029-0
  • Andrew Y. Glikson; Colin Groves Phanerozoic Life and Mass Extinctions of Species, Climate, Fire and Human Evolution, Volume 10 (2016), p. 45 | DOI:10.1007/978-3-319-22512-8_2
  • Martin Schobben; Alan Stebbins; Abbas Ghaderi; Harald Strauss; Dieter Korn; Christoph Korte Eutrophication, microbial-sulfate reduction and mass extinctions, Communicative Integrative Biology, Volume 9 (2016) no. 1, p. e1115162 | DOI:10.1080/19420889.2015.1115162
  • Jere H. Lipps; George D. Stanley Reefs Through Time: An Evolutionary View, Coral Reefs at the Crossroads, Volume 6 (2016), p. 175 | DOI:10.1007/978-94-017-7567-0_8
  • Francesca Falzoni; Maria Rose Petrizzo; Hugh C. Jenkyns; Andrew S. Gale; Harilaos Tsikos Planktonic foraminiferal biostratigraphy and assemblage composition across the Cenomanian–Turonian boundary interval at Clot Chevalier (Vocontian Basin, SE France), Cretaceous Research, Volume 59 (2016), p. 69 | DOI:10.1016/j.cretres.2015.10.028
  • Xianghui Li; Yushuai Wei; Yongxiang Li; Chaokai Zhang Carbon isotope records of the early Albian oceanic anoxic event (OAE) 1b from eastern Tethys (southern Tibet, China), Cretaceous Research, Volume 62 (2016), p. 109 | DOI:10.1016/j.cretres.2015.08.015
  • Oleg Petrov; Andrey Morozov; Sergey Shokalsky; Sergey Kashubin; Irina M. Artemieva; Nikolai Sobolev; Evgeny Petrov; Richard E. Ernst; Sergey Sergeev; Morten Smelror Crustal structure and tectonic model of the Arctic region, Earth-Science Reviews, Volume 154 (2016), p. 29 | DOI:10.1016/j.earscirev.2015.11.013
  • Victor Puchkov; Richard E. Ernst; Michael A. Hamilton; Ulf Söderlund; Nina Sergeeva A Devonian >2000-km-long dolerite dyke swarm-belt and associated basalts along the Urals-Novozemelian fold-belt: part of an East-European (Baltica) LIP tracing the Tuzo Superswell, GFF, Volume 138 (2016) no. 1, p. 6 | DOI:10.1080/11035897.2015.1118406
  • Peter Olson Mantle control of the geodynamo: Consequences of top‐down regulation, Geochemistry, Geophysics, Geosystems, Volume 17 (2016) no. 5, p. 1935 | DOI:10.1002/2016gc006334
  • F.M. Deegan; V.R. Troll; J.H. Bédard; C.A. Evenchick; K. Dewing; S. Grasby; H. Geiger; C. Freda; V. Misiti; S. Mollo The stiff upper LIP: investigating the High Arctic Large Igneous Province, Geology Today, Volume 32 (2016) no. 3, p. 92 | DOI:10.1111/gto.12138
  • Xuesong Tian; Zejin Shi; Guan Yin; Hongyu Long; Kun Wang A correlation between the Large Igneous Provinces and mass extinctions: constraint on the end-Guadalupian mass extinction and the Emeishan LIP in South China, eastern Tethys, International Geology Review, Volume 58 (2016) no. 10, p. 1215 | DOI:10.1080/00206814.2016.1147384
  • Mohamed Soua Cretaceous oceanic anoxic events (OAEs) recorded in the northern margin of Africa as possible oil and gas shale potential in Tunisia: An overview, International Geology Review, Volume 58 (2016) no. 3, p. 277 | DOI:10.1080/00206814.2015.1065516
  • O. Tapani Rämö; Pasi A. Heikkilä; Arto H. Pulkkinen Geochemistry of Paraná-Etendeka basalts from Misiones, Argentina: Some new insights into the petrogenesis of high-Ti continental flood basalts, Journal of South American Earth Sciences, Volume 67 (2016), p. 25 | DOI:10.1016/j.jsames.2016.01.008
  • Raphael Neto Araújo; Afonso César Rodrigues Nogueira; José Bandeira; Rômulo Simões Angélica Shallow lacustrine system of the Permian Pedra de Fogo Formation, Western Gondwana, Parnaíba Basin, Brazil, Journal of South American Earth Sciences, Volume 67 (2016), p. 57 | DOI:10.1016/j.jsames.2016.01.009
  • Thomas R. Benson; Gail A. Mahood Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt, Journal of Volcanology and Geothermal Research, Volume 309 (2016), p. 96 | DOI:10.1016/j.jvolgeores.2015.11.011
  • Shimai Shangguan; Ingrid Ukstins Peate; Wei Tian; Yigang Xu Re-evaluating the geochronology of the Permian Tarim magmatic province: implications for temporal evolution of magmatism, Journal of the Geological Society, Volume 173 (2016) no. 1, p. 228 | DOI:10.1144/jgs2014-114
  • Bibliographie, Les origines du vivant (2016), p. 274 | DOI:10.3917/gall.colle.2016.01.0274
  • Anja Schmidt; Richard A. Skeffington; Thorvaldur Thordarson; Stephen Self; Piers M. Forster; Alexandru Rap; Andy Ridgwell; David Fowler; Marjorie Wilson; Graham W. Mann; Paul B. Wignall; Kenneth S. Carslaw Selective environmental stress from sulphur emitted by continental flood basalt eruptions, Nature Geoscience, Volume 9 (2016) no. 1, p. 77 | DOI:10.1038/ngeo2588
  • Eric Font; Thierry Adatte; Sverre Planke; Henrik Svensen; Wolfram Michael Kürschner Impact, volcanism, global changes, and mass extinction, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 441 (2016), p. 1 | DOI:10.1016/j.palaeo.2015.11.001
  • Eric Font; Jorge Ponte; Thierry Adatte; Alicia Fantasia; Fabio Florindo; Alexandra Abrajevitch; José Mirão Tracing acidification induced by Deccan Phase 2 volcanism, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 441 (2016), p. 181 | DOI:10.1016/j.palaeo.2015.06.033
  • Morgan T. Jones; Dougal A. Jerram; Henrik H. Svensen; Clayton Grove The effects of large igneous provinces on the global carbon and sulphur cycles, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 441 (2016), p. 4 | DOI:10.1016/j.palaeo.2015.06.042
  • Dougal A. Jerram; Mike Widdowson; Paul B. Wignall; Yadong Sun; Xulong Lai; David P.G. Bond; Trond H. Torsvik Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume–lithosphere interaction during the Capitanian, Middle Permian (‘end Guadalupian’) extinction event, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 441 (2016), p. 65 | DOI:10.1016/j.palaeo.2015.06.009
  • Guillaume Paris; Yannick Donnadieu; Valérie Beaumont; Frédéric Fluteau; Yves Goddéris Geochemical consequences of intense pulse-like degassing during the onset of the Central Atlantic Magmatic Province, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 441 (2016), p. 74 | DOI:10.1016/j.palaeo.2015.04.011
  • Javad Abdolmaleki; Vahid Tavakoli Anachronistic facies in the early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 446 (2016), p. 213 | DOI:10.1016/j.palaeo.2016.01.031
  • Lei Xiang; Shane D. Schoepfer; Hua Zhang; Dong-xun Yuan; Chang-qun Cao; Quan-feng Zheng; Charles M. Henderson; Shu-zhong Shen Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 448 (2016), p. 59 | DOI:10.1016/j.palaeo.2015.10.046
  • Attila Vörös; Ádám T. Kocsis; József Pálfy Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 457 (2016), p. 233 | DOI:10.1016/j.palaeo.2016.06.022
  • Maya L. Gomes; Matthew T. Hurtgen; Bradley B. Sageman Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE2, Paleoceanography, Volume 31 (2016) no. 2, p. 233 | DOI:10.1002/2015pa002869
  • Taslima Anwar; Louise Hawkins; Vadim A. Kravchinsky; Andrew J. Biggin; Vladimir E. Pavlov Microwave paleointensities indicate a low paleomagnetic dipole moment at the Permo-Triassic boundary, Physics of the Earth and Planetary Interiors, Volume 260 (2016), p. 62 | DOI:10.1016/j.pepi.2016.09.007
  • Jean Guex; Sebastien Pilet; Othmar Müntener; Annachiara Bartolini; Jorge Spangenberg; Blair Schoene; Bryan Sell; Urs Schaltegger Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep23168
  • Stephen L. Brusatte; Richard J. Butler; Paul M. Barrett; Matthew T. Carrano; David C. Evans; Graeme T. Lloyd; Philip D. Mannion; Mark A. Norell; Daniel J. Peppe; Paul Upchurch; Thomas E. Williamson The extinction of the dinosaurs, Biological Reviews, Volume 90 (2015) no. 2, p. 628 | DOI:10.1111/brv.12128
  • William J. D. Iles; Selena Y. Smith; Maria A. Gandolfo; Sean W. Graham Monocot fossils suitable for molecular dating analyses, Botanical Journal of the Linnean Society, Volume 178 (2015) no. 3, p. 346 | DOI:10.1111/boj.12233
  • Maria Rosaria Barone Lumaga; Mario Coiro; Elisabeth Truernit; Boglárka Erdei; Paolo De Luca Epidermal micromorphology inDioon: did volcanism constrainDioonevolution?, Botanical Journal of the Linnean Society, Volume 179 (2015) no. 2, p. 236 | DOI:10.1111/boj.12326
  • Elena F. Gontareva; Mohd Khalid Ansari; Dmitry A. Ruban; Mashud Ahmad; Trilok Nath Singh Geological dimension of the cultural heritage: A case example of the Ajanta Caves (Maharashtra, India), Cadernos do Laboratorio Xeolóxico de Laxe. Revista de Xeoloxía Galega e do Hercínico Peninsular, Volume 38 (2015), p. 67 | DOI:10.17979/cadlaxe.2015.38.0.3683
  • Sarah C. Dodd; Conall Mac Niocaill; Adrian R. Muxworthy Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná–Etendeka Large Igneous Province: New palaeomagnetic data from Namibia, Earth and Planetary Science Letters, Volume 414 (2015), p. 16 | DOI:10.1016/j.epsl.2015.01.009
  • Ozge Karakas; Josef Dufek Melt evolution and residence in extending crust: Thermal modeling of the crust and crustal magmas, Earth and Planetary Science Letters, Volume 425 (2015), p. 131 | DOI:10.1016/j.epsl.2015.06.001
  • Jarek Trela; Christopher Vidito; Esteban Gazel; Claude Herzberg; Cornelia Class; William Whalen; Brian Jicha; Michael Bizimis; Guillermo E. Alvarado Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution, Earth and Planetary Science Letters, Volume 425 (2015), p. 268 | DOI:10.1016/j.epsl.2015.05.036
  • L.M.E. Percival; M.L.I. Witt; T.A. Mather; M. Hermoso; H.C. Jenkyns; S.P. Hesselbo; A.H. Al-Suwaidi; M.S. Storm; W. Xu; M. Ruhl Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province, Earth and Planetary Science Letters, Volume 428 (2015), p. 267 | DOI:10.1016/j.epsl.2015.06.064
  • The Pulse of the Earth, Earth's Climate Evolution (2015), p. 181 | DOI:10.1002/9781118897362.ch10
  • Oleg Petrov; Morten Smelror; Andrey Morozov; Sergey Shokalsky; Sergey Kashubin; Irina M. Artemieva; Thomas E. Moore; Arthur Grantz; Garrik Grikurov; Nikolai Sobolev; Evgeny Petrov; Richard E. Ernst; TeMAr Working Group WITHDRAWN: Crustal structure and tectonic model of the Arctic region (TeMAr), Earth-Science Reviews (2015) | DOI:10.1016/j.earscirev.2015.06.008
  • Lisa Whalen; Esteban Gazel; Christopher Vidito; John Puffer; Michael Bizimis; William Henika; Mark J. Caddick Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic Magmatic Province and the breakup of Pangea, Geochemistry, Geophysics, Geosystems, Volume 16 (2015) no. 10, p. 3532 | DOI:10.1002/2015gc005885
  • Dennis V. Kent; Bruce A. Kjarsgaard; Jeffrey S. Gee; Giovanni Muttoni; Larry M. Heaman Tracking the Late Jurassic apparent (or true) polar shift in U‐Pb‐dated kimberlites from cratonic North America (Superior Province of Canada), Geochemistry, Geophysics, Geosystems, Volume 16 (2015) no. 4, p. 983 | DOI:10.1002/2015gc005734
