Plan
Comptes Rendus

Surface Geosciences
Annual dissolved fluxes from Central Nepal rivers: budget of chemical erosion in the Himalayas
[Flux dissous des rivières du Népal central : bilan de l'érosion chimique en Himalaya]
Comptes Rendus. Géoscience, Volume 335 (2003) no. 16, pp. 1131-1140.

Résumés

Annual dissolved element fluxes of Himalayan rivers from Central Nepal are calculated using published river discharge and a new set chemical data of rivers, including monsoon sampling. These are used to study the control on chemical erosion of carbonate and silicate over the whole basin. Chemical erosion of carbonate is mainly controlled by the river runoff but it can be limited by the availability of carbonate in limestone-free basin. Chemical erosion of silicate is well correlated to the runoff. However differences between High Himalayan and Lesser Himalayan basins suggest that physical erosion may also play an important control on silicate weathering.

Les flux annuels d'éléments dissous exportés par les rivières du Népal central sont calculés à partir d'un nouvel échantillonnage réalisé pendant la période de mousson et de données déjà publiées pour les périodes sèches. À partir de ces flux, les taux d'érosion moyens de carbonates et de silicates sont estimés dans les différents bassins. Il apparaı̂t que l'érosion chimique des carbonates est contrôlée en premier lieu par l'intensité des précipitations, mais aussi qu'elle peut être, dans certains cas, limitée par la disponibilité des carbonates. L'érosion chimique des silicates est bien corrélée à l'intensité des précipitations, mais les différences entre les différents compartiments de la chaı̂ne suggèrent que l'érosion physique puisse aussi influencer significativement l'altération moyenne des silicates.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2003.09.014
Keywords: Himalayas, erosion, river, weathering, climate–erosion, relationship, geochemical budget
Mot clés : Himalaya, érosion, rivière, altération, relation climat–érosion, bilan géochimique
Christian France-Lanord 1 ; Matthew Evans 2 ; Jean-Emmanuel Hurtrez 3 ; Jean Riotte 4

1 CRPG–CNRS, BP20, 54501 Vandœuvre-les-Nancy, France
2 Cornell University, Earth and Atmospheric Sci., Itaca, NY 14853, USA
3 EPOC, université Bordeaux-1, avenue des Facultés, 33405 Talence, France
4 CGS, université Louis-Pasteur, 1, rue Blessig, 67084 Strasbourg, France
@article{CRGEOS_2003__335_16_1131_0,
     author = {Christian France-Lanord and Matthew Evans and Jean-Emmanuel Hurtrez and Jean Riotte},
     title = {Annual dissolved fluxes from {Central} {Nepal} rivers: budget of chemical erosion in the {Himalayas}},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {1131--1140},
     publisher = {Elsevier},
     volume = {335},
     number = {16},
     year = {2003},
     doi = {10.1016/j.crte.2003.09.014},
     language = {en},
}
TY  - JOUR
AU  - Christian France-Lanord
AU  - Matthew Evans
AU  - Jean-Emmanuel Hurtrez
AU  - Jean Riotte
TI  - Annual dissolved fluxes from Central Nepal rivers: budget of chemical erosion in the Himalayas
JO  - Comptes Rendus. Géoscience
PY  - 2003
SP  - 1131
EP  - 1140
VL  - 335
IS  - 16
PB  - Elsevier
DO  - 10.1016/j.crte.2003.09.014
LA  - en
ID  - CRGEOS_2003__335_16_1131_0
ER  - 
%0 Journal Article
%A Christian France-Lanord
%A Matthew Evans
%A Jean-Emmanuel Hurtrez
%A Jean Riotte
%T Annual dissolved fluxes from Central Nepal rivers: budget of chemical erosion in the Himalayas
%J Comptes Rendus. Géoscience
%D 2003
%P 1131-1140
%V 335
%N 16
%I Elsevier
%R 10.1016/j.crte.2003.09.014
%G en
%F CRGEOS_2003__335_16_1131_0
Christian France-Lanord; Matthew Evans; Jean-Emmanuel Hurtrez; Jean Riotte. Annual dissolved fluxes from Central Nepal rivers: budget of chemical erosion in the Himalayas. Comptes Rendus. Géoscience, Volume 335 (2003) no. 16, pp. 1131-1140. doi : 10.1016/j.crte.2003.09.014. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2003.09.014/

