Outline
Comptes Rendus

Geodynamics
Pressure–temperature–time constraints on the Maghrebide mountain building: evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications
Comptes Rendus. Géoscience, Volume 338 (2006) no. 1-2, pp. 92-114.

Abstracts

The internal = northern zones of the Maghrebide belt includes allochthonous massifs that define, together with those from the Betics, Sicily and Calabria, a disrupted ‘Alkapeca’ terrane. In the Rif transect, taking advantage of new thermobarometric and geochronologic studies, we recognize a metamorphic complex with a mostly non-Alpine upper plate (Dorsale, Ghomarides–Malaguides), and a lower plate (Sebtides–Alpujarrides) affected by HP–LT, then HT–LP Alpine metamorphism. Some eastern Rif allochthons (Temsamane area) display MP metamorphism and could represent either Sebtide inliers or slivers from the African paleomargin. The Sebtide–Alpujarride late HT event also affects the bottom of the Ghomaride–Malaguide complex and can be related to the onset of the Alboran Sea rifting at 2522 Ma, whereas their HP event is ascribed to an earlier (3025 Ma?), north- to northeast-dipping subduction event. A review of the Algerian literature allows us to infer a similar structure and evolution for the Kabylides. The Alkapeca disruption is classically explained by back-arc extension above the retreating subduction of the Ligurian–Maghrebian oceanic lithosphere. The question of whether the latter subduction followed an earlier and opposite Alpine–Betic (Nevado-Filabride) subduction or not, remains open to discussion.

Les zones internes = septentrionales des Maghrébides comportent des massifs allochtones qui définissent, avec celles des Bétiques, de Sicile et de Calabre, un terrain « Alkapeca » démembré. Dans le transect rifain, ces Internides forment un complexe métamorphique comportant une plaque supérieure (Dorsale, Ghomarides–Malaguides), presque sans métamorphisme alpin, et une plaque inférieure (Sebtides–Alpujarrides) affectée par des événements alpins HP–BT, puis HT–BP. Ce dernier événement affecte aussi la base des Ghomarides–Malaguides et peut être rattaché au début du rifting de la mer d'Alboran, vers 25–22 Ma, tandis que le premier est attribuable à une subduction à pendage NNE vers 30–25 Ma (?). Une revue de la littérature algérienne indique qu'une structure et une évolution comparables caractérisent les Kabylides. La fragmentation d'Alkapeca est classiquement expliquée par extension arrière-arc et le retrait de la subduction océanique liguro-maghrébine. L'éventualité d'une subduction alpine-bétique (Névado-Filabrides) antérieure et de sens opposé demeure une question ouverte à la discussion.

Metadata
Received:
Accepted:
Published online:
DOI: 10.1016/j.crte.2005.11.011
Keywords: Gibraltar Arc, Mediterranean, Metamorphism, Geochronology, Alpine peridotites, Tectonics
Mot clés : Arc de Gibraltar, Méditerranée, Métamorphisme, Géochronologie, Péridotites alpines, Tectonique

André Michard 1; François Negro 1; Omar Saddiqi 2; Mohamed L. Bouybaouene 3; Ahmed Chalouan 3; Raymond Montigny 4; Bruno Goffé 1

1 Laboratoire de géologie (UMR 8145 CNRS), École normale supérieure, 24, rue Lhomond, 75231 Paris cedex 05, France
2 Laboratoire de géodynamique et thermochronologie, faculté des sciences Aïn-Chock, BP 5366, Casablanca Maarif, Maroc
3 Département de géologie, faculté des sciences, BP 1014, Rabat Agdal, Maroc
4 École et Observatoire des sciences de la Terre (UMR 7516), 5, rue Descartes, 67084 Strasbourg cedex, France
@article{CRGEOS_2006__338_1-2_92_0,
     author = {Andr\'e Michard and Fran\c{c}ois Negro and Omar Saddiqi and Mohamed L. Bouybaouene and Ahmed Chalouan and Raymond Montigny and Bruno Goff\'e},
     title = {Pressure{\textendash}temperature{\textendash}time constraints on the {Maghrebide} mountain building: evidence from the {Rif{\textendash}Betic} transect {(Morocco,} {Spain),} {Algerian} correlations, and geodynamic implications},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {92--114},
     publisher = {Elsevier},
     volume = {338},
     number = {1-2},
     year = {2006},
     doi = {10.1016/j.crte.2005.11.011},
     language = {en},
}
TY  - JOUR
AU  - André Michard
AU  - François Negro
AU  - Omar Saddiqi
AU  - Mohamed L. Bouybaouene
AU  - Ahmed Chalouan
AU  - Raymond Montigny
AU  - Bruno Goffé
TI  - Pressure–temperature–time constraints on the Maghrebide mountain building: evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications
JO  - Comptes Rendus. Géoscience
PY  - 2006
SP  - 92
EP  - 114
VL  - 338
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crte.2005.11.011
LA  - en
ID  - CRGEOS_2006__338_1-2_92_0
ER  - 
%0 Journal Article
%A André Michard
%A François Negro
%A Omar Saddiqi
%A Mohamed L. Bouybaouene
%A Ahmed Chalouan
%A Raymond Montigny
%A Bruno Goffé
%T Pressure–temperature–time constraints on the Maghrebide mountain building: evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications
%J Comptes Rendus. Géoscience
%D 2006
%P 92-114
%V 338
%N 1-2
%I Elsevier
%R 10.1016/j.crte.2005.11.011
%G en
%F CRGEOS_2006__338_1-2_92_0
André Michard; François Negro; Omar Saddiqi; Mohamed L. Bouybaouene; Ahmed Chalouan; Raymond Montigny; Bruno Goffé. Pressure–temperature–time constraints on the Maghrebide mountain building: evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus. Géoscience, Volume 338 (2006) no. 1-2, pp. 92-114. doi : 10.1016/j.crte.2005.11.011. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2005.11.011/