  • Mark A. Richards; Walter Alvarez; Stephen Self; Leif Karlstrom; Paul R. Renne; Michael Manga; Courtney J. Sprain; Jan Smit; Loÿc Vanderkluysen; Sally A. Gibson Triggering of the largest Deccan eruptions by the Chicxulub impact, Geological Society of America Bulletin, Volume 127 (2015) no. 11-12, p. 1507 | DOI:10.1130/b31167.1
  • Shi-Yong Liao; Dong-Bing Wang; Yuan Tang; Fu-Guang Yin; Shu-Nan Cao; Li-Quan Wang; Bao-Di Wang; Zhi-Ming Sun Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana’s northern margin, Geological Society of America Bulletin, Volume 127 (2015) no. 9-10, p. 1313 | DOI:10.1130/b31210.1
  • Svenja Tulipani; Kliti Grice; Paul F. Greenwood; Peter W. Haines; Peter E. Sauer; Arndt Schimmelmann; Roger E. Summons; Clinton B. Foster; Michael E. Böttcher; Ted Playton; Lorenz Schwark Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: A biomarker and stable isotope approach, Gondwana Research, Volume 28 (2015) no. 4, p. 1500 | DOI:10.1016/j.gr.2014.10.003
  • Constantijn B. Mennes; Vivienne K. Y. Lam; Paula J. Rudall; Stephanie P. Lyon; Sean W. Graham; Erik F. Smets; Vincent S. F. T. Merckx; Malte Ebach Ancient Gondwana break‐up explains the distribution of the mycoheterotrophic family Corsiaceae (Liliales), Journal of Biogeography, Volume 42 (2015) no. 6, p. 1123 | DOI:10.1111/jbi.12486
  • Tamsin A. Mather Volcanoes and the environment: Lessons for understanding Earth's past and future from studies of present-day volcanic emissions, Journal of Volcanology and Geothermal Research, Volume 304 (2015), p. 160 | DOI:10.1016/j.jvolgeores.2015.08.016
  • Michael R. Rampino Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events, Monthly Notices of the Royal Astronomical Society, Volume 448 (2015) no. 2, p. 1816 | DOI:10.1093/mnras/stu2708
  • Robert Duncan Deadly combination, Nature, Volume 527 (2015) no. 7577, p. 172 | DOI:10.1038/527172a
  • Hassan Khozyem; Thierry Adatte; Jorge E. Spangenberg; Gerta Keller; Abdel Aziz Tantawy; Alexey Ulianov New geochemical constraints on the Paleocene–Eocene thermal maximum: Dababiya GSSP, Egypt, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 429 (2015), p. 117 | DOI:10.1016/j.palaeo.2015.04.003
  • Henrik H. Svensen; Sverre Planke; Else-Ragnhild Neumann; Ingrid Aarnes; Julian S. Marsh; Stéphane Polteau; Camilla H. Harstad; Luc Chevallier Sub-Volcanic Intrusions and the Link to Global Climatic and Environmental Changes, Physical Geology of Shallow Magmatic Systems (2015), p. 249 | DOI:10.1007/11157_2015_10
  • Blair Schoene; Kyle M. Samperton; Michael P. Eddy; Gerta Keller; Thierry Adatte; Samuel A. Bowring; Syed F. R. Khadri; Brian Gertsch U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction, Science, Volume 347 (2015) no. 6218, p. 182 | DOI:10.1126/science.aaa0118
  • Paul R. Renne; Courtney J. Sprain; Mark A. Richards; Stephen Self; Loÿc Vanderkluysen; Kanchan Pande State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact, Science, Volume 350 (2015) no. 6256, p. 76 | DOI:10.1126/science.aac7549
  • Santiago Claramunt; Joel Cracraft A new time tree reveals Earth history’s imprint on the evolution of modern birds, Science Advances, Volume 1 (2015) no. 11 | DOI:10.1126/sciadv.1501005
  • Seth D. Burgess; Samuel A. Bowring High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction, Science Advances, Volume 1 (2015) no. 7 | DOI:10.1126/sciadv.1500470
  • Peng Peng Precambrian mafic dyke swarms in the North China Craton and their geological implications, Science China Earth Sciences, Volume 58 (2015) no. 5, p. 649 | DOI:10.1007/s11430-014-5026-x
  • Dominique Frizon de Lamotte; Brendan Fourdan; Sophie Leleu; François Leparmentier; Philippe de Clarens Style of rifting and the stages of Pangea breakup, Tectonics, Volume 34 (2015) no. 5, p. 1009 | DOI:10.1002/2014tc003760
  • Michael R. Rampino; Stephen Self Large Igneous Provinces and Biotic Extinctions, The Encyclopedia of Volcanoes (2015), p. 1049 | DOI:10.1016/b978-0-12-385938-9.00061-4
  • Stephen Self; Millard F. Coffin; Michael R. Rampino; John A. Wolff Large Igneous Provinces and Flood Basalt Volcanism, The Encyclopedia of Volcanoes (2015), p. 441 | DOI:10.1016/b978-0-12-385938-9.00024-9
  • W.R. Buck The Dynamics of Continental Breakup and Extension, Treatise on Geophysics (2015), p. 325 | DOI:10.1016/b978-0-444-53802-4.00118-4
  • M.D. Ballmer; P.E. van Keken; G. Ito Hotspots, Large Igneous Provinces, and Melting Anomalies, Treatise on Geophysics (2015), p. 393 | DOI:10.1016/b978-0-444-53802-4.00133-0
  • Stephen Self; Lori S. Glaze; Anja Schmidt; Tamsin A. Mather Volatile release from flood basalt eruptions: understanding the potential environmental effects, Volcanism and Global Environmental Change (2015), p. 164 | DOI:10.1017/cbo9781107415683.014
  • Vincent Courtillot; Frédéric Fluteau; Jean Besse Evidence for volcanism triggering extinctions: a short history of IPGP contributions with emphasis on paleomagnetism, Volcanism and Global Environmental Change (2015), p. 228 | DOI:10.1017/cbo9781107415683.019
  • Seth D. Burgess; Terrence J. Blackburn; Samuel A. Bowring High-precision U–Pb geochronology of Phanerozoic large igneous provinces, Volcanism and Global Environmental Change (2015), p. 47 | DOI:10.1017/cbo9781107415683.006
  • K.L. French; J. Sepúlveda; J. Trabucho-Alexandre; D.R. Gröcke; R.E. Summons Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England, Earth and Planetary Science Letters, Volume 390 (2014), p. 116 | DOI:10.1016/j.epsl.2013.12.033
  • Linda Marks; Jakob Keiding; Thomas Wenzel; Robert B. Trumbull; Ilya Veksler; Michael Wiedenbeck; Gregor Markl F, Cl, and S concentrations in olivine-hosted melt inclusions from mafic dikes in NW Namibia and implications for the environmental impact of the Paraná–Etendeka Large Igneous Province, Earth and Planetary Science Letters, Volume 392 (2014), p. 39 | DOI:10.1016/j.epsl.2014.01.057
  • Adam B. Jost; Roland Mundil; Bin He; Shaun T. Brown; Demir Altiner; Yadong Sun; Donald J. DePaolo; Jonathan L. Payne Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes, Earth and Planetary Science Letters, Volume 396 (2014), p. 201 | DOI:10.1016/j.epsl.2014.04.014
  • David I. Armstrong McKay; Toby Tyrrell; Paul A. Wilson; Gavin L. Foster Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study, Earth and Planetary Science Letters, Volume 403 (2014), p. 254 | DOI:10.1016/j.epsl.2014.06.040
  • Bryan Sell; Maria Ovtcharova; Jean Guex; Annachiara Bartolini; Fred Jourdan; Jorge E. Spangenberg; Jean-Claude Vicente; Urs Schaltegger Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U–Pb geochronology, Earth and Planetary Science Letters, Volume 408 (2014), p. 48 | DOI:10.1016/j.epsl.2014.10.008
  • Carlie Pietsch; David J. Bottjer The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic, Earth-Science Reviews, Volume 137 (2014), p. 65 | DOI:10.1016/j.earscirev.2013.12.002
  • Andrew Y. Glikson Mass Extinction of Species, Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon (2014), p. 47 | DOI:10.1007/978-94-007-7332-5_4
  • Benjamin Mills; Stuart J. Daines; Timothy M. Lenton Changing tectonic controls on the long‐term carbon cycle from Mesozoic to present, Geochemistry, Geophysics, Geosystems, Volume 15 (2014) no. 12, p. 4866 | DOI:10.1002/2014gc005530
  • XIANGHUI LI; HUGH C. JENKYNS; CHAOKAI ZHANG; YIN WANG; LING LIU; KE CAO Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time, Geological Magazine, Volume 151 (2014) no. 5, p. 830 | DOI:10.1017/s0016756813000897
  • R. J. Brown; S. Blake; T. Thordarson; S. Self Pyroclastic edifices record vigorous lava fountains during the emplacement of a flood basalt flow field, Roza Member, Columbia River Basalt Province, USA, Geological Society of America Bulletin, Volume 126 (2014) no. 7-8, p. 875 | DOI:10.1130/b30857.1
  • Fred Jourdan; Darren F. Mark; Chrystele Verati Advances in 40 Ar/ 39 Ar dating: from archaeology to planetary sciences – introduction, Geological Society, London, Special Publications, Volume 378 (2014) no. 1, p. 1 | DOI:10.1144/sp378.24
  • F. Jourdan; K. Hodges; B. Sell; U. Schaltegger; M.T.D. Wingate; L.Z. Evins; U. Söderlund; P.W. Haines; D. Phillips; T. Blenkinsop High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction, Geology, Volume 42 (2014) no. 6, p. 543 | DOI:10.1130/g35434.1
  • J. Gregory Shellnutt The Emeishan large igneous province: A synthesis, Geoscience Frontiers, Volume 5 (2014) no. 3, p. 369 | DOI:10.1016/j.gsf.2013.07.003
  • Warwick W. Hastie; Michael K. Watkeys; Charles Aubourg Magma flow in dyke swarms of the Karoo LIP: Implications for the mantle plume hypothesis, Gondwana Research, Volume 25 (2014) no. 2, p. 736 | DOI:10.1016/j.gr.2013.08.010
  • Susanne J.H. Buiter; Trond H. Torsvik A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?, Gondwana Research, Volume 26 (2014) no. 2, p. 627 | DOI:10.1016/j.gr.2014.02.007
  • Simon R. Passey The habit and origin of siderite spherules in the Eocene coal-bearing Prestfjall Formation, Faroe Islands, International Journal of Coal Geology, Volume 122 (2014), p. 76 | DOI:10.1016/j.coal.2013.12.009
  • D. Ray; S. Misra; M. Widdowson; C.H. Langmuir A common parentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? A geochemical and isotopic approach, Journal of Asian Earth Sciences, Volume 84 (2014), p. 188 | DOI:10.1016/j.jseaes.2013.12.015
  • Melroy R. Borges; Gautam Sen; Garret L. Hart; John A. Wolff; D. Chandrasekharam Plagioclase as recorder of magma chamber processes in the Deccan Traps: Sr-isotope zoning and implications for Deccan eruptive event, Journal of Asian Earth Sciences, Volume 84 (2014), p. 95 | DOI:10.1016/j.jseaes.2013.10.034
  • Stefan Schöbel; Helga de Wall; Morgan Ganerød; Manoj K. Pandit; Christian Rolf Magnetostratigraphy and 40Ar–39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with the main Deccan Large Igneous Province sequences, Journal of Asian Earth Sciences, Volume 89 (2014), p. 28 | DOI:10.1016/j.jseaes.2014.03.022
  • Bei Zhu; Zhaojie Guo; Runchao Liu; Dongdong Liu; Wei Du No pre-eruptive uplift in the Emeishan large igneous province: New evidences from its ‘inner zone’, Dali area, Southwest China, Journal of Volcanology and Geothermal Research, Volume 269 (2014), p. 57 | DOI:10.1016/j.jvolgeores.2013.11.015
  • Hervé Bertrand; Michel Fornari; Andrea Marzoli; Raúl García-Duarte; Thierry Sempere The Central Atlantic Magmatic Province extends into Bolivia, Lithos, Volume 188 (2014), p. 33 | DOI:10.1016/j.lithos.2013.10.019
  • Franco Pirajno; Ignacio González-Álvarez; Wei Chen; Kurt T. Kyser; Antonio Simonetti; Evelyne Leduc; Monica leGras The Gifford Creek Ferrocarbonatite Complex, Gascoyne Province, Western Australia: Associated fenitic alteration and a putative link with the  1075Ma Warakurna LIP, Lithos, Volume 202-203 (2014), p. 100 | DOI:10.1016/j.lithos.2014.05.012