Version originale du texte intégral

Version française abrégée

1 Introduction

L'érosion chimique ou l'altération des silicates est un des éléments clefs de la régulation du cycle long du carbone qui détermine les variations climatiques de premier ordre (par exemple, [2,3]). L'érosion chimique est soumise à un contrôle complexe comprenant les conditions climatiques, la végétation, l'érosion physique ou encore la lithologie. Parmi ces paramètres, l'érosion physique a été au centre des débats, car elle pourrait jouer un rôle fondamental pour le forçage tectonique du climat [21]. Ce type d'hypothèse reste largement débattu, car le contrôle de l'altération des silicates est complexe à déterminer [10,19,23]. L'érosion physique est très intense sur les bassins himalayens et l'on estime à seulement 3 % le flux d'érosion chimique transporté sous forme dissoute par les rivières. La plupart de ce flux dissous est cependant lié à la dissolution de carbonates [12] et résulte d'une grande variabilité des bassins sur le plan de leur climat, de leur végétation ou de leur topographie. Toute étude de l'érosion chimique en Himalaya est complexe en raison de très forts contrastes saisonniers des précipitations entre la période aride de l'hiver et la mousson qui se caractérise par des précipitations pouvant atteindre deux mètres par mois. Les rivières transportent ainsi près de 80 % de leur charge dissoute durant les seuls mois de mousson, de juin à septembre. Malgré cela, très peu de données sur les rivières himalayennes existent pour les périodes de mousson [12,22] en raison des difficultés d'échantillonnage.

2 Résultats

Nous présentons ici la première estimation complète pour les rivières du Népal central (Fig. 1) bâtie sur les données de plusieurs campagnes d'échantillonnage comprenant en particulier un échantillonnage complet en juillet 1998 (Tableau 1) et sur des données de flux hydrologiques détaillées [24]. Celles-ci permettent de calculer des compositions chimiques annuelles moyennes pour la plupart des grandes rivières du Népal central et quelques petits bassins caractéristiques (Tableau 2). Leur analyse suivant l'approche de Galy et France-Lanord [12] aboutit à l'estimation des parts respectives d'altération des carbonates et des silicates. Celles-ci varient respectivement entre 10 et 300 t km−2 an−1 et 6 et 52 t km−2 an−1 (Fig. 2). L'érosion chimique des carbonates est limitée par l'abondance des carbonates dans les bassins. Pour les grands bassins riches en carbonates, on distingue une relation positive entre le taux d'érosion chimique des carbonates et l'écoulement spécifique. Pour l'érosion chimique des silicates, cette relation est beaucoup plus claire et le facteur précipitation apparaı̂t comme le principal contrôle de l'altération des silicates. Pour un même écoulement spécifique, les rivières Andi, Chepe et Darondi montrent cependant des taux d'altération de silicate variant du simple au double (Fig. 2a). Cette différence pourrait être attribuée à la différence d'érosion physique entre les trois bassins. Les rivières des Siwaliks montrent des valeurs extrêmement élevées (exemple de la Surai), qui sont probablement liées à la dissolution de carbonates sodiques pédogéniques accumulés durant la formation des séries Siwaliks dans la paléo-plaine du Gange. Dans le détail, les facteurs de température, végétation ou érosion physique peuvent expliquer des variations plus discrètes, telles que celles observées entre les rivières Chepe et Darondi.

Fig. 1

Map of central Nepal, showing the location of sampling sites on the river network. Geological contours after Colchen et al. [5]. TSS=Tethyan sedimentary series. HHC=High Himalayas crystalline. LH=Lesser Himalayas. HHL=High Himalayas leucogranite. LHN=Lesser Himalayas nappe.

Carte du Népal central, avec la position des sites d'échantillonnage du système de rivières. Les contours géologiques sont tirés de Colchen et coll. [5]. TSS=Séries sédimentaires téthysiennes. HHC=Haut Himalaya cristallin ou dalle du Tibet. LH=Moyen-pays ou bas Himalaya. HHL=Leucogranite du haut Himalaya. LHN=Nappes du bas Himalaya.

Table 1

Unpublished chemical composition of Himalayan river water

Nouvelles données de concentrations en éléments dissous sur les rivières du Népal central