Version originale du texte intégral

1 Introduction

All along the Mediterranean coast, North-Africa is fringed by a young, Alpine orogenic system, i.e. the Rif–Tell belts (Fig. 1), also referred to as the Maghrebide belt [43,63,148]. This belt connects eastward with the Apennines through the Sardinia Channel [105], northern Sicily (Peloritan mountains) and the Calabrian Arc [22,43], whereas it connects to the west with the Betic Cordilleras through the Gibraltar Arc and Alboran Sea basement [35,43,64]. The Maghrebide External zones essentially consist of sedimentary material of the Jurassic–Cretaceous African margin, and escaped Alpine metamorphism, except some of their most internal units, affected by very low-grade to low-grade greenschist-facies metamorphism [56,60,89]. Likewise, the overlying Maghrebian Flyschs nappes, which are the remnants of a Neotethyan oceanic basin [47], are virtually devoid of metamorphism, except some internal ophiolite-bearing slivers [19]. By contrast, parts of the allochthonous, Maghrebide Internal zones or Kabylides of Algeria (Kabylias and equivalents) and Morocco (Northern Rif) display varied metamorphic complexes.

Fig. 1

Sketch map of the Rif belt in the frame of the West Mediterranean Alpine belts, after [43]. Empty arrows: Africa–Eurasia active convergence, NUVEL 1 model, in [109]. Framed: location of Fig. 2A, with trace of cross-section Fig. 2B. BB: Beni Bousera; R: Ronda; SN: Sierra Nevada.

Localisation des Maghrébides dans le cadre des chaînes alpines de Méditerranée occidentale, d'après [43]. Flèches vides : convergence actuelle Afrique–Eurasie, modèle NUVEL 1, in [109]. BB : Beni Bousera ; R : Ronda ; SN : Sierra Nevada.

Blueschist- and eclogite-facies rocks were observed two centuries ago in the Sierra Nevada range of Central Betics [11,15], and ascribed since years to a typical Alpine, high-pressure, low-temperature (HP–LT) metamorphism [124]. By contrast, the Maghrebide metamorphic massifs and their Betic equivalents above the Sierra Nevada and Sierra de los Filabres deep complexes (Nevado-Filabrides) have been regarded for long as fragments of an ancient continental block passively included in the Alpine belt [21,43,86]. During the late 1970s–early 1980s, a wealth of Alpine ages was measured in the higher grade units of the Betic and Maghrebide belts [97,110,117,128,139]. Structural and petrologic studies also demonstrated the occurrence of post-Triassic, HP–HT metamorphism in some of these internal massifs [3,4,110,165], and more recently, post-Triassic, HP–LT metamorphism was unravelled in large areas of the Betic and Rif belts [23,67,114,168]. However, other studies emphasized in the meantime the occurrence of Variscan metamorphism in parts of the Internide massifs [17,29], thus leading to a great complexity in the metamorphic pattern of the belt. Controversies also arose concerning the age and mode of emplacement of the large, subcontinental peridotite massifs of the Betic Cordilleras (Ronda) and Rif (Beni Bousera). They were regarded either as metamorphic slivers of lithospheric mantle [86,111,147,172,176,179], or as Miocene asthenospheric diapir(s) [97,121,131,167], or else as the result of Miocene diapirism into older lithospheric mantle [135,170].