  • Yu-Ting Zhong; Bin He; Roland Mundil; Yi-Gang Xu CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province, Lithos, Volume 204 (2014), p. 14 | DOI:10.1016/j.lithos.2014.03.005
  • J. Gregory Shellnutt; Ghulam M. Bhat; Kuo-Lung Wang; Michael E. Brookfield; Bor-Ming Jahn; Jaroslav Dostal Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle, Lithos, Volume 204 (2014), p. 159 | DOI:10.1016/j.lithos.2014.01.008
  • Yi-Gang Xu; Xun Wei; Zhen-Yu Luo; Hai-Quan Liu; Jun Cao The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model, Lithos, Volume 204 (2014), p. 20 | DOI:10.1016/j.lithos.2014.02.015
  • Bin He; Yu-Ting Zhong; Yi-Gang Xu; Xian-Hua Li Triggers of Permo-Triassic boundary mass extinction in South China: The Siberian Traps or Paleo-Tethys ignimbrite flare-up?, Lithos, Volume 204 (2014), p. 258 | DOI:10.1016/j.lithos.2014.05.011
  • Ryan M. Bright; Jeffrey M. Amato; Steven W. Denyszyn; Richard E. Ernst U-Pb geochronology of 1.1 Ga diabase in the southwestern United States: Testing models for the origin of a post-Grenville large igneous province, Lithosphere, Volume 6 (2014) no. 3, p. 135 | DOI:10.1130/l335.1
  • Song-Yue Yu; Xie-Yan Song; Lie-Meng Chen; Xiao-Biao Li Postdated melting of subcontinental lithospheric mantle by the Emeishan mantle plume: Evidence from the Anyi intrusion, Yunnan, SW China, Ore Geology Reviews, Volume 57 (2014), p. 560 | DOI:10.1016/j.oregeorev.2013.08.006
  • Emily L. Bamforth; Christine L. Button; Hans C.E. Larsson Paleoclimate estimates and fire ecology immediately prior to the end-Cretaceous mass extinction in the Frenchman Formation (66Ma), Saskatchewan, Canada, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 401 (2014), p. 96 | DOI:10.1016/j.palaeo.2014.02.020
  • Li Tian; Jinnan Tong; Thomas J. Algeo; Haijun Song; Huyue Song; Daoliang Chu; Lei Shi; David J. Bottjer Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 412 (2014), p. 68 | DOI:10.1016/j.palaeo.2014.07.018
  • A.N. Sial; Jiubin Chen; L.D. Lacerda; S. Peralta; C. Gaucher; R. Frei; S. Cirilli; V.P. Ferreira; R.A. Marquillas; J.A. Barbosa; N.S. Pereira; I.K.C. Belmino High-resolution Hg chemostratigraphy: A contribution to the distinction of chemical fingerprints of the Deccan volcanism and Cretaceous–Paleogene Boundary impact event, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 414 (2014), p. 98 | DOI:10.1016/j.palaeo.2014.08.013
  • David W. Leverington Did large volcanic channel systems develop on Earth during the Hadean and Archean?, Precambrian Research, Volume 246 (2014), p. 226 | DOI:10.1016/j.precamres.2014.03.006
  • Svetlana Tessalina; Fred Jourdan; Laurie Nunes; Allen Kennedy; Steven Denyszyn; Igor Puchtel; Mathieu Touboul; Robert Creaser; Maud Boyet; Elena Belousova; Anne Trinquier Application of Radiogenic Isotopes in Geosciences: Overview and Perspectives, Principles and Practice of Analytical Techniques in Geosciences (2014), p. 49 | DOI:10.1039/9781782625025-00049
  • N. MacLeod Overview of the Cretaceous Period☆, Reference Module in Earth Systems and Environmental Sciences (2014) | DOI:10.1016/b978-0-12-409548-9.09376-3
  • M.F. Coffin; O. Eldholm Large Igneous Provinces, Reference Module in Earth Systems and Environmental Sciences (2014) | DOI:10.1016/b978-0-12-409548-9.09087-4
  • C. Elliott-Kingston; M. Haworth; J.C. McElwain Damage structures in leaf epidermis and cuticle as an indicator of elevated atmospheric sulphur dioxide in early Mesozoic floras, Review of Palaeobotany and Palynology, Volume 208 (2014), p. 25 | DOI:10.1016/j.revpalbo.2014.05.001
  • A. M. Fetisova; R. V. Veselovskii; A. V. Latyshev; V. A. Rad’ko; V. E. Pavlov Magnetic stratigraphy of the Permian-Triassic traps in the Kotui River valley (Siberian Platform): New paleomagnetic data, Stratigraphy and Geological Correlation, Volume 22 (2014) no. 4, p. 377 | DOI:10.1134/s0869593814040054
  • A.C. Kerr Oceanic Plateaus, Treatise on Geochemistry (2014), p. 631 | DOI:10.1016/b978-0-08-095975-7.00320-x
  • G.L. Farmer Continental Basaltic Rocks, Treatise on Geochemistry (2014), p. 75 | DOI:10.1016/b978-0-08-095975-7.00303-x
  • Qingyan Tang; Mingjie Zhang; Chusi Li; Ming Yu; Liwu Li The chemical compositions and abundances of volatiles in the Siberian large igneous province: Constraints on magmatic CO2 and SO2 emissions into the atmosphere, Chemical Geology, Volume 339 (2013), p. 84 | DOI:10.1016/j.chemgeo.2012.08.031
  • D. V. Kent; G. Muttoni Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt, Climate of the Past, Volume 9 (2013) no. 2, p. 525 | DOI:10.5194/cp-9-525-2013
  • Roberto Graziano Sedimentology, biostratigraphy and event stratigraphy of the Early Aptian Oceanic Anoxic Event (OAE1A) in the Apulia Carbonate Platform Margin – Ionian Basin System (Gargano Promontory, southern Italy), Cretaceous Research, Volume 39 (2013), p. 78 | DOI:10.1016/j.cretres.2012.05.014
  • Bryan C. Storey; Alan P. M. Vaughan; Teal R. Riley The links between large igneous provinces, continental break-up and environmental change: evidence reviewed from Antarctica, Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Volume 104 (2013) no. 1, p. 17 | DOI:10.1017/s175569101300011x
  • Vincent Lefebvre; Yannick Donnadieu; Yves Goddéris; Frédéric Fluteau; Lucie Hubert-Théou Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic?, Earth and Planetary Science Letters, Volume 371-372 (2013), p. 203 | DOI:10.1016/j.epsl.2013.03.049
  • Alexei V. Ivanov; Huayiu He; Liekun Yan; Viktor V. Ryabov; Artem Y. Shevko; Stanislav V. Palesskii; Irina V. Nikolaeva Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism, Earth-Science Reviews, Volume 122 (2013), p. 58 | DOI:10.1016/j.earscirev.2013.04.001
  • Antonello Bartiromo; Gaëtan Guignard; Maria Rosaria Barone Lumaga; Filippo Barattolo; Giovanni Chiodini; Rosario Avino; Giulia Guerriero; Georges Barale The cuticle micromorphology of in situ Erica arborea L. exposed to long-term volcanic gases, Environmental and Experimental Botany, Volume 87 (2013), p. 197 | DOI:10.1016/j.envexpbot.2012.10.006
  • YUTARO TAKAYA; KENTARO NAKAMURA; YASUHIRO KATO Geological, geochemical and social-scientific assessment of basaltic aquifers as potential storage sites for CO2, GEOCHEMICAL JOURNAL, Volume 47 (2013) no. 4, p. 385 | DOI:10.2343/geochemj.2.0255
  • Christine Yallup; Marie Edmonds; Alexandra V. Turchyn Sulfur degassing due to contact metamorphism during flood basalt eruptions, Geochimica et Cosmochimica Acta, Volume 120 (2013), p. 263 | DOI:10.1016/j.gca.2013.06.025
  • S. E. Bryan; L. Ferrari Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years, Geological Society of America Bulletin, Volume 125 (2013) no. 7-8, p. 1053 | DOI:10.1130/b30820.1
  • Andreas Prokoph; Hafida El Bilali; Richard Ernst Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution, Geoscience Frontiers, Volume 4 (2013) no. 3, p. 263 | DOI:10.1016/j.gsf.2012.08.001
  • Avto Goguitchaichvili; Miguel Cervantes Solano; Pierre Camps; Leda Sánchez Bettucci; Mabel Mena; Ricardo Trindade; Bertha Aguilar Reyes; Juan Morales; Hector Lopez Loera The Earth's magnetic field prior to the Cretaceous Normal Superchron: new palaeomagnetic results from the Alto Paraguay Formation, International Geology Review, Volume 55 (2013) no. 6, p. 692 | DOI:10.1080/00206814.2012.732801
  • André Michard; Dominique Frizon de Lamotte; Mohamad Hafid; André Charrière; Hamid Haddoumi; Hassan Ibouh Comment on “The Jurassic–Cretaceous basaltic magmatism of the Oued El-Abid syncline (High Atlas, Morocco): Physical volcanology, geochemistry and geodynamic implications” by Bensalah et al., J. Afr. Earth Sci. 81 (2013) 60–81, Journal of African Earth Sciences, Volume 88 (2013), p. 101 | DOI:10.1016/j.jafrearsci.2013.08.009
  • N.A. Shallaly; C. Beier; K.M. Haase; M.S. Hammed Petrology and geochemistry of the Tertiary Suez rift volcanism, Sinai, Egypt, Journal of Volcanology and Geothermal Research, Volume 267 (2013), p. 119 | DOI:10.1016/j.jvolgeores.2013.10.005
  • Marcelle K. Boudagher-Fadel; G. David Price The phylogenetic and palaeogeographic evolution of the miogypsinid larger benthic foraminifera, Journal of the Geological Society, Volume 170 (2013) no. 1, p. 185 | DOI:10.1144/jgs2011-149
  • David P. G. Bond; Michał Zatoń; Paul B. Wignall; Leszek Marynowski Evidence for shallow-water ‘Upper Kellwasser’ anoxia in the Frasnian–Famennian reefs of Alberta, Canada, Lethaia, Volume 46 (2013) no. 3, p. 355 | DOI:10.1111/let.12014
  • Richard E. Ernst; Wouter Bleeker; Ulf Söderlund; Andrew C. Kerr Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution, Lithos, Volume 174 (2013), p. 1 | DOI:10.1016/j.lithos.2013.02.017
  • Victor N. Puchkov; Svetlana V. Bogdanova; Richard E. Ernst; Vjacheslav I. Kozlov; Arthur A. Krasnobaev; Ulf Söderlund; Michael T.D. Wingate; Alexander V. Postnikov; Nina D. Sergeeva The ca. 1380Ma Mashak igneous event of the Southern Urals, Lithos, Volume 174 (2013), p. 109 | DOI:10.1016/j.lithos.2012.08.021
  • T.M. Owen-Smith; L.D. Ashwal; T.H. Torsvik; M. Ganerød; O. Nebel; S.J. Webb; S.C. Werner Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism, Lithos, Volume 182-183 (2013), p. 33 | DOI:10.1016/j.lithos.2013.09.011
  • Philip A. E. Pogge von Strandmann; Hugh C. Jenkyns; Richard G. Woodfine Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2, Nature Geoscience, Volume 6 (2013) no. 8, p. 668 | DOI:10.1038/ngeo1875
  • Brahimsamba Bomou; Thierry Adatte; Abdel Aziz Tantawy; Haydon Mort; Dominik Fleitmann; Yongjian Huang; Karl B. Föllmi The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 369 (2013), p. 466 | DOI:10.1016/j.palaeo.2012.11.011
  • Mathieu Martinez; Jean-François Deconinck; Pierre Pellenard; Stéphane Reboulet; Laurent Riquier Astrochronology of the Valanginian Stage from reference sections (Vocontian Basin, France) and palaeoenvironmental implications for the Weissert Event, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 376 (2013), p. 91 | DOI:10.1016/j.palaeo.2013.02.021
  • Andrew H. Caruthers; Paul L. Smith; Darren R. Gröcke The Pliensbachian–Toarcian (Early Jurassic) extinction, a global multi-phased event, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 386 (2013), p. 104 | DOI:10.1016/j.palaeo.2013.05.010
  • G. Muttoni; E. Dallanave; J.E.T. Channell The drift history of Adria and Africa from 280 Ma to Present, Jurassic true polar wander, and zonal climate control on Tethyan sedimentary facies, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 386 (2013), p. 415 | DOI:10.1016/j.palaeo.2013.06.011
  • J. Ricci; X. Quidelleur; V. Pavlov; S. Orlov; A. Shatsillo; V. Courtillot New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 386 (2013), p. 531 | DOI:10.1016/j.palaeo.2013.06.020