Sample Date Location pH TDS HCO3 F Cl SO4−− Na+ K+ Mg++ Ca++ H2SiO4
MO 2 01/05/1997 Marsyandi 8.0 182 1746 341 317 381 60 329 812 150
MO 332 10/07/1998 Marsyandi 8.4 116 1113 3.9 59 140 103 62 153 492 135
MO 84 09/05/1997 Chepe 32 252 6 78 67 41 25 130 134
MO 364 16/07/1998 Chepe 6.5 19 117 0 4 32 39 23 17 44 144
MO 91 10/05/1997 Darondi 118 1356 27 102 113 86 248 447 126
MO 335 11/07/1998 Darondi 8.2 60 616 2.3 10 30 78 44 102 181 180
MO 375 17/07/1998 Darondi 56 576 2.1 10 28 81 41 92 169 176
MO 377 18/07/1998 Darondi 52 548 2.1 11 22 70 46 78 167 154
MO 137 14/05/1994 Trisuli 2 114 1252 36 112 159 50 146 503 116
MO 300 07/07/1998 Trisuli 2 74 797 2.2 10 43 50 41 51 350 86
MO 200 18/05/1997 Seti 225 3540 86 257 168 108 584 1349 100
MO 304 07/07/1998 Seti 129 1424 0 15 80 46 57 205 543 109
MO 205 18/05/1997 Andi 132 1837 52 19 73 34 424 488 100
MO 311 08/07/1998 Andi 8.2 68 796 0 21 7 31 16 171 221 91
MO 308 07/07/1998 Kali 4 8.6 120 1194 3.7 28 141 61 66 171 520 81
MO 314 08/07/1998 Kali 5 8.7 140 1537 4.6 23 97 53 48 308 521 118
MO 500 26/07/1998 Kali 1 8.0 180 1514 8.7 208 832 305 49 505 1015 54
MO 515 27/07/1998 Kali 2 147 1549 8.6 133 594 212 69 391 908 59
MO 517 27/07/1998 Kali 3 8.6 157 1614 5.8 153 413 200 72 317 846 60
MO 215 20/05/1997 Narayani 8.3 2387 108 218 236 73 421 896
MO 330 10/07/1998 Narayani 8.4 139 1444 3.9 53 112 97 61 244 538 140
MO 325 09/07/1998 Surai 8.4 306 3647 9.3 23 67 546 75 626 970 209
Fig. 2

Relationship between river runoff and chemical erosion rates for carbonate (a) and silicate (b) derived from dissolved annual fluxes (Table 2). Chemical erosion rates are calculated from the mass flux of dissolved element divided by the total area of the watershed. Each cation is accounted for its oxide mass for silicate erosion (Na2O, K2O, MgO, CaO and SiO2) or carbonate mass (CaCO3 and MgCO3) for carbonate erosion.

Relations entre écoulement spécifique et érosion chimique des carbonates (a) et des silicates (b) dérivés des flux annuels dissous des rivières (Tableau 2). Chaque cation dissous est pris en compte pour son poids d'oxyde (Na2O, K2O, MgO, CaO et SiO2) pour les silicates ou son poids de carbonate (CaCO3 et MgCO3) pour les carbonates.

3 Conclusion

L'ensemble de ces données montre que l'érosion chimique est déterminée au premier ordre par les précipitations, sauf pour les carbonates, lorsque leur présence dans le bassin est mineure. L'érosion physique apparaı̂t aussi comme un paramètre critique, comme le montre le contraste entre les rivières Andi, Chepe et Darondi. Toutefois, seule une rivière documente les zones à faible vitesse de dénudation ce qui limite la valeur du test à ce niveau. Millot et al. [18] ont mis en évidence une relation entre vitesse d'érosion physique et chimique sur des bassins granitiques et volcaniques et ont proposé une loi puissance liant les deux processus. Appliquant cette relation aux bassins Marsyandi, Trisuli et Narayani, pour lesquels il existe des données de flux de matière en suspension [17], on détermine des flux d'érosion chimiques de silicates qui sont un ordre de grandeur au-dessus de ceux qui sont dérivés des flux dissous des rivières. La relation de Millot et al. est établie à partir d'une rivière à relativement faible vitesse d'érosion. Ceci implique qu'il existe peut-être un effet de saturation lorsque les vitesses d'érosion deviennent très importantes, comme en Himalaya. Si l'on compare maintenant la consommation de CO2 par altération de silicates des rivières himalayennes (0,2 à 0,3×106 mol km−2 an−1) à celles de bassins granitiques et volcaniques présentés par Dessert et coll. [8], les rivières himalayennes apparaissent comparables aux rivières granitiques en climat tempéré et ont une consommation de CO2 clairement inférieure à celle des rivières des bassins volcaniques. Ces deux comparaisons suggèrent que l'érosion physique, très importante, des bassins himalayens n'entraı̂ne pas un flux d'altération des silicates disproportionné. C'est plutôt l'intensité des précipitations liées à la mousson indienne qui détermine l'importance de ce flux.