Improving our knowledge of the metamorphic evolution (i.e. the peak PT conditions of metamorphism, and associated time dates) of the Maghrebide Internal zones can bring valuable enlightenments to the geodynamic interpretation of the belt. The Betic–Rifian Internides, referred to as the Alboran Domain [9,64], the Kabylias, Peloritan mountains, and Calabrian nappes are currently regarded as the disrupted remnants of a single orogenic complex stuck to the Iberian–Sardinian southeast margin by the end of the Eocene. However, the formation of the latter orogenic prism prior to the Late Eocene is controversial, and regarded, either as involving two successive, and opposite subduction zones [36,41,42,62,115,144], i.e. an early, southeast-dipping Alpine–Betic subduction followed by a northwest-dipping Apenninic–Maghrebide subduction, or else as related to a single, protracted, northwest-dipping Apenninic–Maghrebide–Betic subduction zone [55,84,91,150]. This also means that the pre-Eocene, palaeogeographic origin of the allochthonous continental terranes included in the Maghrebides and associated arcs is controversial, either from an isolated block within the Alpine ocean (‘two-subduction’ models), referred to as ‘Alkapeca’ [22] or ‘Mesomediterranean’ block [73,74], or from the rim of the Iberia–Sardinia margin itself (‘one subduction hypothesis’).

The present paper firstly aims at summarizing the recent advances in PT calibration and dating of the Alpine events in the Rifian transect of Maghrebides, partly based on data from unpublished thesis or most recent publications of some of the authors [23,83,123,153], and implemented by the Betic data. Second, we compare the Rifian data with those from the Kabylian transects, taken from the literature. We eventually discuss the implications of the reported PTt constraints on the Maghrebide belt mountain building in the highly complex geodynamic framework of western Mediterranean.

2 Geological setting of the Rif Internides

The Rif External domains, i.e. from south to north, the Prerif, Mesorif, and Intrarif zones (Fig. 2A) mostly consist of Mesozoic–Eocene, pre-orogenic sediments from the rifted continental margin of Africa [56], detached along Upper Triassic evaporitic redbeds and thrust towards the Atlasian–Mesetan foreland (Fig. 2B). Syntectonic turbiditic sediments accumulate from the Late Eocene onward within structural, synfolding depocentres [33,178]. The Jurassic–Lower Cretaceous low-grade metasediments of the most internal, Intrarif zone are mostly unrooted. However, in the Beni Malek massif, they stratigraphically overlie serpentinites and metabasites that likely originate from a sub-oceanic serpentinite ridge at the very tip of the continental margin [50,112].

Fig. 2

Structural map (A) and sketch crustal cross-section (B) of the Rif belt, after [33,115,162]. See Fig. 1 for location. Offshore structures after [31,49]. Geological and crustal structure onshore after [56], deep structure of the Alboran basin after [164].

Carte structurale (A) et coupe à l'échelle crustale (B) de la chaîne rifaine, d'après [33,115,162]. Localisation : Fig. 1. Structure offshore d'après [31,49], onshore d'après [56], structure profonde du bassin d'Alboran d'après [164].

Two sets of allochthonous, unrooted units widely overthrust the External, North-African material, (i) the Maghrebian Flyschs, involving several diverticulated sequences, some of them beginning with pillow basalts and Jurassic radiolarites, and the uppermost nappe mainly made up by Late Oligocene–Aquitanian coarse siliciclastic turbidites (Numidian flysch); these nappes extend from southern Apennines to Gibraltar, and record the former occurrence of the Maghrebian-Ligurian ocean north of Africa [43,81]; (ii) restricted klippes of weakly metamorphic material, i.e. the Ras Afraou, Khebaba and Melilla-Tres Forcas units of controversial origin in eastern Rif.

The Internide units (Alboran Domain, or Terrane [115]) are juxtaposed to the Flyschs nappes and Intrarif units through a thrust contact or, locally, through a wrench fault (Jebha). The Internide tectonic pile includes, from top to bottom structurally (Figs. 2A–B, 6): (i) the Dorsale Calcaire, a stack of unrooted carbonate slabs made up of Upper Triassic–Liassic platform to margin deposits, Jurassic–Cretaceous pelagic sediments, Palaeocene–Eocene variegated clays and calcarenites, and Late Eocene–Aquitanian clastics and olistostromes [45,51,52], equivalent to the Betic ‘Rondaides’; the Predorsalian sequences [45,125] and the “Tariquide” carbonate units [48], i.e. the Gibraltar Rock and its Moroccan counterpart, are transitional between the Dorsale and Flysch domains; (ii) the Ghomaride nappes, equivalent to the Malaguide ones, involving Ordovician to Lower Carboniferous metasediments followed upward by unconformable Triassic redbeds, and more locally by Liassic limestones and Palaeocene–Eocene calcarenites [29,98]; (iii) the Sebtides units, equivalent to the Alpujarrides, and involving a sequence of Permian–Triassic metasediments (Upper Sebtides) on top of continental crust material associated with ultramafics (Lower Sebtides of Beni Bousera) [23,25,86,110,153,154]. Clastic Oligo-Miocene ‘post-nappe’ deposits unconformably overlie the Ghomaride pile close to the Alboran seashore [33,57,103]. Flysch inliers (e.g., Jbel Zemzem) locally emplaced on top of the latter deposits through extensional sliding.