  • Špela Goričan; Elizabeth S. Carter; Jean Guex; Luis O'Dogherty; Patrick De Wever; Paulian Dumitrica; Rie S. Hori; Atsushi Matsuoka; Patricia A. Whalen Evolutionary patterns and palaeobiogeography of Pliensbachian and Toarcian (Early Jurassic) Radiolaria, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 386 (2013), p. 620 | DOI:10.1016/j.palaeo.2013.06.028
  • A.N. Sial; L.D. Lacerda; V.P. Ferreira; R. Frei; R.A. Marquillas; J.A. Barbosa; C. Gaucher; C.C. Windmöller; N.S. Pereira Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 387 (2013), p. 153 | DOI:10.1016/j.palaeo.2013.07.019
  • Hans Keppler Volatiles under High Pressure, Physics and Chemistry of the Deep Earth (2013), p. 1 | DOI:10.1002/9781118529492.ch1
  • Heiko Pälike Impact and Extinction, Science, Volume 339 (2013) no. 6120, p. 655 | DOI:10.1126/science.1233948
  • Paul R. Renne; Alan L. Deino; Frederik J. Hilgen; Klaudia F. Kuiper; Darren F. Mark; William S. Mitchell; Leah E. Morgan; Roland Mundil; Jan Smit Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary, Science, Volume 339 (2013) no. 6120, p. 684 | DOI:10.1126/science.1230492
  • Terrence J. Blackburn; Paul E. Olsen; Samuel A. Bowring; Noah M. McLean; Dennis V. Kent; John Puffer; Greg McHone; E. Troy Rasbury; Mohammed Et-Touhami Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province, Science, Volume 340 (2013) no. 6135, p. 941 | DOI:10.1126/science.1234204
  • Alexis Godet Drowning unconformities: Palaeoenvironmental significance and involvement of global processes, Sedimentary Geology, Volume 293 (2013), p. 45 | DOI:10.1016/j.sedgeo.2013.05.002
  • Karl B. FÖllmi; Alexis Godet; Helmut Weissert Palaeoceanography of Lower Cretaceous Alpine platform carbonates, Sedimentology, Volume 60 (2013) no. 1, p. 131 | DOI:10.1111/sed.12004
  • Large Igneous Provinces (LIPs) and Metallogeny, Tectonics, Metallogeny, and Discovery (2013), p. 17 | DOI:10.5382/sp.17.02
  • Sascha Brune; Anton A. Popov; Stephan V. Sobolev Quantifying the thermo-mechanical impact of plume arrival on continental break-up, Tectonophysics, Volume 604 (2013), p. 51 | DOI:10.1016/j.tecto.2013.02.009
  • Marcelle K. BouDagher-Fadel RETRACTED: The Mesozoic planktonic foraminifera: The Cretaceous, Biostratigraphic and Geological Significance of Planktonic Foraminifera, Volume 22 (2012), p. 67 | DOI:10.1016/b978-0-444-53638-9.00004-0
  • J. Gregory Shellnutt; Ghulam M. Bhat; Kuo-Lung Wang; Michael E. Brookfield; Jaroslav Dostal; Bor-Ming Jahn Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir, India, Chemical Geology, Volume 334 (2012), p. 154 | DOI:10.1016/j.chemgeo.2012.10.022
  • Agnieszka Pisarzowska; Grzegorz Racki Isotopic chemostratigraphy across the Early–Middle Frasnian transition (Late Devonian) on the South Polish carbonate shelf: A reference for the global punctata Event, Chemical Geology, Volume 334 (2012), p. 199 | DOI:10.1016/j.chemgeo.2012.10.034
  • K.B. Föllmi Early Cretaceous life, climate and anoxia, Cretaceous Research, Volume 35 (2012), p. 230 | DOI:10.1016/j.cretres.2011.12.005
  • Gerta Keller The Cretaceous–Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism, Earth and Life (2012), p. 759 | DOI:10.1007/978-90-481-3428-1_25
  • Morgan F. Schaller; James D. Wright; Dennis V. Kent; Paul E. Olsen Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2, Earth and Planetary Science Letters, Volume 323-324 (2012), p. 27 | DOI:10.1016/j.epsl.2011.12.028
  • Giada Iacono-Marziano; Virginie Marecal; Michel Pirre; Fabrice Gaillard; Joaquim Arteta; Bruno Scaillet; Nicholas T. Arndt Gas emissions due to magma–sediment interactions during flood magmatism at the Siberian Traps: Gas dispersion and environmental consequences, Earth and Planetary Science Letters, Volume 357-358 (2012), p. 308 | DOI:10.1016/j.epsl.2012.09.051
  • George R McGhee Extinction: Late Devonian Mass Extinction, Encyclopedia of Life Sciences (2012) | DOI:10.1002/9780470015902.a0001653.pub3
  • D. De Vleeschouwer; M. T. Whalen; J. E. (Jed) Day; P. Claeys Cyclostratigraphic calibration of the Frasnian (Late Devonian) time scale (western Alberta, Canada), Geological Society of America Bulletin, Volume 124 (2012) no. 5-6, p. 928 | DOI:10.1130/b30547.1
  • Vadim A. Kravchinsky Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events, Global and Planetary Change, Volume 86-87 (2012), p. 31 | DOI:10.1016/j.gloplacha.2012.01.007
  • J. Gregory Shellnutt; Steven W. Denyszyn; Roland Mundil Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China), Gondwana Research, Volume 22 (2012) no. 1, p. 118 | DOI:10.1016/j.gr.2011.10.009
  • Jing Wu; Zhongjie Zhang Spatial distribution of seismic layer, crustal thickness, and Vp/Vs ratio in the Permian Emeishan Mantle Plume region, Gondwana Research, Volume 22 (2012) no. 1, p. 127 | DOI:10.1016/j.gr.2011.10.007
  • Simon P. Kelley; Sarah C. Sherlock The Geochronology of Impact Craters, Impact Cratering (2012), p. 240 | DOI:10.1002/9781118447307.ch16
  • Taisia Aleksandrovna Alifirova; Lyudmila Nikolaevna Pokhilenko; Yuriy Ivanovich Ovchinnikov; Cara Lyhn Donnelly; Amy J.V. Riches; Lawrence August Taylor Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites, International Geology Review, Volume 54 (2012) no. 9, p. 1071 | DOI:10.1080/00206814.2011.623011
  • A.I. Kiselev; R.E. Ernst; V.V. Yarmolyuk; K.N. Egorov Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian craton, Journal of Asian Earth Sciences, Volume 45 (2012), p. 1 | DOI:10.1016/j.jseaes.2011.09.004
  • Chengying Liu; Yongxin Pan; Rixiang Zhu New paleomagnetic investigations of the Emeishan basalts in NE Yunnan, southwestern China: Constraints on eruption history, Journal of Asian Earth Sciences, Volume 52 (2012), p. 88 | DOI:10.1016/j.jseaes.2012.02.014
  • Nicola Scafetta A shared frequency set between the historical mid-latitude aurora records and the global surface temperature, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 74 (2012), p. 145 | DOI:10.1016/j.jastp.2011.10.013
  • SOHINI GANGULY; JYOTISANKAR RAY; CHRISTIAN KOEBERL; THEODOROS NTAFLOS; MOUSUMI BANERJEE Mineral chemistry of lava flows from Linga area of the Eastern Deccan Volcanic Province, India, Journal of Earth System Science, Volume 121 (2012) no. 1, p. 91 | DOI:10.1007/s12040-012-0146-1
  • Antonello Bartiromo; Gaëtan Guignard; Maria Rosaria Barone Lumaga; Filippo Barattolo; Giovanni Chiodini; Rosario Avino; Giulia Guerriero; Georges Barale Influence of volcanic gases on the epidermis of Pinus halepensis Mill. in Campi Flegrei, Southern Italy: A possible tool for detecting volcanism in present and past floras, Journal of Volcanology and Geothermal Research, Volume 233-234 (2012), p. 1 | DOI:10.1016/j.jvolgeores.2012.04.002
  • Md. ARIF; N. BASAVAIAH; S. MISRA; K. DEENADAYALAN Variations in magnetic properties of target basalts with the direction of asteroid impact: Example from Lonar crater, India, Meteoritics Planetary Science, Volume 47 (2012) no. 8, p. 1305 | DOI:10.1111/j.1945-5100.2012.01395.x
  • Gregory J. Retallack Mallee model for mammal communities of the early Cenozoic and Mesozoic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 342-343 (2012), p. 111 | DOI:10.1016/j.palaeo.2012.05.009
  • Leszek Marynowski; Michał Zatoń; Michał Rakociński; Paweł Filipiak; Slawomir Kurkiewicz; Tim J. Pearce Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 346-347 (2012), p. 66 | DOI:10.1016/j.palaeo.2012.05.020
  • Vincent Perrier; Tõnu Meidla; Oive Tinn; Leho Ainsaar Biotic response to explosive volcanism: Ostracod recovery after Ordovician ash-falls, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 365-366 (2012), p. 166 | DOI:10.1016/j.palaeo.2012.09.024
  • F. M. Monteiro; R. D. Pancost; A. Ridgwell; Y. Donnadieu Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian‐Turonian oceanic anoxic event (OAE2): Model‐data comparison, Paleoceanography, Volume 27 (2012) no. 4 | DOI:10.1029/2012pa002351
  • Dunia Blanco; Vadim A. Kravchinsky; Jean-Pierre Valet; Arfan Ali; David K. Potter Does the Permo-Triassic geomagnetic dipole low exist?, Physics of the Earth and Planetary Interiors, Volume 204-205 (2012), p. 11 | DOI:10.1016/j.pepi.2012.06.005
  • Andrew C. Kerr; Martin A. Menzies Phanerozoic volcanism, Regional Geology and Tectonics: Principles of Geologic Analysis (2012), p. 40 | DOI:10.1016/b978-0-444-53042-4.00002-9
  • B. Peucker-Ehrenbrink; G. Ravizza Osmium Isotope Stratigraphy, The Geologic Time Scale (2012), p. 145 | DOI:10.1016/b978-0-444-59425-9.00008-1
  • J.G. Ogg; L.A. Hinnov; C. Huang Cretaceous, The Geologic Time Scale (2012), p. 793 | DOI:10.1016/b978-0-444-59425-9.00027-5
  • Icehouse to hothouse: floral turnover, the Permian–Triassic crisis and Triassic vegetation, The Vegetation of Antarctica through Geological Time (2012), p. 105 | DOI:10.1017/cbo9781139024990.004
  • M.H.L. Deenen; W. Krijgsman; M. Ruhl; Jean-Claude Mareschal The quest for chron E23r at Partridge Island, Bay of Fundy, Canada: CAMP emplacement postdates the end-Triassic extinction event at the North American craton, Canadian Journal of Earth Sciences, Volume 48 (2011) no. 8, p. 1282 | DOI:10.1139/e11-015
  • Ingrid Aarnes; Henrik Svensen; Stephane Polteau; Sverre Planke Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions, Chemical Geology, Volume 281 (2011) no. 3-4, p. 181 | DOI:10.1016/j.chemgeo.2010.12.007
  • X. Quidelleur; J.L. Paquette; N. Fiet; R. Takashima; M. Tiepolo; D. Desmares; H. Nishi; D. Grosheny New U–Pb (ID-TIMS and LA-ICPMS) and 40Ar/39Ar geochronological constraints of the Cretaceous geologic time scale calibration from Hokkaido (Japan), Chemical Geology, Volume 286 (2011) no. 3-4, p. 72 | DOI:10.1016/j.chemgeo.2011.03.009
  • Matthew A. Coble; Marty Grove; Andrew T. Calvert Calibration of Nu-Instruments Noblesse multicollector mass spectrometers for argon isotopic measurements using a newly developed reference gas, Chemical Geology, Volume 290 (2011) no. 1-2, p. 75 | DOI:10.1016/j.chemgeo.2011.09.003
  • Ahmed El-Sabbagh; Abdel Aziz Tantawy; Gerta Keller; Hassan Khozyem; Jorge Spangenberg; Thierry Adatte; Brian Gertsch Stratigraphy of the Cenomanian–Turonian Oceanic Anoxic Event OAE2 in shallow shelf sequences of NE Egypt, Cretaceous Research, Volume 32 (2011) no. 6, p. 705 | DOI:10.1016/j.cretres.2011.04.006
  • Heiko Hüneke; Rüdiger Henrich Pelagic Sedimentation in Modern and Ancient Oceans, Deep-Sea Sediments, Volume 63 (2011), p. 215 | DOI:10.1016/b978-0-444-53000-4.00004-4
  • E. Kaminski; A.-L. Chenet; C. Jaupart; V. Courtillot Rise of volcanic plumes to the stratosphere aided by penetrative convection above large lava flows, Earth and Planetary Science Letters, Volume 301 (2011) no. 1-2, p. 171 | DOI:10.1016/j.epsl.2010.10.037