1 Introduction

Chemical weathering, especially that of silicate rocks and minerals, is a vital component of the long-term regulation of the carbon cycle, which determines first-order climatic variations (e.g., [2,3]). Understanding how chemical weathering is controlled by different parameters, like temperature, lithology, or vegetation is therefore crucial for testing models of climatic regulation. Among those parameters, physical erosion has been highlighted as it may play a key role in tectonic forcing of climate [21]. Such hypotheses are still largely debated and the controlling factors on silicate weathering is a complex issue [10,19,23]. The Himalayas are dominated by physical erosion with only 3% of the total mass loss transported in the dissolved phase. Most of this dissolved flux, however, is related to carbonate dissolution [12] and is a function of complex basin physiography, which combines highly variable climate, lithology, vegetation, and relief. Any study of chemical weathering fluxes from the Himalayas is complicated by the wide disparity in precipitation from monsoon to dry season. Rivers swelled by the significant rains received from June to September carry up to 80% of the annual dissolved flux. Despite this observation, few data exist for Himalayan rivers during the wet season [12,22]. In this work, we present the first comprehensive estimate of annual dissolved fluxes from the rivers of Central Nepal using waters from several sampling campaigns including one during July 1998 and detailed data on hydrological fluxes [9]. These samples allow for a more inclusive analysis of the distribution of chemical erosion and its controlling factors over the Himalayan Basin.

2 The Himalayan basin

The Central Nepal basin covers 31 800 km2 and includes four trans-Himalayan rivers (from west to east: Kali Gandaki, Marsyandi, Bhuri Gandaki, and Trisuli). These north–south rivers incise the high Himalayan range in deep gorges and then join in an east–west drainage guided by the uplift of the Siwalik foothills (Fig. 1). Only the Narayani River crosscuts the Siwalik range and joins the Ganga floodplain, where it takes the name Gandak.

Four physiographic domains can be defined in the basin: the floodplain, the lesser Himalayas, the high-range and southern Tibet. A sharp climatic contrast exists between Tibet and the rest of the basin. The southern flank of the range and the plain are exposed to monsoon precipitation (2 to 4 m yr−1) whereas Tibet, in the rain shadow of the high Himalayas, is cold and receives only 0.2–0.5 m yr−1 of precipitations [1]. Following the major geographical bounds, the geology of the Himalayas can be divided into four units, separated by major thrust systems [5,6]. The rocks of the southern part of the Tibetan plateau mostly belong to the Tethyan Sedimentary Series (TSS), composed of Palaeozoic–Mesozoic carbonates and clastic sediments (North Indian shelf sediments). Underlying the TSS, the High Himalayas Crystalline (HHC) is the principal formation of the high range. It consists of ortho- and paragneisses, migmatites and highly metamorphosed marbles. The Lesser Himalayas (LH) is composed of variably metamorphosed Precambrian sediments. The lithologies are quartzo-pelitic schists, quartzites, and dolomitic carbonates. The southernmost part of the range consists of the recently uplifted Siwaliks, formed from Mio-Pliocene detrital sediments accumulated in the former Ganga plain.

3 Sampling and analyses

The monsoon sampling presented in this work was collected in July from the main tributaries of the Narayani watershed, including a profile along the Kali Gandaki River and some high-range southern-flank basins (Fig. 1). Additional samples, collected during earlier campaigns (February 1992 to July 2001 [12]), are used to calculate annual compositions.

All samples were filtered at 0.2 μm on nylon Millipore filters and stored in HNO3 acidified and non-acidified vials. Temperature, salinity and pH values were measured in the field. Major element concentrations were measured by ion chromatography at the CRPG. Separation of F, Cl, and SO42− was carried out on a AS12A column using non-acidified water. Acidified water was passed through a CS10 column in order to analyse Na+, K+, Mg2+ and Ca2+. Each ion was calibrated in a range from 0 to 2 mg l−1 and the water samples were diluted to fit this range. The detection limit for F is 2 ppb, and for all other ions, the measured amounts are well above their detection limits. Reproducibility is around 10% (relative) for all ions. HCO3 was determined by charge balance from the other ions. Silica was measured by spectrophotometric measurement of the Mo blue complex.

4 Results

Unpublished data for major element concentrations including monsoon samples are listed in Table 1. Compared to dry season samples, they are more dilute but they have similar relative compositions. Overall, the river salinity during the monsoon drops by ca. 50%, while the river flux increases by a factor of 10. This implies that chemical erosion increases strongly during the wet period. The relative abundance of major cations is essentially stable over the year except in the Trisuli, which shows a clear increase in the Ca2+ fraction. This has been interpreted to reflect a change in the precipitation distribution for this basin [12]. Seasonal changes in anion concentrations are systematic however Cl is more strongly diluted than any other element. This is particularly clear for the Kali Gandaki, for which the [Cl] drops by a factor 5 to 10. Cl is mainly supplied to Nepali rivers by thermal hot springs [9]. This likely reflects the fact that the flux of these hot springs does not increase in the same proportion than the rest of the hydrological system during the monsoon.