The Alboran basin is characterized by a thick (up-to-8-km) Neogene turbiditic infilling, overlying a thinned continental crust (15-km-thick), where Alpujarride-type rocks have been cored on structural highs [31,35,133,155]. Late-orogenic, calc-alkaline volcanism is widespread both onshore and offshore (‘Trans-Alboran province’), mostly dated to Middle–Late Miocene [79,107]. Faulting and opening of the Gibraltar strait itself only occurred during the Pliocene [43,54].

3 Internal Rif metamorphic structure and PT conditions

3.1 General

In the Rif Internides, the Dorsalian and Ghomaride Mesozoic–Cenozoic formations virtually escaped metamorphic recrystallization, and the greenschist-facies metamorphism that affects the Ordovician–Devonian formations of the Ghomaride nappes essentially results from the Variscan orogeny [29]. Only at the very bottom of the lowest Ghomaride (Aakaili) nappe, did occur Alpine chlorite and biotite growth (see Section 4.3). By contrast, the underlying Sebtide units registered strong Alpine metamorphic events. Therefore, they can be regarded as lower plate units of a metamorphic core complex, the upper plate of which consists of the Ghomarides. These lower plate units crop out in northern Rif within four antiformal structures, i.e. the large Beni Mezala and Beni Bousera antiforms, and the smaller Ceuta (Sebta) and Cabo Negro ones. Additionally, in eastern Rif, small allochthonous klippes (Ras Afraou and equivalents) can be hypothetically interpreted as Sebtide outliers.

3.2 Beni Mezala antiform

Four Upper Sebtide units have been recognized in this antiform (Fig. 3A), from top to bottom the Tizgarine, Boquete Anjera, Beni Mezala-2 and Beni Mezala-1 units (Federico units in [86]). They all exhibit the same stratigraphic succession, from bottom to top, Permo-Carboniferous metagreywackes, reddish (Tizgarine) to dark violet (Beni Mezala) phyllites derived from Permian–Triassic redbeds, Lower Triassic quartzites, and Middle–Upper Triassic dolomites. At the very bottom of the Beni Mezala-1 unit, the Benzu schists can be ascribed to the Lower Sebtides by comparison with the Filali schists (Section 3.3).

Fig. 3

Metamorphic structure and PT conditions of the main Sebtide units. A: Beni Mezala antiform, after [86]; arrows: late metamorphic shear sense indicators [153,177]. B: Beni Bousera antiform [29,86]; metamorphic zones of the Filali schists after [123]; internal structure of the Beni Bousera ultramafics after [147,154,163]; arrows: late metamorphic shear sense indicators after [147,154]. C: PT conditions calculated for the northern Federico metapelites and Benzu schists (top), and for the southern Federico (Souk-el-Had) metapelites and Filali schists (bottom), after [23].

Structure métamorphique et conditions PT des unités sebtides principales. A : Antiforme des Beni Mezala, d'après [86] ; flèches : directions de cisaillement tardi-métamorphiques [153,177]. B : Antiforme des Beni Bousera, d'après [29,86] ; zones métamorphiques des schistes du Filali d'après [123] ; structure interne des ultramafites d'après [147,154,163] ; flèches : cisaillements tardi-métamorphiques d'après [147,154]. C : Conditions PT calculées pour les métapélites du Federico septentrional et les schistes de Benzu (en haut), et pour les métapélites du Federico méridional (Souk-el-Had) et les schistes du Filali, d'après [23].

Peak PT conditions (Fig. 3C, top) have been estimated by calculation of phase equilibriums in the Permian–Triassic metapelites [23,24,174]. In the Tizgarine unit, cookeite, pyrophyllite, low-substituted phengite assemblages correspond to LT–LP conditions. In the Boquete Anjera unit, sudoite associated with magnesio-chlorite and low-substituted phengite occur in the quartz veins, whereas chloritoid is widespread in their metapelitic matrix. This corresponds to conditions of medium pressure (ca. 0.7 GPa), and low-to-medium temperature (300–380 °C). In the Beni Mezala-2 unit, magnesiocarpholite has been recognized as relics in chloritoid-quartz or kyanite-quartz veins, which is relevant to blueschist-facies conditions between 0.8 GPa, 380 °C and 1.3 GPa, 450 °C. Finally, in the Beni Mezala-1 phyllites, magnesiocarpholite relics in magnesiochloritoid-quartz veins, and talc-phengite assemblages in quartz-kyanite segregations testify to eclogite-facies conditions between 1.3–1.5 GPa, 450 °C, and 1.5–1.8 GPa, 550 °C. In the Benzu schists, the main paragenesis includes almandin–chloritoid high-Si phengite assemblages, which indicates minimum pressure conditions of ∼1.4 GPa at 550 °C during the peak of metamorphism.