  • E. Font; N. Youbi; S. Fernandes; H. El Hachimi; Z. Kratinová; Y. Hamim Revisiting the magnetostratigraphy of the Central Atlantic Magmatic Province (CAMP) in Morocco, Earth and Planetary Science Letters, Volume 309 (2011) no. 3-4, p. 302 | DOI:10.1016/j.epsl.2011.07.007
  • N.V. Chalapathi Rao; B. Lehmann Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province, Earth-Science Reviews, Volume 107 (2011) no. 3-4, p. 315 | DOI:10.1016/j.earscirev.2011.04.003
  • Cinzia G. Farnetani; Albrecht W. Hofmann Mantle Plumes, Encyclopedia of Solid Earth Geophysics (2011), p. 857 | DOI:10.1007/978-90-481-8702-7_132
  • J. J. Armitage; J. S. Collier; T. A. Minshull; T. J. Henstock Thin oceanic crust and flood basalts: India‐Seychelles breakup, Geochemistry, Geophysics, Geosystems, Volume 12 (2011) no. 5 | DOI:10.1029/2010gc003316
  • Lawrence A. Lawver; Lisa M. Gahagan; Ian Norton Chapter 5 Palaeogeographic and tectonic evolution of the Arctic region during the Palaeozoic, Geological Society, London, Memoirs, Volume 35 (2011) no. 1, p. 61 | DOI:10.1144/m35.5
  • Martijn Deenen; Cor Langereis; Wout Krijgsman; Hind El Hachimi; El Hassane Chellai Palaeomagnetic results from Upper Triassic red-beds and CAMP lavas of the Argana Basin, Morocco, Geological Society, London, Special Publications, Volume 357 (2011) no. 1, p. 195 | DOI:10.1144/sp357.10
  • M. Ganerød; T. H. Torsvik; D. J. J. van Hinsbergen; C. Gaina; F. Corfu; S. Werner; T. M. Owen-Smith; L. D. Ashwal; S. J. Webb; B. W. H. Hendriks Palaeoposition of the Seychelles microcontinent in relation to the Deccan Traps and the Plume Generation Zone in Late Cretaceous-Early Palaeogene time, Geological Society, London, Special Publications, Volume 357 (2011) no. 1, p. 229 | DOI:10.1144/sp357.12
  • J. G. Shellnutt; G. M. Bhat; M. E. Brookfield; B.-M. Jahn No link between the Panjal Traps (Kashmir) and the Late Permian mass extinctions, Geophysical Research Letters, Volume 38 (2011) no. 19, p. n/a | DOI:10.1029/2011gl049032
  • M. I. Kuz’min; V. V. Yarmolyuk; V. A. Kravchinsky Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province, Geotectonics, Volume 45 (2011) no. 6, p. 415 | DOI:10.1134/s0016852111060045
  • Tais W. Dahl; Anders U. Clausen; Peter B. Hansen The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products, International Geology Review, Volume 53 (2011) no. 8, p. 894 | DOI:10.1080/00206810903233058
  • Ingemar Bergelin; Karsten Obst; Ulf Söderlund; Kent Larsson; Leif Johansson Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints, International Journal of Earth Sciences, Volume 100 (2011) no. 4, p. 787 | DOI:10.1007/s00531-010-0516-3
  • Maud Moulin; Frédéric Fluteau; Vincent Courtillot; Julian Marsh; Guillaume Delpech; Xavier Quidelleur; Martine Gérard; Anne E. Jay An attempt to constrain the age, duration, and eruptive history of the Karoo flood basalt: Naude's Nek section (South Africa), Journal of Geophysical Research, Volume 116 (2011) no. B7 | DOI:10.1029/2011jb008210
  • Leif Karlstrom; Mark Richards On the evolution of large ultramafic magma chambers and timescales for flood basalt eruptions, Journal of Geophysical Research, Volume 116 (2011) no. B8 | DOI:10.1029/2010jb008159
  • Stephan V. Sobolev; Alexander V. Sobolev; Dmitry V. Kuzmin; Nadezhda A. Krivolutskaya; Alexey G. Petrunin; Nicholas T. Arndt; Viktor A. Radko; Yuri R. Vasiliev Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature, Volume 477 (2011) no. 7364, p. 312 | DOI:10.1038/nature10385
  • Heinz W. Kozur; Robert E. Weems Detailed correlation and age of continental late Changhsingian and earliest Triassic beds: Implications for the role of the Siberian Trap in the Permian–Triassic biotic crisis, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 308 (2011) no. 1-2, p. 22 | DOI:10.1016/j.palaeo.2011.02.020
  • Marco Roscher; Frode Stordal; Henrik Svensen The effect of global warming and global cooling on the distribution of the latest Permian climate zones, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 309 (2011) no. 3-4, p. 186 | DOI:10.1016/j.palaeo.2011.05.042
  • Bo Chen; Michael M. Joachimski; Yadong Sun; Shuzhong Shen; Xulong Lai Carbon and conodont apatite oxygen isotope records of Guadalupian–Lopingian boundary sections: Climatic or sea-level signal?, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 311 (2011) no. 3-4, p. 145 | DOI:10.1016/j.palaeo.2011.08.016
  • Morgan F. Schaller; James D. Wright; Dennis V. Kent Atmospheric P co 2 Perturbations Associated with the Central Atlantic Magmatic Province, Science, Volume 331 (2011) no. 6023, p. 1404 | DOI:10.1126/science.1199011
  • Ronald Clowes; Richard Ernst; Wouter Bleeker Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the PresentThis article is one of a selection of papers published in this Special Issue on the the theme Lithoprobe—parameters, processes, and the evolution of a continent.Lithoprobe Contribution 1482. Geological Survey of Canada Contribution 20100072., Canadian Journal of Earth Sciences, Volume 47 (2010) no. 5, p. 695 | DOI:10.1139/e10-025
  • Nicholas A. Jarboe; Robert S. Coe; Paul R. Renne; Jonathan M.G. Glen The age of the Steens reversal and the Columbia River Basalt Group, Chemical Geology, Volume 274 (2010) no. 3-4, p. 158 | DOI:10.1016/j.chemgeo.2010.04.001
  • Eleanor H. John; Paul B. Wignall; Robert J. Newton; Simon H. Bottrell δ34SCAS and δ18OCAS records during the Frasnian–Famennian (Late Devonian) transition and their bearing on mass extinction models, Chemical Geology, Volume 275 (2010) no. 3-4, p. 221 | DOI:10.1016/j.chemgeo.2010.05.012
  • M.H.L. Deenen; M. Ruhl; N.R. Bonis; W. Krijgsman; W.M. Kuerschner; M. Reitsma; M.J. van Bergen A new chronology for the end-Triassic mass extinction, Earth and Planetary Science Letters, Volume 291 (2010) no. 1-4, p. 113 | DOI:10.1016/j.epsl.2010.01.003
  • Cinthia Labails; Jean-Louis Olivet; Daniel Aslanian; Walter R. Roest An alternative early opening scenario for the Central Atlantic Ocean, Earth and Planetary Science Letters, Volume 297 (2010) no. 3-4, p. 355 | DOI:10.1016/j.epsl.2010.06.024
  • Vincent Courtillot; Vadim A. Kravchinsky; Xavier Quidelleur; Paul R. Renne; Dmitry P. Gladkochub Preliminary dating of the Viluy traps (Eastern Siberia): Eruption at the time of Late Devonian extinction events?, Earth and Planetary Science Letters, Volume 300 (2010) no. 3-4, p. 239 | DOI:10.1016/j.epsl.2010.09.045
  • David P.G. Bond; Jason Hilton; Paul B. Wignall; Jason R. Ali; Liadan G. Stevens; Yadong Sun; Xulong Lai The Middle Permian (Capitanian) mass extinction on land and in the oceans, Earth-Science Reviews, Volume 102 (2010) no. 1-2, p. 100 | DOI:10.1016/j.earscirev.2010.07.004
  • Mikhail I. Kuzmin; Vladimir V. Yarmolyuk; Vadim A. Kravchinsky Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province, Earth-Science Reviews, Volume 102 (2010) no. 1-2, p. 29 | DOI:10.1016/j.earscirev.2010.06.004
  • Ingrid Aarnes; Henrik Svensen; James A.D. Connolly; Yuri Y. Podladchikov How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins, Geochimica et Cosmochimica Acta, Volume 74 (2010) no. 24, p. 7179 | DOI:10.1016/j.gca.2010.09.011
  • S. Misra; Md. Arif; N. Basavaiah; P.K. Srivastava; A. Dube Structural and anisotropy of magnetic susceptibility (AMS) evidence for oblique impact on terrestrial basalt flows: Lonar crater, India, Geological Society of America Bulletin, Volume 122 (2010) no. 3-4, p. 563 | DOI:10.1130/b26550.1
  • Peng Peng Reconstruction and interpretation of giant mafic dyke swarms: a case study of 1.78 Ga magmatism in the North China craton, Geological Society, London, Special Publications, Volume 338 (2010) no. 1, p. 163 | DOI:10.1144/sp338.8
  • David S. Thiede; Paulo M. Vasconcelos Paraná flood basalts: Rapid extrusion hypothesis confirmed by new 40Ar/39Ar results, Geology, Volume 38 (2010) no. 8, p. 747 | DOI:10.1130/g30919.1
  • Andrew R. Greene; James S. Scoates; Dominique Weis; Erik C. Katvala; Steve Israel; Graham T. Nixon The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau, Geosphere, Volume 6 (2010) no. 1, p. 47 | DOI:10.1130/ges00212.1
  • Tadashi Yamasaki; Laurent Gernigon Redistribution of the lithosphere deformation by the emplacement of underplated mafic bodies: implications for microcontinent formation, Journal of the Geological Society, Volume 167 (2010) no. 5, p. 961 | DOI:10.1144/0016-76492010-027
  • T.L. Barry; S. Self; S.P. Kelley; S. Reidel; P. Hooper; M. Widdowson New 40Ar/39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes, Lithos, Volume 118 (2010) no. 3-4, p. 213 | DOI:10.1016/j.lithos.2010.03.014
  • Yi-Gang Xu; Sun-Lin Chung; Hui Shao; Bin He Silicic magmas from the Emeishan large igneous province, Southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis, Lithos, Volume 119 (2010) no. 1-2, p. 47 | DOI:10.1016/j.lithos.2010.04.013
  • Richard E. Ernst; Keith Bell Large igneous provinces (LIPs) and carbonatites, Mineralogy and Petrology, Volume 98 (2010) no. 1-4, p. 55 | DOI:10.1007/s00710-009-0074-1
  • N. A. Bozhko Intraplate basic-ultrabasic magmatism through time in terms of supercontinental cyclicity, Moscow University Geology Bulletin, Volume 65 (2010) no. 3, p. 161 | DOI:10.3103/s0145875210030026
  • David L. Kidder; Thomas R. Worsley Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 295 (2010) no. 1-2, p. 162 | DOI:10.1016/j.palaeo.2010.05.036
  • Vincent Lefebvre; Thomas Servais; Louis François; Olivier Averbuch Did a Katian large igneous province trigger the Late Ordovician glaciation?, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 296 (2010) no. 3-4, p. 310 | DOI:10.1016/j.palaeo.2010.04.010
  • Michael R. Rampino Mass extinctions of life and catastrophic flood basalt volcanism, Proceedings of the National Academy of Sciences, Volume 107 (2010) no. 15, p. 6555 | DOI:10.1073/pnas.1002478107
  • Daniel Vachard; Lucie Pille; Jérémie Gaillot Palaeozoic Foraminifera: Systematics, palaeoecology and responses to global changes, Revue de Micropaléontologie, Volume 53 (2010) no. 4, p. 209 | DOI:10.1016/j.revmic.2010.10.001
  • M.T. Paton; A.V. Ivanov; M.L. Fiorentini; N.J. McNaughton; I. Mudrovska; L.Z. Reznitskii; E.I. Demonterova Late Permian and Early Triassic magmatic pulses in the Angara–Taseeva syncline, Southern Siberian Traps and their possible influence on the environment, Russian Geology and Geophysics, Volume 51 (2010) no. 9, p. 1012 | DOI:10.1016/j.rgg.2010.08.009
  • BRIAN GERTSCH; THIERRY ADATTE; GERTA KELLER; ABDEL AZIZ A.M. TANTAWY; ZSOLT BERNER; HAYDON P. MORT; DOMINIK FLEITMANN Middle and late Cenomanian oceanic anoxic events in shallow and deeper shelf environments of western Morocco, Sedimentology, Volume 57 (2010) no. 6, p. 1430 | DOI:10.1111/j.1365-3091.2010.01151.x