Calculated annual river compositions are listed in Table 2. For each month, one composition has been assigned using the best available data (Table 1 [4,9,12]). Depending on station, 2 to 14 samples were available (column N in Table 2). Annual compositions were then calculated using the monthly average discharge recorded over 5 to 20 years near sampling locations [24]. When no hydrological data were available, we used model fluxes computed from combined DEM and meteorological data over the watershed. For most locations, our estimates are potentially limited by the small sample size (2 to 4 samples). To test the accuracy of our approach, we calculated the annual river composition of the Trisuli River at Betrawati with two samples sets. The first consisted of only two dry season samples and one monsoon sample and average discharge over 28 years. The second calculation used a more detailed average based on a 14 sample time-series from 1994–1995 [12] and the corresponding discharge values. The detailed average is more dilute; however, both averages agree within 10%.

Table 2

Mean annual chemical compositions calculated for central Nepal rivers and chemical erosion fluxes

Compositions chimiques annuelles moyennes calculées des rivières du Népal central et flux d'érosion chimiques spécifiques

Site Location Position Area Elevation (m) Discharge Runoff N TDS HCO3 Cl SO4 Na K Mg Ca Sr Si Erosion
(km2) Site Average (106 m3 yr−1) (m yr−1) (mg l−1) (μmol l−1) (t yr−1  km−2)
carbonate silicate
Chepe Labsibot 28°N 11′20″ 125 1092 2791 283 2.27 2 23 160 4.8 46 48 28 19 72 0.13 141 10 36
84°E 30′10″
Darondi 28°N 04′42″ 370 700 1963 814 2.20 4 74 808 15.4 49 87 56 137 253 0.13 158 62 45
84°E 39′32″
Andi kohla Waling 28°N 05′10″ 249 820 1297 1091 2.29 3 94 1172 29.4 12 43 21 264 318 0.16 99 104 23
83°E 50′50″
Surai 27°N 46′08″ <80 300 1 . 34 * 3 377 4379 33.2 139 1276 92 726 940 2.45 226 148 105
82°E 50′52″
Rangsing Bhaluban 27°N 48′20″ <50 385 1 . 04 * 3 296 2594 30.5 58 241 60 386 1304 1.12 148 153 27
82°E 47′00″
Trisuli 1 Betrawati 27°N 58′08″ 4634 619 4340 5580 1.20 14 73 758 23.2 58 79 39 66 327 0.45 81 39 14
85°E 11′00″
Trisuli 1 Betrawati 27°N 58′08″ 4634 619 4340 5853 1.26 3 80 819 25.8 67 97 47 75 346 0.47 94 43 18
85°E 11′00″
Trisuli 2 Benighat 27°N 48′49″ 6131 465 3616 8082 1.32 2 88 955 19.4 67 88 44 84 403 0.29 96 53 18
84°E 47′27″
Kali 1 Tukuche 28°N 42′30″ 3471 2530 4739 1573 0.45 3 238 1825 323.1 913 439 56 618 1126 5.59 64 66 6
83°E 38′30″
Kali 2 Dana 28°N 32′00″ 3988 1450 4639 2349 0.59 2 202 1826 234.8 674 312 74 489 1027 4.20 69 75 8
83°E 38′30″
Kali 3 Tatopani 28°N 28′00″ 4026 1180 4622 2428 0.60 3 200 1845 226.8 501 279 73 416 947 3.36 69 70 8
83°E 38′30″
Kali 4 Baglung 28°N 16′00″ 5983 740 4077 5724 0.96 3 157 1465 85.5 239 130 67 265 653 1.38 87 73 13
83°E 36′30″
Kali 5 Ramdi 27°N 54′04″ 10557 460 3073 15991 1.51 3 165 1752 54.7 156 90 49 373 619 1.33 104 123 21
83°E 38′02″
Seti Damauli 28°N 04′20″ 994 585 2058 3286 3.31 3 158 2013 36.1 134 81 70 315 769 0.77 107 303 52
84°E 04′15″
Marsyandi Dumre 27°N 57′00″ 4119 435 3661 7347 1.78 3 134 1275 136.7 187 177 60 198 578 1.30 132 117 30
84°E 25′00″
Narayani Narayanghat 27°N 42′30″ 31795 180 3028 50481 1.59 4 156 1607 66.0 144 123 61 291 600 0.93 140 116 29
84°E 25′50″

From these average compositions, we calculated rates of chemical erosion for the different watersheds. We distinguished the erosion of carbonate and silicate following the approach developed in [12]. This approach corrects for atmospheric input and allows for the determination of the relative contribution of carbonate vs. silicate dissolution based on the lithology of the Himalayan formations. Rate of erosion corresponds to the annual flux of dissolved elements derived from a given lithology, corrected from the amount of atmospheric CO2, and divided by the total area of the basin. Each cation is accounted for it's oxide mass. On plots of carbonate erosion rate versus runoff (Fig. 2a), there is no straightforward correlation, which suggests that multiple factors control weathering. On the contrary, silicate erosion appears more directly related to runoff (Fig. 2b).