The occurrence of late tremolite–talc and phlogopite–chlorite associations in Beni Mezala-1 unit points to a roughly isothermal unloading evolution down to ca. 0.8 GPa. Further exhumation under decreasing T is recorded by the growth of late paragonite, muscovite, chlorite, kaolinite, cookeite and margarite in Beni Mezala-1 and 2 units [1,68], together with epidote in the Benzu schists. Microstructural observations indicate that these retromorphic recrystallizations are coeval with the top-to-the-NNW kinematic indicators, which are widespread throughout the antiform [123,153,177].

3.3 Beni Bousera antiform

This antiform (Fig. 3B) is truncated by normal faults along its northeastern, Mediterranean side, but includes Permian–Triassic imbrications, similar to the Beni Mezala ones, along its western side. The uppermost imbrications roughly compare with the Tizgarine and Boquete Anjera units. On the contrary, the Permian metapelites of the lowest imbrication, labelled the Souk-el-Had (or South-Federico) unit, likely suffered a metamorphic climax under lower P/T gradient than its northern equivalent (Beni Mezala-1 unit), with peak conditions close to 550–600 °C and 1.2 GPa (Fig. 3C, bottom) documented by phengite–chlorite–phlogopite–kyanite associations, and late cordierite and andalusite growth [23,110].

The underlying Filali micaschists and gneisses are currently described as a single unit [53,86], although the presence of ductile low-angle normal faults is likely as in the equivalent Jubrique unit of the western Alpujarrides [10]. The uppermost Filali levels are made up of chlorite–chloritoid–muscovite ± biotite ± kyanite schists, grading downward to garnet–biotite–staurolite–kyanite schists and finally garnet–biotite–sillimanite at the transition with the gneisses (Fig. 3B). Andalusite is almost ubiquitous in the whole sequence and presents syn- to post-kinematic habits. The coexistence of the three Al-silicate polymorphs reveals the succession of a more or less complex recrystallization history. Microstructural relationships suggest that kyanite formed before (most of) the HT polymorphs [23,86]. Thus, early peak PT conditions estimated through the classical thermobarometres [23] would range from ca. 0.7 GPa, 580 °C in the garnet–staurolite–kyanite schists to ca. 0.8 GPa, 680 °C in the sillimanite–biotite schists and finally to ca. 0.8 GPa, 780 °C in the gneiss, being followed by roughly isothermal, then cooling decompression paths (Fig. 3C, bottom).

A major pressure gap occurs between the Filali gneisses and the underlying Beni Bousera unit, which includes granulite (‘kinzigites’) slivers on top of the ultramafics. The garnet–sillimanite ± kyanite–graphite–bearing granulite yielded peak PT conditions in the range 0.9–1.3 GPa, 800–850 °C [53,86]. However, a lensoid inclusion of metabasic granulites yielded a primary assemblage of pyrope-rich garnet, jadeite-rich pyroxene (Cpx I), kyanite, rutile, plagioclase, quartz, indicating peak PT conditions at 1.6–2.0 GPa, 760–820 °C (Ichendirene HP–granulite, [25]). Sapphirine–plagioclase symplectites after kyanite, and Cpx II-Opx-amphibole-plagioclase symplectites after garnet and Cpx-I point to a nearly isothermal early exhumation down to ca. 1.0 GPa, 700 °C.

Besides a thin serpentinite envelope (Fig. 3B), the upper part of the ultramafics is characterized by lensoid bodies of mylonitic, garnet–spinel-bearing peridotites, followed downward by foliated spinel-bearing harzburgites, then banded and foliated spinel–lherzolites [147,163]. The estimated PT conditions for the garnet-bearing mylonitic peridotites of Beni Bousera and their Betic equivalents at Ronda [172] are close to 1.8–2.0 GPa, 850–900 °C. Much higher temperatures and pressures are recorded within the ultramafic body itself, where corundum–garnet-bearing pyroxenites equilibrated at >20 GPa, 1200–1350 °C [87], whereas graphite pseudomorphs after diamond points to early pressures as high as 4.5 GPa [37].

The stretching lineations in the Souk-el-Had Permian phyllites, Filali schists and in the upper part of the underlying peridotites trend to the northwest, with top-to-the-north kinematic indicators coeval with the late andalusite growth during the exhumation tectonics [147,154]. A swarm of ENE- to east-trending dykes of cordierite–andalusite-bearing, anatectic leucogranite emplaced in the Beni Bousera unit during the same tectonic phase. A further stage corresponds to the juxtaposition of the Ghomaride upper plate units on top of the Sebtide antiforms through a ductile–brittle low-angle normal fault (Zaouia Fault [29,30]), which obliquely truncates the Permian–Mesozoic imbrications and upper Filali schists (see Section 4.3).