  • Marie-Emilie Clémence; Silvia Gardin; Annachiara Bartolini; Guillaume Paris; Valérie Beaumont; Jean Guex Bentho-planktonic evidence from the Austrian Alps for a decline in sea-surface carbonate production at the end of the Triassic, Swiss Journal of Geosciences, Volume 103 (2010) no. 2, p. 293 | DOI:10.1007/s00015-010-0019-z
  • Bertrand Lemartinel La géomorphologie des fondamentalistes, Annales de géographie, Volume n° 670 (2009) no. 6, p. 571 | DOI:10.3917/ag.670.0571
  • Yan Tao; YanSheng Ma; LaiCheng Miao; FeiLin Zhu SHRIMP U-Pb zircon age of the Jinbaoshan ultramafic intrusion, Yunnan Province, SW China, Chinese Science Bulletin, Volume 54 (2009) no. 1, p. 168 | DOI:10.1007/s11434-008-0488-x
  • Andy Saunders; Marc Reichow The Siberian Traps and the End-Permian mass extinction: a critical review, Chinese Science Bulletin, Volume 54 (2009) no. 1, p. 20 | DOI:10.1007/s11434-008-0543-7
  • Y. Donnadieu; Y. Goddéris; N. Bouttes Exploring the climatic impact of the continental vegetation on the Mezosoic atmospheric CO2 and climate history, Climate of the Past, Volume 5 (2009) no. 1, p. 85 | DOI:10.5194/cp-5-85-2009
  • Jean-Claude Gall Terre et Vie : des histoires imbriquées, Comptes Rendus Palevol, Volume 8 (2009) no. 2-3, p. 105 | DOI:10.1016/j.crpv.2008.07.006
  • Ronan Allain; Émilie Läng Origine et évolution des saurischiens, Comptes Rendus Palevol, Volume 8 (2009) no. 2-3, p. 243 | DOI:10.1016/j.crpv.2008.09.013
  • Chengying LIU; Rixiang ZHU Geodynamic Significances of the Emeishan Basalts, Earth Science Frontiers, Volume 16 (2009) no. 2, p. 52 | DOI:10.1016/s1872-5791(08)60082-2
  • Henrik Svensen; Norbert Schmidbauer; Marco Roscher; Frode Stordal; Sverre Planke Contact metamorphism, halocarbons, and environmental crises of the past, Environmental Chemistry, Volume 6 (2009) no. 6, p. 466 | DOI:10.1071/en09118
  • Ingemar Bergelin Jurassic volcanism in Skåne, southern Sweden, and its relation to coeval regional and global events, GFF, Volume 131 (2009) no. 1-2, p. 165 | DOI:10.1080/11035890902851278
  • Gregory J. Retallack Greenhouse crises of the past 300 million years, Geological Society of America Bulletin, Volume 121 (2009) no. 9-10, p. 1441 | DOI:10.1130/b26341.1
  • D. W. Peate Global dispersal of Pb by large-volume silicic eruptions in the Parana-Etendeka large igneous province, Geology, Volume 37 (2009) no. 12, p. 1071 | DOI:10.1130/g30338a.1
  • Clément Ganino; Nicholas T. Arndt Climate changes caused by degassing of sediments during the emplacement of large igneous provinces, Geology, Volume 37 (2009) no. 4, p. 323 | DOI:10.1130/g25325a.1
  • Nicolas Coltice; Hervé Bertrand; Patrice Rey; Fred Jourdan; Benjamin R. Phillips; Yanick Ricard Global warming of the mantle beneath continents back to the Archaean, Gondwana Research, Volume 15 (2009) no. 3-4, p. 254 | DOI:10.1016/j.gr.2008.10.001
  • J.M.G. Glen; S. Nomade; J.J. Lyons; I. Metcalfe; R. Mundil; P.R. Renne Magnetostratigraphic correlations of Permian–Triassic marine-to-terrestrial sections from China, Journal of Asian Earth Sciences, Volume 36 (2009) no. 6, p. 521 | DOI:10.1016/j.jseaes.2009.03.003
  • G. Keller; A. Sahni; S. Bajpai Deccan volcanism, the KT mass extinction and dinosaurs, Journal of Biosciences, Volume 34 (2009) no. 5, p. 709 | DOI:10.1007/s12038-009-0059-6
  • Sarah C. Sherlock; Simon P. Kelley; Liudmila Glazovskaya; Ingrid Ukstins Peate The significance of the contemporaneous Logoisk impact structure (Belarus) and Afro-Arabian flood volcanism, Journal of the Geological Society, Volume 166 (2009) no. 1, p. 5 | DOI:10.1144/0016-76492008-017
  • Christoph Korte; Stephen P. Hesselbo; Hugh C. Jenkyns; Rosalind E.M. Rickaby; Christoph Spötl Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain, Journal of the Geological Society, Volume 166 (2009) no. 3, p. 431 | DOI:10.1144/0016-76492007-177
  • F. Jourdan; H. Bertrand; G. Féraud; B. Le Gall; M.K. Watkeys Lithospheric mantle evolution monitored by overlapping large igneous provinces: Case study in southern Africa, Lithos, Volume 107 (2009) no. 3-4, p. 257 | DOI:10.1016/j.lithos.2008.10.011
  • F. Jourdan; A. Marzoli; H. Bertrand; S. Cirilli; L.H. Tanner; D.J. Kontak; G. McHone; P.R. Renne; G. Bellieni 40Ar/39Ar ages of CAMP in North America: Implications for the Triassic–Jurassic boundary and the 40K decay constant bias, Lithos, Volume 110 (2009) no. 1-4, p. 167 | DOI:10.1016/j.lithos.2008.12.011
  • Lena Z. Evins; Fred Jourdan; David Phillips The Cambrian Kalkarindji Large Igneous Province: Extent and characteristics based on new 40Ar/39Ar and geochemical data, Lithos, Volume 110 (2009) no. 1-4, p. 294 | DOI:10.1016/j.lithos.2009.01.014
  • Saumitra MISRA; Horton E. NEWSOM; M. SHYAM PRASAD; John W. GEISSMAN; Anand DUBE; Debashish SENGUPTA Geochemical identification of impactor for Lonar crater, India, Meteoritics Planetary Science, Volume 44 (2009) no. 7, p. 1001 | DOI:10.1111/j.1945-5100.2009.tb00784.x
  • Franco Pirajno; Richard E. Ernst; Alexander S. Borisenko; Geliy Fedoseev; Evgeniy A. Naumov Intraplate magmatism in Central Asia and China and associated metallogeny, Ore Geology Reviews, Volume 35 (2009) no. 2, p. 114 | DOI:10.1016/j.oregeorev.2008.10.003
  • Renato Posenato Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 280 (2009) no. 1-2, p. 150 | DOI:10.1016/j.palaeo.2009.06.009
  • Claude Monnet The Cenomanian–Turonian boundary mass extinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 282 (2009) no. 1-4, p. 88 | DOI:10.1016/j.palaeo.2009.08.014
  • Gerta Keller; Sigal Abramovich Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 284 (2009) no. 1-2, p. 47 | DOI:10.1016/j.palaeo.2009.08.029
  • Zheng-Xiang Li; Shijie Zhong Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics, Physics of the Earth and Planetary Interiors, Volume 176 (2009) no. 3-4, p. 143 | DOI:10.1016/j.pepi.2009.05.004
  • Peter L. Ward Sulfur dioxide initiates global climate change in four ways, Thin Solid Films, Volume 517 (2009) no. 11, p. 3188 | DOI:10.1016/j.tsf.2009.01.005
  • Gerta Keller Cretaceous climate, volcanism, impacts, and biotic effects, Cretaceous Research, Volume 29 (2008) no. 5-6, p. 754 | DOI:10.1016/j.cretres.2008.05.030
  • Yves Goddéris; Yannick Donnadieu; Colomban de Vargas; Raymond T. Pierrehumbert; Gilles Dromart; Bas van de Schootbrugge Causal or casual link between the rise of nannoplankton calcification and a tectonically-driven massive decrease in Late Triassic atmospheric CO2?, Earth and Planetary Science Letters, Volume 267 (2008) no. 1-2, p. 247 | DOI:10.1016/j.epsl.2007.11.051
  • Urs Schaltegger; Jean Guex; Annachiara Bartolini; Blair Schoene; Maria Ovtcharova Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery, Earth and Planetary Science Letters, Volume 267 (2008) no. 1-2, p. 266 | DOI:10.1016/j.epsl.2007.11.031
  • Hélène Rouby; Marianne Greff-Lefftz; Jean Besse Rotational bulge and one plume convection pattern: Influence on Martian true polar wander, Earth and Planetary Science Letters, Volume 272 (2008) no. 1-2, p. 212 | DOI:10.1016/j.epsl.2008.04.044
  • J.S. Collier; V. Sansom; O. Ishizuka; R.N. Taylor; T.A. Minshull; R.B. Whitmarsh Age of Seychelles–India break-up, Earth and Planetary Science Letters, Volume 272 (2008) no. 1-2, p. 264 | DOI:10.1016/j.epsl.2008.04.045
  • Veronika Klemm; Martin Frank; Sylvain Levasseur; Alex N. Halliday; James R. Hein Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records, Earth and Planetary Science Letters, Volume 273 (2008) no. 1-2, p. 175 | DOI:10.1016/j.epsl.2008.06.028
  • Scott E. Bryan; Richard E. Ernst Revised definition of Large Igneous Provinces (LIPs), Earth-Science Reviews, Volume 86 (2008) no. 1-4, p. 175 | DOI:10.1016/j.earscirev.2007.08.008
  • A. Prokoph; G.A. Shields; J. Veizer Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history, Earth-Science Reviews, Volume 87 (2008) no. 3-4, p. 113 | DOI:10.1016/j.earscirev.2007.12.003
  • Marcelle K. BouDagher-Fadel Chapter 5 The Mesozoic larger benthic foraminifera: the Cretaceous, Evolution and Geological Significance of Larger Benthic Foraminifera, Volume 21 (2008), p. 215 | DOI:10.1016/s0920-5446(08)00005-8
  • Marcelle K. BouDagher-Fadel Chapter 6 The Cenozoic larger benthic foraminifera: the Palaeogene, Evolution and Geological Significance of Larger Benthic Foraminifera, Volume 21 (2008), p. 297 | DOI:10.1016/s0920-5446(08)00006-x
  • Marcelle K. BouDagher-Fadel Chapter 2 The Palaeozoic larger benthic foraminifera: the Carboniferous and Permian, Evolution and Geological Significance of Larger Benthic Foraminifera, Volume 21 (2008), p. 39 | DOI:10.1016/s0920-5446(08)00002-2
  • Marcelle K. BouDagher-Fadel Chapter 7 The Cenozoic larger benthic foraminifera: the Neogene, Evolution and Geological Significance of Larger Benthic Foraminifera, Volume 21 (2008), p. 419 | DOI:10.1016/s0920-5446(08)00007-1
  • References, Evolution and Geological Significance of Larger Benthic Foraminifera, Volume 21 (2008), p. 489 | DOI:10.1016/s0920-5446(08)00008-3
  • Donald R. Prothero Do Impacts Really Cause Most Mass Extinctions?, From Fossils to Astrobiology, Volume 12 (2008), p. 409 | DOI:10.1007/978-1-4020-8837-7_20
  • V. Chavagnac; C. R. German; R. N. Taylor Global environmental effects of large volcanic eruptions on ocean chemistry: Evidence from “hydrothermal” sediments (ODP Leg 185, Site 1149B), Journal of Geophysical Research: Solid Earth, Volume 113 (2008) no. B6 | DOI:10.1029/2007jb005333
  • S. Self; A.E. Jay; M. Widdowson; L.P. Keszthelyi Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?, Journal of Volcanology and Geothermal Research, Volume 172 (2008) no. 1-2, p. 3 | DOI:10.1016/j.jvolgeores.2006.11.012
  • ANNE E. JAY; MIKE WIDDOWSON Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes, Journal of the Geological Society, Volume 165 (2008) no. 1, p. 177 | DOI:10.1144/0016-76492006-062
  • Yildirim Dilek; Richard Ernst Links between ophiolites and Large Igneous Provinces (LIPs) in Earth history: Introduction, Lithos, Volume 100 (2008) no. 1-4, p. 1 | DOI:10.1016/j.lithos.2007.08.001
  • Zvi Garfunkel Formation of continental flood volcanism — The perspective of setting of melting, Lithos, Volume 100 (2008) no. 1-4, p. 49 | DOI:10.1016/j.lithos.2007.06.015
  • Nickolay L. Dobretsov; Alexey A. Kirdyashkin; Anatoliy G. Kirdyashkin; Valery A. Vernikovsky; Igor N. Gladkov Modelling of thermochemical plumes and implications for the origin of the Siberian traps, Lithos, Volume 100 (2008) no. 1-4, p. 66 | DOI:10.1016/j.lithos.2007.06.025
  • Timothy A. Minshull; Christine I. Lane; Jenny S. Collier; Robert B. Whitmarsh The relationship between rifting and magmatism in the northeastern Arabian Sea, Nature Geoscience, Volume 1 (2008) no. 7, p. 463 | DOI:10.1038/ngeo228