5 Discussion

Chemical erosion of carbonates in the Narayani basin (Fig. 2a) is highly variable between 10 and 300 t km−2 yr−1. The primary control is the lithology or the presence of carbonates in the basin. The lowest rates of erosion are observed for the Chepe, Darondi and Trisuli Rivers. The Chepe and Darondi are small High Himalayan basins and have respectively no or very minor carbonates in their drainages. The Trisuli River is a very large basin that includes carbonate-bearing formations of the Tethyan Sedimentary Series. Compared to other large basins, the Trisuli drains significantly less carbonates and these are restricted to the northern part of the basin, where precipitations are low. In addition, the Chepe, Darondi, and Trisuli have river sediments free of calcite. In contrast, the other central Nepal rivers carry calcite in their sediments [11] and are oversaturated with respect to carbonate [12,15]. This holds true during the monsoon and suspended sediments sampled during the monsoon for these rivers contain between 5 and 40% carbonates (unpublished data). Chemical erosion of carbonates is therefore limited by saturation and it should be linearly correlated with runoff. This relationship appears roughly if we consider only the large watersheds (Marsyandi, Kali 5, Seti, Narayani). Such correlation cannot be perfect, since the rate of chemical erosion of carbonate is normalised to the total basin area and not to the carbonate area. The Seti River shows very high carbonate erosion rates (>300 t km−2 yr−1), which fit well with the very high runoff of the river. The Chepe, Darondi and the Trisuli plot above the correlation, due to the lack of carbonates in their basins. The Andi also appears to have low carbonate erosion, despite the presence of carbonated rocks in the basin and even in the river sediments. The low carbonate erosion could then derive from low physical erosion in this southern basin. On the other side, rivers draining the Siwaliks and the northern Kali Gandaki show higher carbonate erosion. Higher efficiency of carbonate dissolution can be related to several factors. In the northern Kali, this can be related to: (1) the low temperature as carbonate solubility increases with low temperature and (2) the effect of sulphide oxidation, which is particularly important in this basin. In the Siwaliks, the temperature is not a factor as average temperatures are 20 to 30  °C higher than in the upper Kali. More likely, the Siwaliks are porous formations rich in carbonate [7] that host aquifers favouring carbonate dissolution compared to higher Himalayan basin.

Silicate chemical erosion rates in the central Nepal rivers vary between 5 and 42 t km−2 yr−1 and one river from the Siwaliks shows an extreme rate of 105 t·km−2 yr−1 (Fig. 2b). To this exception, the other rivers display a clear correlation with runoff, the Seti River showing the highest erosion rate at 52 t km−2 yr−1, associated with the highest runoff. This suggests that precipitation plays the key role for the control of silicate weathering, despite the large contrasts in temperature and vegetation conditions that are observed here. In detail, rivers having similar runoff like the Andi, Chepe and Darondi can show quite variable silicate chemical erosion rate (23, 36, 45 t km−2 yr−1, respectively). These basins have quite contrasted characters that can qualitatively explain their differences. The Chepe and the Darondi are High Himalayan basins, with very steep relief. The headwater of the Darondi is a large glacier above 6000 m, whereas that of the Chepe is a deglaciated basin around 5000 m. Basins of the high Himalayas are characterized by high denudation rates (4 to 6 mm yr−1), whereas the Andi is a Lesser Himalayan basin, with smoother relief and lower denudation rates, around 2 mm yr−1 [16]. Vegetation and temperature is higher for the Andi and the Darondi Basins than for the Chepe Basin, as a consequence of their respective mean elevations: 1300, 1960 and 2790 m. The Darondi, which combines high denudation and rich vegetation in the lower part of the basin appears with the highest rate of chemical erosion of silicates. In contrast, the Andi, which has likely the lowest rate of physical erosion, shows comparatively low chemical erosion of silicate, despite its higher temperature and vegetation cover.