3.4 Minor Sebtide antiforms

From Beni Bousera to Cabo Negro, then to Ceuta (Figs. 2 and 5), the Sebtide antiforms along the coast display deeper and deeper levels of the metamorphic pile beneath the lowest Ghomaride, Aakaili nappe. This likely results from the same, major extensional fault than already observed on top of the Beni Bousera Sebtide units, i.e. the Zaouia Fault. The Cabo Negro antiform is essentially made up of schists similar to the ones of the deeper levels of the Filali unit. They are intensely affected by extensional shear zones. The Ceuta (Sebta) antiform shows two juxtaposed units, i.e., from top to bottom, a thinned equivalent of the Beni Bousera unit, with an upper, granulite (kinzigite) sliver over serpentinized peridotites, and a still deeper unit, made up of the Monte Hacho sillimanite-cordierite-bearing orthogneisses and marbles [86]. Top-to-the-north kinematic indicators are widespread in Hacho [153]. The latter unit is strictly equivalent with the Ojen unit of the Betic Cordilleras, at the bottom of the Ronda peridotites [10,169], which yielded eclogite-facies relics [168].

Fig. 5

Isotopic datings of the Sebtide and Ghomaride units. Main map: KAr results, R. Montigny, analyst (wmm: white mica mixtures; bi: biotite), except SH date, S. Huon, in [111]. Asterisks indicate samples also dated by 40Ar–39Ar (Fig. 6). Inset: Beni Bousera multimethod datings. References: a: [90]; b: [14]; c: [156]; d: [121]; e: [138]; f: [134]. Mo (arm)/(interst.): monazite, armoured/interstitial.

Âges isotopiques obtenus dans les Sebtides et les Ghomarides. Carte principale : mesures KAr, analyste R. Montigny (wmm : mixtures de micas blancs ; bi : biotite), excepté SH : mesure de S. Huon, in [111]. Astérisques : échantillons datés par 40Ar–39Ar (Fig. 6). En cartouche : datations multiméthodes dans l'unité Beni Bousera. Mo arm/interst : monazite blindée/interstitielle.

3.5 Eastern Rif metamorphic allochthons

Three metasedimentary allochthonous units of controversial origin occur in the Temsamane area of eastern Mesorif, namely the Ras Afraou, Khebaba and Melilla-Tres Forcas allochthons (Fig. 4). An internal origin was suggested by Suter [162], based on their lithological characters which evoke that of the upper Federico units. Likewise, García-Dueñas et al. [65] describe in the Tres-Forcas allochthon the association of an upper, Ghomaride-type unit over a Sebtide-type unit with basal serpentinites. New petrographic studies [123] support the hypothesis of Internide outliers as these units display chloritoid-phengite-quartz assemblages which point to PT conditions around 0.6–0.8 GPa, 350–400 °C, similar to that of the Boquete Anjera unit. Additionally, 40Ar–39Ar dating on phengite suggests a minimum age of 20–23 Ma for the MP–LT episode [123], which also compares with that of the Federico units (see below). However, an origin from the distal part of the African paleomargin can be also hypothesized, as advocated by Frizon de Lamotte [60]. This alternative interpretation is consistent with (i) the lack of the expected Flysch slivers at the bottom of the metasedimentary allochthons, (ii) the occurrence of a minor ENE-trending suture zone within the eastern Rif external domain, documented by the Beni Malek serpentinites and greenschists close to the major Nekor fault [112], and the strong synmetamorphic deformation of the enclosing Ketama and northern Temsamane units, and (iii) the Late Oligocene–Early Miocene onset of the latter, oblique collisional deformation [33,60].

Fig. 4

The metamorphic allochthons of the Temsamane region of eastern Rif: a sketch structural map, after [61,112,162]. Location: see Fig. 2.

Les lambeaux allochtones métamorphiques du Rif oriental (Temsamane) : carte structurale schématique d'après [61,112,162].

4 Dating the Sebtide–Alpujarride metamorphism

In this section, we first report on the stratigraphic and radiochronologic data from the Sebtide complex and overlying Ghomaride nappes. Additionally, we summarize the geochronologic dates obtained from the Alpujarrides, which usefully implement the Rifian dates.

4.1 Stratigraphic data

The oldest sediments that unconformably overlie the Rifian Internides, namely the Fnideq and Sidi Abdeslam Formations [33,57], are dated from the Late Oligocene–Aquitanian (23–20 Ma). These ‘post-nappe’ sediments were deposited onto the unmetamorphosed upper Ghomaride nappes, which means that cooling of the deeper, Sebtide metamorphic rocks may have lagged for some time after 23–20 Ma.

In western Betics, the Alozaina Formation above the Malaguide units is coeval with the Fnideq Formation [46]. Both these Aquitanian formations only contain pebbles from the Ghomaride–Malaguide and Dorsale units. By contrast, metamorphic pebbles from the Alpujarride units, and HP–LT minerals are observed in the Burdigalian deposits (20–16 Ma) of both the western and eastern Betics [46,94]. The gneissic pebbles found in the Fnideq-Alozaina (Viñuela) Formations [103] likely originate, together with the associated granite pebbles, from an uplifted Variscan domain similar to the Kabylian upper plate units (see Section 5). Therefore, the Sebtides–Alpujarrides units reached the surface at some time between 20 and 16 Ma.