  • John M. McArthur Comment on “The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os-isotope evolution of seawater” by Cohen A.S. and Coe A.L. 2007, Palaeogeography, Palaeoclimatology, Palaeoecology 244, 374–390, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 263 (2008) no. 3-4, p. 146 | DOI:10.1016/j.palaeo.2007.09.008
  • Tamsin A Mather Volcanism and the atmosphere: the potential role of the atmosphere in unlocking the reactivity of volcanic emissions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 366 (2008) no. 1885, p. 4581 | DOI:10.1098/rsta.2008.0152
  • R.E. Ernst; M.T.D. Wingate; K.L. Buchan; Z.X. Li Global record of 1600–700Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents, Precambrian Research, Volume 160 (2008) no. 1-2, p. 159 | DOI:10.1016/j.precamres.2007.04.019
  • Dennis V. Kent; Giovanni Muttoni Equatorial convergence of India and early Cenozoic climate trends, Proceedings of the National Academy of Sciences, Volume 105 (2008) no. 42, p. 16065 | DOI:10.1073/pnas.0805382105
  • Bruno Scaillet Are Volcanic Gases Serial Killers?, Science, Volume 319 (2008) no. 5870, p. 1628 | DOI:10.1126/science.1155525
  • Stephen Self; Stephen Blake; Kirti Sharma; Mike Widdowson; Sarah Sephton Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive Gas Release, Science, Volume 319 (2008) no. 5870, p. 1654 | DOI:10.1126/science.1152830
  • Karl B. Föllmi; François Gainon Demise of the northern Tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: The sedimentary record of the Col de la Plaine Morte area, central Switzerland, Sedimentary Geology, Volume 205 (2008) no. 3-4, p. 142 | DOI:10.1016/j.sedgeo.2008.02.005
  • A Brief History of the Earth, Surviving 1,000 Centuries (2008), p. 13 | DOI:10.1007/978-0-387-74635-7_2
  • Philippe Léonide; Marc Floquet; Loïc Villier Interaction of tectonics, eustasy, climate and carbonate production on the sedimentary evolution of an early/middle Jurassic extensional basin (Southern Provence Sub‐basin, SE France), Basin Research, Volume 19 (2007) no. 1, p. 125 | DOI:10.1111/j.1365-2117.2007.00316.x
  • Hong Zhong; Wei-Guang Zhu; Zhu-Yin Chu; De-Feng He; Xie-Yan Song Shrimp U–Pb zircon geochronology, geochemistry, and Nd–Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China, Chemical Geology, Volume 236 (2007) no. 1-2, p. 112 | DOI:10.1016/j.chemgeo.2006.09.004
  • Andrew C. Kerr; John J. Mahoney Oceanic plateaus: Problematic plumes, potential paradigms, Chemical Geology, Volume 241 (2007) no. 3-4, p. 332 | DOI:10.1016/j.chemgeo.2007.01.019
  • Donald J. DePaolo; Dominique Weis Hotspot Volcanoes and Large Igneous Provinces, Continental Scientific Drilling (2007), p. 259 | DOI:10.1007/978-3-540-68778-8_7
  • Bin He; Yi-Gang Xu; Xiao-Long Huang; Zhen-Yu Luo; Yu-Ruo Shi; Qi-Jun Yang; Song-Yue Yu Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section, Earth and Planetary Science Letters, Volume 255 (2007) no. 3-4, p. 306 | DOI:10.1016/j.epsl.2006.12.021
  • Yves Gallet; Leopold Krystyn; Jean Marcoux; Jean Besse New constraints on the End-Triassic (Upper Norian–Rhaetian) magnetostratigraphy, Earth and Planetary Science Letters, Volume 255 (2007) no. 3-4, p. 458 | DOI:10.1016/j.epsl.2007.01.004
  • Andrew H. Knoll; Richard K. Bambach; Jonathan L. Payne; Sara Pruss; Woodward W. Fischer Paleophysiology and end-Permian mass extinction, Earth and Planetary Science Letters, Volume 256 (2007) no. 3-4, p. 295 | DOI:10.1016/j.epsl.2007.02.018
  • Henrik Svensen; Sverre Planke; Luc Chevallier; Anders Malthe-Sørenssen; Fernando Corfu; Bjørn Jamtveit Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming, Earth and Planetary Science Letters, Volume 256 (2007) no. 3-4, p. 554 | DOI:10.1016/j.epsl.2007.02.013
  • Vincent Courtillot; Peter Olson Mantle plumes link magnetic superchrons to phanerozoic mass depletion events, Earth and Planetary Science Letters, Volume 260 (2007) no. 3-4, p. 495 | DOI:10.1016/j.epsl.2007.06.003
  • F. Jourdan; G. Féraud; H. Bertrand; M. K. Watkeys From flood basalts to the inception of oceanization: Example from the 40Ar/39Ar high‐resolution picture of the Karoo large igneous province, Geochemistry, Geophysics, Geosystems, Volume 8 (2007) no. 2 | DOI:10.1029/2006gc001392
  • R.S. Martin; T.A. Mather; D.M. Pyle Volcanic emissions and the early Earth atmosphere, Geochimica et Cosmochimica Acta, Volume 71 (2007) no. 15, p. 3673 | DOI:10.1016/j.gca.2007.04.035
  • Thomas Galfetti; Peter A. Hochuli; Arnaud Brayard; Hugo Bucher; Helmut Weissert; Jorunn Os Vigran Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis, Geology, Volume 35 (2007) no. 4, p. 291 | DOI:10.1130/g23117a.1
  • Benjamin R. Phillips; Hans-Peter Bunge Supercontinent cycles disrupted by strong mantle plumes, Geology, Volume 35 (2007) no. 9, p. 847 | DOI:10.1130/g23686a.1
  • P. van Thienen; K. Benzerara; D. Breuer; C. Gillmann; S. Labrosse; P. Lognonné; T. Spohn Water, Life, and Planetary Geodynamical Evolution, Geology and Habitability of Terrestrial Planets, Volume 24 (2007), p. 167 | DOI:10.1007/978-0-387-74288-5_6
  • Stéphane Bodin; Alexis Godet; Virginie Matera; Philipp Steinmann; Jean Vermeulen; Silvia Gardin; Thierry Adatte; Rodolfo Coccioni; Karl B. Föllmi Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni oceanic anoxic event, International Journal of Earth Sciences, Volume 96 (2007) no. 2, p. 327 | DOI:10.1007/s00531-006-0091-9
  • James E. Mungall Crustal Contamination of Picritic Magmas During Transport Through Dikes: the Expo Intrusive Suite, Cape Smith Fold Belt, New Quebec, Journal of Petrology, Volume 48 (2007) no. 5, p. 1021 | DOI:10.1093/petrology/egm009
  • F. Jourdan; H. Bertrand; U. Schärer; J. Blichert-Toft; G. Féraud; A. B. Kampunzu Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana–Zimbabwe: Lithosphere vs Mantle Plume Contribution, Journal of Petrology, Volume 48 (2007) no. 6, p. 1043 | DOI:10.1093/petrology/egm010
  • Simon Kelley The geochronology of large igneous provinces, terrestrial impact craters, and their relationship to mass extinctions on Earth, Journal of the Geological Society, Volume 164 (2007) no. 5, p. 923 | DOI:10.1144/0016-76492007-026
  • Anthony S. Cohen; Angela L. Coe; David B. Kemp The Late Palaeocene–Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences, Journal of the Geological Society, Volume 164 (2007) no. 6, p. 1093 | DOI:10.1144/0016-76492006-123
  • Mohammad Hossein Mahmudy Gharaie; Ryo Matsumoto; Grzegorz Racki; Yoshitaka Kakuwa Chemostratigraphy of Frasnian-Famennian transition: Possibility of methane hydrate dissociation leading to mass extinction, Large Ecosystem Perturbations: Causes and Consequences (2007) | DOI:10.1130/2007.2424(07)
  • Thomas Galfetti; Hugo Bucher; Arnaud Brayard; Peter A. Hochuli; Helmut Weissert; Kuang Guodun; Viorel Atudorei; Jean Guex Late Early Triassic climate change: Insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 243 (2007) no. 3-4, p. 394 | DOI:10.1016/j.palaeo.2006.08.014
  • Chrystèle Verati; Cédric Rapaille; Gilbert Féraud; Andrea Marzoli; Hervé Bertrand; Nasrrddine Youbi 40Ar/39Ar ages and duration of the Central Atlantic Magmatic Province volcanism in Morocco and Portugal and its relation to the Triassic–Jurassic boundary, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 244 (2007) no. 1-4, p. 308 | DOI:10.1016/j.palaeo.2006.06.033
  • S. Nomade; K.B. Knight; E. Beutel; P.R. Renne; C. Verati; G. Féraud; A. Marzoli; N. Youbi; H. Bertrand Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 244 (2007) no. 1-4, p. 326 | DOI:10.1016/j.palaeo.2006.06.034
  • Anthony S. Cohen; Angela L. Coe The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os-isotope evolution of seawater, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 244 (2007) no. 1-4, p. 374 | DOI:10.1016/j.palaeo.2006.06.036
  • Margaret L. Fraiser; David J. Bottjer Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 252 (2007) no. 1-2, p. 164 | DOI:10.1016/j.palaeo.2006.11.041
  • Patrick Wever; Luis O’Dogherty; Spela Gorican The plankton turnover at the Permo-Triassic boundary, emphasis on radiolarians, Radiolaria (2007), p. 49 | DOI:10.1007/978-3-7643-8344-2_4
  • Sofie Lindström; Stephen McLoughlin Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana, Review of Palaeobotany and Palynology, Volume 145 (2007) no. 1-2, p. 89 | DOI:10.1016/j.revpalbo.2006.09.002
  • P. van Thienen; K. Benzerara; D. Breuer; C. Gillmann; S. Labrosse; P. Lognonné; T. Spohn Water, Life, and Planetary Geodynamical Evolution, Space Science Reviews, Volume 129 (2007) no. 1-3, p. 167 | DOI:10.1007/s11214-007-9149-7
  • Richard E. Ernst; K.L. Buchan; D.W. Desnoyers Plumes and Plume Clusters on Earth and Venus: Evidence from Large Igneous Provinces (LIPs), Superplumes: Beyond Plate Tectonics (2007), p. 537 | DOI:10.1007/978-1-4020-5750-2_18
  • V.E. Pavlov; V. Courtillot; M.L. Bazhenov; R.V. Veselovsky Paleomagnetism of the Siberian traps: New data and a new overall 250 Ma pole for Siberia, Tectonophysics, Volume 443 (2007) no. 1-2, p. 72 | DOI:10.1016/j.tecto.2007.07.005
  • W.R. Buck Dynamic Processes in Extensional and Compressional Settings: The Dynamics of Continental Breakup and Extension, Treatise on Geophysics (2007), p. 335 | DOI:10.1016/b978-044452748-6.00110-3
  • G. Ito; P.E. van Keken Hot Spots and Melting Anomalies, Treatise on Geophysics (2007), p. 371 | DOI:10.1016/b978-044452748-6.00123-1
  • Eric Buffetaut Continental Vertebrate Extinctions at the Triassic-Jurassic and Cretaceous-Tertiary Boundaries: a Comparison, Biological Processes Associated with Impact Events (2006), p. 245 | DOI:10.1007/3-540-25736-5_11
  • F. Jourdan; G. Féraud; H. Bertrand; M.K. Watkeys; A.B. Kampunzu; B. Le Gall Basement control on dyke distribution in Large Igneous Provinces: Case study of the Karoo triple junction, Earth and Planetary Science Letters, Volume 241 (2006) no. 1-2, p. 307 | DOI:10.1016/j.epsl.2005.10.003
  • Maria Ovtcharova; Hugo Bucher; Urs Schaltegger; Thomas Galfetti; Arnaud Brayard; Jean Guex New Early to Middle Triassic U–Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery, Earth and Planetary Science Letters, Volume 243 (2006) no. 3-4, p. 463 | DOI:10.1016/j.epsl.2006.01.042
  • George R McGhee Extinction: Late Devonian Mass Extinction, Encyclopedia of Life Sciences (2006) | DOI:10.1038/npg.els.0004177
  • Scott M. White; Joy A. Crisp; Frank J. Spera Long‐term volumetric eruption rates and magma budgets, Geochemistry, Geophysics, Geosystems, Volume 7 (2006) no. 3 | DOI:10.1029/2005gc001002