In the Siwaliks, very high silicate erosion rates are observed for the Surai (105 t km−2 yr−1), whereas the other river, the Rangsing, shows only a slightly higher rate compared to the general tendency. In the Surai, this is related to remarkably high concentrations of Na, and to a lesser extent of Mg, which are higher than those of Ca during the dry season. This likely derives from aquifer circulation as spring water sampled in the Surai River shows similar chemical characteristics [14]. Such high Na concentrations may reflect high plagioclase alteration in the Siwaliks [14] or, more likely, the dissolution of sodium carbonates that are frequently observed in the soils of the semi-arid Gangetic plain [20]. Those carbonates would have accumulated in the palaeosoils of the Siwaliks and would be rapidly dissolved during the erosion of these series. High Na concentrations in these rivers would then reflect indirect silicate weathering in the Gangetic plain. Nevertheless, the Rangsing River is draining the same Siwaliks formations and does not show such extreme compositions. In comparing Siwalik rivers during the dry season [12], we observe two groups: (1) high Na and Mg rivers that drain the Siwaliks front where rates of uplift are very high (up to 10 mm yr−1) and (2) ‘normal’ Ca-dominated rivers that drain the northern Siwaliks, where rates of uplift are much lower (e.g., [13,16]). The very high flux of sodium could therefore be related to the rapid exhumation of the Siwaliks series, which supports our sodium carbonate hypothesis, as rapid dissolution would be favoured by rapid exhumation. The Siwaliks Na flux would therefore reflect past silicate erosion in the Gangetic plain rather than modern and extremely rapid silicate weathering.

6 Conclusion

This set of data shows that chemical erosion is controlled on the first order by the runoff except for carbonates when their abundance is limited. Physical erosion is also a critical parameter, as shown by the contrast between the Andi, Chepe and Darondi Rivers. To the exception of the Andi River, all others belong to high Himalayan range or to the Siwaliks, characterized by very high denudation rates. Hence the database is limited to really test the dependence of chemical erosion to the physical erosion. Millot et al. [18] have shown a relationship between physical and chemical erosion of granitoid and basaltic watersheds and they proposed a power law: Chem=0.39×(Phy)0.66, which we can apply to Himalayan rivers. Few data exist for these rivers and they certainly underestimate the real physical erosion flux as the transport of bed-load sand and pebble was not monitored. The suspended load flux for the Marsyandi, Trisuli, and Narayani Rivers, physical erosion is between 1000 and 4500 t km−2 yr−1 [17]. Following the relationship of Millot, these sediment fluxes would imply chemical erosion rates between 40 and 100 t km−2 yr−1. These rates are only based on the sum of silicate cations (Na, K, Mg, and Ca) excluding Si and using the cation mass instead of the oxide mass [18]. The corresponding chemical erosion rates derived from the dissolved load of the Marsyandi, Trisuli, and Narayani are between 6 and 7 t km−2 yr−1, which is well below the values predicted from physical erosion. Millot's relationship is based on rivers having much lower physical erosion rates. It is quite possible that for very high rate of erosion the system becomes ‘saturated’ and that the relationship cannot be applied, as already suggested by Millot et al. Himalayan rates of silicate chemical erosion can also be compared to those of granitic and basaltic lithologies following Dessert et al. [8]. The calculated CO2 uptake by silicate weathering for Himalayan rivers is between 0.2 and 0.3×106 mol km-2 yr -1. This is very similar to those of other granitic basin under temperate climate and high runoff and clearly lower than for volcanic lithologies. Both comparisons suggest that the rates of chemical erosion in the Himalayas are not exceptional, in spite of the very high physical erosion. Rather, it is the high runoff due to the Indian monsoon that controls the intensity of the silicate weathering.

Acknowledgements

This work was supported by the French INSU ‘Programme national sol–érosion’ (PNSE). We are grateful to Prof. B.N. Upreti, Dr A. Gajurel and Sarki Man for precious help and support during field work in Nepal. We thank Jérôme Gaillardet and François Chabaux for constructive comments. CRPG contribution No. 1653.


Bibliographie

[1] S.P. Adhikary, P.B. Shresta, L.M. Acharya, Precipitation records of Nepal 1987–1990, H.M.G. of Nepal Ministry of Science and Technology, Department of Hydrology and Meteorology, Kathmandu, Nepal, 1992, p. 253.

[2] R.A. Berner; E. Berner Global Environment: Water, Air, and Geochemical Cycles, Prentice-Hall, 1996

[3] R.A. Berner; K.A. Maasch Chemical weathering and controls on atmospheric O2 and CO2: fundamental principles were enunciated by J.J. Ebelmen in 1845, Geochim. Cosmochim. Acta, Volume 60 (1996), pp. 1633-1637

[4] F. Chabaux; J. Riotte; N. Clauer; C. France-Lanord Isotopic tracing of the dissolved U fluxes in Himalayan rivers: implications for present and past U budgets of the Ganges–Brahmaputra system, Geochim. Cosmochim. Acta, Volume 65 (2001), pp. 3201-3217

[5] M. Colchen; P. Le Fort; A. Pêcher Notice explicative de la carte géologique Annapurna–Manaslu–Ganesh (Himalaya du Népal) au 1:200 000e (bilingual: French–English), CNRS, Paris, 1986

[6] M. Colchen; P. Le Fort; A. Pêcher Carte géologique Annapurna–Manaslu–Ganesh, Himalaya du Népal. Échelle 1:200 000, Centre national de la recherche scientifique, Paris, 1980