4.2 Isotopic dating of the Sebtide rocks

Multimethod datings are now available in the Beni Bousera antiform (Fig. 5A–B). In the Filali schists, we obtained concordant K/Ar biotite ages comprised between 20.5±0.8 and 21.3±0.8 Ma, with a mean value at 20.9±0.8 Ma. This is concordant with previous, KAr biotite and muscovite ages of 20.2±0.6 and 20.7±0.6 Ma, respectively [97]. In the Beni Bousera granulitic envelope, we measured (R. Montigny, in [29,110,111]) KAr biotite ages ranging from 19.8±0.8 to 24.6±0.9 Ma, with a mean value of 21±0.8 Ma, and a 40Ar–39Ar plateau age of 22.5±0.5 Ma. Consistently, a late leucogranite dyke crosscutting the lherzolite perpendicular to the dominant stretching direction yielded a whole-rock RbSr isochron age of 18.3±1 Ma [138].

Isotopic systems with high closure temperatures were also used in the Beni Bousera unit (Fig. 5B). SmNd ages were measured from garnet-whole rock pyroxenite at 19.2±5.6 Ma [138], and from clinopyroxene-garnet pairs at 20.1±6.9 and 23.0±7.3 Ma [90], and 23.6±4.3 Ma [14], giving a mean age of 21.5±6 Ma. Blichert-Toft et al. [14] also measured a Lu–Hf mean age of 25.0±0.9 Ma on four samples from garnet pyroxene layers embedded in the peridotites, whereas a similar layer intercalated in the granulitic envelope yielded an age of 30.6±3 Ma, and a granulite sample a discordant age of 66.4±1.5. SHRIMP dating of zircon cores from the granulite-facies rocks yielded a preserved Variscan age, 297±17 Ma [156], whereas Platt et al. [134] obtained a 22.7±0.3 Ma on a zircon rim from the same rocks. Additionally, UThPb dating of monazite grains [121] yielded different ages according to the location of the grains in the granulite, i.e. a mean age of 294 Ma±29 Ma in nine grains perfectly included in garnet blasts, and variably reset ages between 170–30 Ma in the interstitial crystals.

The relatively cold, Upper Sebtide units of the Beni Mezala antiform yielded K/Ar [153] and 40Ar–39Ar ages (Fig. 5A) slightly older than that of the Souk-el-Had and Filali unit. In the Beni Mezala-2 unit, retromorphic white mica-clay mixtures yielded K/Ar results at 23.0±0.6 and 23.1±0.8 Ma, and a 40Ar–39Ar plateau age of 22.0±0.4 Ma. In the Beni Mezala-1 unit, we measured from similar mica mixtures K–Ar ages of 20.9±0.8, 22.7±0.6, 23.7±0.6, and 27.4±0.6 Ma (mean age: 23.7±0.6 Ma), and an integrated 40Ar–39Ar age of 28.5±0.4 Ma. The high-temperature Ar release of the reported 40Ar–39Ar analyses (Fig. 6) could result from inherited Ar content in the white mica from these metapelites or either reflect a higher pressure event. Additionally, ThPb and UPb ionic microprobe dating of retrograde monazite grains from the Beni Mezala-2 unit yielded mean ages of 21.3±1.7 and 20.9±2.1 Ma, respectively, consistent with the KAr and 40Ar–39Ar data [83].

Fig. 6

40Ar–39Ar analyses from the Beni Bousera kinzigites (A) and Beni Mezala phyllites (B). Analyst : R. Montigny. Localization of samples: see in Fig. 5.

Analyses 40Ar–39Ar de kinzigites de Beni Bousera (A) et de micas blancs des unités Beni Mezala (B). Analyste : R. Montigny. Localisation des échantillons : voir Fig. 5.

4.3 Alpine heating and resetting of the K/Ar chronometer in the Ghomarides

Within the lowermost, and thicker Ghomaride nappe (Aakaili), the K/Ar white mica ages increase with the distance to the Ghomaride–Sebtide contact (Zaouia Fault, Fig. 5A), from 25.3±0.9 Ma close to the contact to 183±6 Ma at Ras Mazari, 24 km northwest of Zaouia, i.e. ca. 2 km vertically above the Zaouia Fault [29]. In the Palaeozoic metapelites of the higher, Beni Hozmar nappe, the white mica fraction <2 μm yielded an age of 259±5 Ma (S. Huon, unpublished data in [111]). This age distribution suggests that the measured ages essentially result from downward increasing resetting of the Variscan micas in relation to increasing T, up to T>350400 °C (closure temperature of white micas) close to the Zaouia fault, about 25 Myr ago [29,33]. New measurements of peak metamorphic temperatures in the Ghomaride rocks and underlying Sebtides by the Raman spectroscopy of carbonaceous material strongly support this interpretation. This study shows that the very base of the Aakaili nappe registered T close to 500 °C, i.e. about that of the upper Filali schists, and that the temperature decreases down to 330 °C in the uppermost levels [123].