  • Anirban Das; S. Krishnaswami; Anil Kumar Sr and87Sr/86Sr in rivers draining the Deccan Traps (India): Implications to weathering, Sr fluxes, and the marine87Sr/86Sr record around K/T, Geochemistry, Geophysics, Geosystems, Volume 7 (2006) no. 6 | DOI:10.1029/2005gc001081
  • Alfredo Arche; Jose López-Gómez Late Permian to Early Triassic transition in central and NE Spain: biotic and sedimentary characteristics, Geological Society, London, Special Publications, Volume 265 (2006) no. 1, p. 261 | DOI:10.1144/gsl.sp.2006.265.01.12
  • Stefano Furin; Nereo Preto; Manuel Rigo; Guido Roghi; Piero Gianolla; James L. Crowley; Samuel A. Bowring High-precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs, Geology, Volume 34 (2006) no. 12, p. 1009 | DOI:10.1130/g22967a.1
  • R.E. Hanson; R.E. Harmer; T.G. Blenkinsop; D.S. Bullen; I.W.D. Dalziel; W.A. Gose; R.P. Hall; A.B. Kampunzu; R.M. Key; J. Mukwakwami; H. Munyanyiwa; J.A. Pancake; E.K. Seidel; S.E. Ward Mesoproterozoic intraplate magmatism in the Kalahari Craton: A review, Journal of African Earth Sciences, Volume 46 (2006) no. 1-2, p. 141 | DOI:10.1016/j.jafrearsci.2006.01.016
  • Wulf A. Gose; Richard E. Hanson; Ian W. D. Dalziel; James A. Pancake; Emily K. Seidel Paleomagnetism of the 1.1 Ga Umkondo large igneous province in southern Africa, Journal of Geophysical Research: Solid Earth, Volume 111 (2006) no. B9 | DOI:10.1029/2005jb003897
  • Henrik Svensen; BjØrn Jamtveit; Sverre Planke; Luc Chevallier Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa, Journal of the Geological Society, Volume 163 (2006) no. 4, p. 671 | DOI:10.1144/1144-764905-037
  • Jörg W. Schneider; Frank Körner; Marco Roscher; Uwe Kroner Permian climate development in the northern peri-Tethys area — The Lodève basin, French Massif Central, compared in a European and global context, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 240 (2006) no. 1-2, p. 161 | DOI:10.1016/j.palaeo.2006.03.057
  • M.L. Hough; G.A. Shields; L.Z. Evins; H. Strauss; R.A. Henderson; S. Mackenzie A major sulphur isotope event at c. 510 Ma: a possible anoxia–extinction–volcanism connection during the Early–Middle Cambrian transition?, Terra Nova, Volume 18 (2006) no. 4, p. 257 | DOI:10.1111/j.1365-3121.2006.00687.x
  • G. Keller Impacts, volcanism and mass extinction: random coincidence or cause and effect?, Australian Journal of Earth Sciences, Volume 52 (2005) no. 4-5, p. 725 | DOI:10.1080/08120090500170393
  • Peter Riisager; Kim B. Knight; Joel A. Baker; Ingrid Ukstins Peate; Mohamed Al-Kadasi; Abdulkarim Al-Subbary; Paul R. Renne Paleomagnetism and 40Ar/39Ar Geochronology of Yemeni Oligocene volcanics: Implications for timing and duration of Afro-Arabian traps and geometry of the Oligocene paleomagnetic field, Earth and Planetary Science Letters, Volume 237 (2005) no. 3-4, p. 647 | DOI:10.1016/j.epsl.2005.06.016
  • Linda T. Elkins-Tanton; Bradford H. Hager Giant meteoroid impacts can cause volcanism, Earth and Planetary Science Letters, Volume 239 (2005) no. 3-4, p. 219 | DOI:10.1016/j.epsl.2005.07.029
  • O.S. Pokrovsky; J. Schott; D.I. Kudryavtzev; B. Dupré Basalt weathering in Central Siberia under permafrost conditions, Geochimica et Cosmochimica Acta, Volume 69 (2005) no. 24, p. 5659 | DOI:10.1016/j.gca.2005.07.018
  • A. P. M. Vaughan; R. A. Livermore Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: implications for superplume-plate interactions, Geological Society, London, Special Publications, Volume 246 (2005) no. 1, p. 143 | DOI:10.1144/gsl.sp.2005.246.01.05
  • J.J. Mahoney; R.A. Duncan; M.L.G. Tejada; W.W. Sager; T.J. Bralower Jurassic-Cretaceous boundary age and mid-ocean-ridge–type mantle source for Shatsky Rise, Geology, Volume 33 (2005) no. 3, p. 185 | DOI:10.1130/g21378.1
  • Fred Jourdan; Gilbert Féraud; Hervé Bertrand; Ali Bashira Kampunzu; Gomotsang Tshoso; Michael K. Watkeys; Bernard Le Gall Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data, Geology, Volume 33 (2005) no. 9, p. 745 | DOI:10.1130/g21632.1
  • P.-S. Ross; I. Ukstins Peate; M.K. McClintock; Y.G. Xu; I.P. Skilling; J.D.L. White; B.F. Houghton Mafic volcaniclastic deposits in flood basalt provinces: A review, Journal of Volcanology and Geothermal Research, Volume 145 (2005) no. 3-4, p. 281 | DOI:10.1016/j.jvolgeores.2005.02.003
  • Shiloh Osae; Saumitra Misra; Christian Koeberl; Debashish Sengupta; Sambhunath Ghosh Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry, Meteoritics Planetary Science, Volume 40 (2005) no. 9-10, p. 1473 | DOI:10.1111/j.1945-5100.2005.tb00413.x
  • Alfredo Arche; José López-Gómez Sudden changes in fluvial style across the Permian−Triassic boundary in the eastern Iberian Ranges, Spain: Analysis of possible causes, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 229 (2005) no. 1-2, p. 104 | DOI:10.1016/j.palaeo.2005.06.033
  • Grzegorz Racki; Paul B. Wignall Chapter 10 late permian double-phased mass extinction and volcanism: an oceanographic perspective, Understanding Late Devonian And Permian-Triassic Biotic and Climatic Events - Towards an Integrated Approach, Volume 20 (2005), p. 263 | DOI:10.1016/s0920-5446(05)80010-x
  • George R. McGhee Chapter 3Modelling late devonian extinction hypotheses, Understanding Late Devonian And Permian-Triassic Biotic and Climatic Events - Towards an Integrated Approach, Volume 20 (2005), p. 37 | DOI:10.1016/s0920-5446(05)80003-2
  • Stephen Self Effects of volcanic eruptions on the atmosphere and climate, Volcanoes and the Environment (2005), p. 152 | DOI:10.1017/cbo9780511614767.006
  • J Phipps Morgan; T.J Reston; C.R Ranero Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link?, Earth and Planetary Science Letters, Volume 217 (2004) no. 3-4, p. 263 | DOI:10.1016/s0012-821x(03)00602-2
  • Christoph Heunemann; David Krása; Heinrich C Soffel; Evguenij Gurevitch; Valerian Bachtadse Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia, Earth and Planetary Science Letters, Volume 218 (2004) no. 1-2, p. 197 | DOI:10.1016/s0012-821x(03)00642-3
  • Jean Guex; Annachiara Bartolini; Viorel Atudorei; David Taylor High-resolution ammonite and carbon isotope stratigraphy across the Triassic–Jurassic boundary at New York Canyon (Nevada), Earth and Planetary Science Letters, Volume 225 (2004) no. 1-2, p. 29 | DOI:10.1016/j.epsl.2004.06.006
  • K.B. Knight; S. Nomade; P.R. Renne; A. Marzoli; H. Bertrand; N. Youbi The Central Atlantic Magmatic Province at the Triassic–Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism, Earth and Planetary Science Letters, Volume 228 (2004) no. 1-2, p. 143 | DOI:10.1016/j.epsl.2004.09.022
  • Julie Roberge; Rosalind V. White; Paul J. Wallace Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): implications for magmatic processes and source region compositions, Geological Society, London, Special Publications, Volume 229 (2004) no. 1, p. 239 | DOI:10.1144/gsl.sp.2004.229.01.14
  • Tamsin A. Mather; David M. Pyle; Andrew G. Allen Volcanic source for fixed nitrogen in the early Earth's atmosphere, Geology, Volume 32 (2004) no. 10, p. 905 | DOI:10.1130/g20679.1
  • Yi-Gang Xu; Bin He; Sun-Lin Chung; Martin A. Menzies; Frederick A. Frey Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province, Geology, Volume 32 (2004) no. 10, p. 917 | DOI:10.1130/g20602.1
  • Andrea Marzoli; Hervé Bertrand; Kim B. Knight; Simonetta Cirilli; Nicoletta Buratti; Chrystèle Vérati; Sébastien Nomade; Paul R. Renne; Nasrrddine Youbi; Rossana Martini; Karin Allenbach; Ralph Neuwerth; Cédric Rapaille; Louisette Zaninetti; Giuliano Bellieni Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis, Geology, Volume 32 (2004) no. 11, p. 973 | DOI:10.1130/g20652.1
  • Marianne Greff-Lefftz Upwelling plumes, superswells and true polar wander, Geophysical Journal International, Volume 159 (2004) no. 3, p. 1125 | DOI:10.1111/j.1365-246x.2004.02440.x
  • Ninad R. Bondre; Raymond A. Duraiswami; Gauri Dole A brief comparison of lava flows from the Deccan Volcanic Province and the Columbia-Oregon Plateau Flood Basalts: Implications for models of flood basalt emplacement, Journal of Earth System Science, Volume 113 (2004) no. 4, p. 809 | DOI:10.1007/bf02704039
  • BRUNO KIEFFER; NICHOLAS ARNDT; HENRIETTE LAPIERRE; FLORENCE BASTIEN; DELPHINE BOSCH; ARNAUD PECHER; GEZAHEGN YIRGU; DEREJE AYALEW; DOMINIQUE WEIS; DOUGAL A. JERRAM; FRANCINE KELLER; CLAUDINE MEUGNIOT Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell, Journal of Petrology, Volume 45 (2004) no. 4, p. 793 | DOI:10.1093/petrology/egg112
  • Bernhard Steinberger; Rupert Sutherland; Richard J. O'Connell Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow, Nature, Volume 430 (2004) no. 6996, p. 167 | DOI:10.1038/nature02660
  • Andreas Prokoph; Michael R. Rampino; Hafida El Bilali Periodic components in the diversity of calcareous plankton and geological events over the past 230 Myr, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 207 (2004) no. 1-2, p. 105 | DOI:10.1016/j.palaeo.2004.02.004
  • Donald R. Prothero Did impacts, volcanic eruptions, or climate change affect mammalian evolution?, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 214 (2004) no. 3, p. 283 | DOI:10.1016/j.palaeo.2004.04.010
  • Richard E. Hanson; James L. Crowley; Samuel A. Bowring; Jahandar Ramezani; Wulf A. Gose; Ian W. D. Dalziel; James A. Pancake; Emily K. Seidel; Thomas G. Blenkinsop; Joshua Mukwakwami Coeval Large-Scale Magmatism in the Kalahari and Laurentian Cratons During Rodinia Assembly, Science, Volume 304 (2004) no. 5674, p. 1126 | DOI:10.1126/science.1096329
  • Roland Mundil; Kenneth R. Ludwig; Ian Metcalfe; Paul R. Renne Age and Timing of the Permian Mass Extinctions: U/Pb Dating of Closed-System Zircons, Science, Volume 305 (2004) no. 5691, p. 1760 | DOI:10.1126/science.1101012
  • Vincent Courtillot; Anne Davaille; Jean Besse; Joann Stock Three distinct types of hotspots in the Earth’s mantle, Earth and Planetary Science Letters, Volume 205 (2003) no. 3-4, p. 295 | DOI:10.1016/s0012-821x(02)01048-8
  • Yves Gallet; Leopold Krystyn; Jean Besse; Jean Marcoux Improving the Upper Triassic numerical time scale from cross-correlation between Tethyan marine sections and the continental Newark basin sequence, Earth and Planetary Science Letters, Volume 212 (2003) no. 3-4, p. 255 | DOI:10.1016/s0012-821x(03)00290-5
  • Bin He; Yi-Gang Xu; Sun-Ling Chung; Long Xiao; Yamei Wang Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts, Earth and Planetary Science Letters, Volume 213 (2003) no. 3-4, p. 391 | DOI:10.1016/s0012-821x(03)00323-6
  • G. Ravizza; B. Peucker-Ehrenbrink Chemostratigraphic Evidence of Deccan Volcanism from the Marine Osmium Isotope Record, Science, Volume 302 (2003) no. 5649, p. 1392 | DOI:10.1126/science.1089209

Cité par 651 documents. Sources : Crossref


Commentaires - Politique