[7] B. Delcaillau Les Siwalik de l'Himalaya du Népal oriental. Fonctionnement et évolution d'un piémont, Éditions du CNRS, Paris, 1992

[8] C. Dessert; B. Dupré; L.M. François; J. Schott; J. Gaillardet; G. Chakrapani; S. Bajpai Erosion of Deccan Traps determined by river geochemistry; impact on the global climate and the 87Sr/86Sr ratio of seawater, Earth Planet. Sci. Lett., Volume 188 (2001), pp. 459-474

[9] M.J. Evans; L.A. Derry; S.P. Anderson; C. France-Lanord Hydrothermal source of radiogenic Sr to Himalayan rivers, Geology, Volume 29 (2001), pp. 803-806

[10] J. Gaillardet; B. Dupré; P. Louvat; C.J. Allègre Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., Volume 159 (1999), pp. 3-30

[11] A. Galy; C. France-Lanord; L.A. Derry The Strontium Isotopic Budget of Himalayan Rivers in Nepal and Bangladesh, Geochim. Cosmochim. Acta, Volume 63 (1999), pp. 1905-1925

[12] A. Galy; C. France-Lanord Processes of the Weathering in the Ganges–Brahmaputra basin and the riverine alkalinity budget, Chem. Geol., Volume 159 (1999), pp. 31-60

[13] J.-E. Hurtrez; F. Lucazeau; J. Lave; J.-P. Avouac Investigation of the relationships between basin morphology tectonic uplift and denudation from the study of an active belt in the Siwalik Hills Central Nepal, J. Geophys. Res., Volume 104 (1999), pp. 12779-12796

[14] P. Huyghe; A. Galy; J.-L. Mugnier Micro-structures, clay mineralogy and geochemistry of the clay size fraction (<2 μm) of the thrusted zones Karnali area, Siwaliks of western Nepal, J. Nepal Geol. Soc. (1998), pp. 239-248

[15] A.D. Jacobson; J.D. Blum; L.M. Walter Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes; insights from the carbonate geochemistry of stream waters, Geochim. Cosmochim. Acta, Volume 66 (2002), pp. 3417-3429

[16] J. Lavé; J.-P. Avouac Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res. B: Solid Earth and Planets, Volume 106 (2001), pp. 26561-26591

[17] MHSP, Medium Hydropower Study Project, Sediment yield in the Nepal Himalayas, Nepal Electricity Authority & Canadian International Water & Energy Consultant, Kathmandu, 1997

[18] R. Millot; J. Gaillardet; B. Dupré; C.J. Allègre The global control of silicate weathering rates and the coupling with physical erosion; new insights from rivers of the Canadian Shield, Earth Planet. Sci. Lett., Volume 196 (2002), pp. 83-98

[19] R. Millot; J. Gaillardet; B. Dupré; C.J. Allègre Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada, Geochim. Cosmochim. Acta, Volume 67 (2003), pp. 1305-1329

[20] D.K. Pal; P. Srivastava; S.L. Durge; T. Bhattacharyya Role of microtopography in the formation of sodic soils in the semi-arid part of the Indo-Gangetic Plains, India, Catena, Volume 51 (2003), pp. 3-31

[21] M.E. Raymo; W.F. Ruddiman Tectonic forcing of Late Cenozoic climate, Nature, Volume 359 (1992), pp. 117-122

[22] M.M. Sarin; S. Krishnaswami; K. Dilli; B.L.K. Somayajulu; W.S. Moore Major ion chemistry of the Ganga–Brahmaputra River system: weathering processes and fluxes to the Bay of Bengal, Geochim. Cosmochim. Acta, Volume 53 (1989), pp. 997-1009

[23] A.F. White; A.E. Blum Effects of climate on chemical weathering in watersheds, Geochim. Cosmochim. Acta, Volume 59 (1995)

[24] K.S. Yogacharya; A.P. Pokhrel; S.R. Kansakar Hydrological records of Nepal, Streamflow summary, H.M.G. of Nepal Ministry of Science and Technology Department of Hydrology and Meteorology, Kathmandu, Nepal, 1998 (p. 264)


Commentaires - Politique


Ces articles pourraient vous intéresser

Sediment transfer and the hydrological cycle of Himalayan rivers in Nepal

Christoff Andermann; Stéphane Bonnet; Alain Crave; ...

C. R. Géos (2012)


Rivers, chemical weathering and Earth's climate

Bernard Dupré; Céline Dessert; Priscia Oliva; ...

C. R. Géos (2003)


Determination of transfer time for sediments in alluvial plains using 238U-234U-230Th disequilibria: The case of the Ganges river system

François Chabaux; Estelle Blaes; Mathieu Granet; ...

C. R. Géos (2012)