4.4 Alpujarride dates and summary

Mica (biotite and muscovite) and amphibole KAr, 40Ar–39Ar, and RbSr ages from the western and central Alpujarride high-grade units display a striking convergence in the range 19–20 Ma, which suggest rapid cooling down to ca. 300 °C at that time [118,120,139,181]. Likewise, Sosson et al. [159] obtained 40Ar–39Ar laser-probe ages between 19 and 20 Ma on biotite and muscovite from high-grade gneisses of the Ojen nappe (at the bottom of the Ronda peridotites). The same result was also reported by Platt et al. [133] from 40Ar–39Ar isochrons yielded by muscovites and biotites from the Alboran Sea basement at ODP site 976, 50 km south of Malaga.

High-retentivity systems from the high-grade Alpujarride gneisses yielded both Alpine and pre-Alpine ages, consistent with the Sebtide results. A SmNd garnet-whole rock isochron age of 235.1±1.7 Ma was measured by Argles et al. [6], and interpreted as reflecting crustal extension during the Pangaea break-up. UPb SHRIMP dating of zircon yielded Hercynian ages in the Torrox gneiss (equivalent to the Monte Hacho gneiss), 285±5 Ma [180], and in the granulitic envelope of the Ronda peridotites, 313±5 Ma [156]. Studied by the same method, the inherited zircons from the garnet pyroxenites of the Ronda massif record a protracted mantle uplift evolution, referable to the Tethyan extension, from Early Permian (286±5 Ma) to Early–Middle Jurassic (178±6 Ma), to Cretaceous (143±16 Ma, 131±3 Ma) times [156,157]. However, the rim of the studied zircons yielded recent Alpine ages, 19.9±1.7 Ma in the Ojen eclogite [157], 21.2±0.7 and 19.3±0.3 Ma in the gneisses on top of the Ronda peridotites [132]. Likewise, SmNd isochrons at 22 ±2 Ma were obtained on Cpx–Grt pairs from Ronda pyroxenites, and referred to mineral pairs isotopically equilibrated during the Alpine metamorphism [145,146]. Therefore, in the Alpujarride and Sebtide high-grade units, similar dates ranging between 22–19 Ma are obtained from systems with a wide diversity of closure temperatures. This shows that the Sebtide–Alpujarride complex cooled down quickly during the Latest Oligocene–Early Miocene [120,132,135,157,181].

The age of the pressure peak have been tracked through 40Ar–39Ar dating of HP–LT phengites from low-grade, relatively cold Alpujarride units. Monié et al. [118] obtained a plateau age of 24.8±0.4 Ma on Si-rich phengite from a carpholite-bearing unit overlying the Sierra Nevada complexes east of Granada, and interpreted this result as the crystallization age of a late HP–LT phase, i.e. a minimum age for the peak of HP–LT metamorphism. This fairly compares with the KAr and 40Ar–39Ar ages reported above from the Beni Mezala HP–LT units (e.g., 23.7, 27.4, 28.5±0.4/0.6 Ma). Ultimately, Platt et al. [136] obtained 40Ar–39Ar ages scattered between 47.8±0.7 and 20.8±0.3 Ma from low-grade, eastern Alpujarride units. These authors interpret the oldest ages, ca. 48 Ma, as the timing of the peak pressure, whereas the ages between 40 and 30 Ma would record the interplay between growth and early cooling of the fine-grained micas. The 48-Ma date could admittedly represent an Early Eocene thickening stage, at least in the eastern Betics. However, in view of the bias of the 40Ar–39Ar method in dating HP–LT polyphase mica grains (e.g., [7,38]), we assume that the oldest dates may be suspected to record the occurrence of excess Ar, and therefore we retain a conservative estimate of the timing of the pressure peak, relatively close to the timing of the temperature peak, i.e. between 25 and 30 Ma.

5 The Kabylides

In this section, we review the published, structural and PTt data about the Kabylias and other North Algerian metamorphic massifs, and infer their fundamental similarity with the Rif Internides.

5.1 General

In Algeria, the Maghrebide Internides crop out in the Greater and Lesser Kabylia massifs, and in the smaller, Algiers and Chenoua massifs (Fig. 7). The position of these internal massifs within the Tell belt s.l. compares with that described in the Rif segment. In Lesser Kabylia (Fig. 8A), the Beni Touffout tectonic window shows that the crystalline massif is widely thrust over the Maghrebian Flyschs and the underlying External Domain. The Dorsale Calcaire units are stacked at the front of the crystalline massifs. In Greater Kabylia, the Maghrebian Flyschs also occur as large gravitary inliers (major equivalent to the Rifian Jebel Zemzem) on top of the Oligo-Miocene ‘post-nappe’ deposits that overlie the crystalline units [2]. The position of the easternmost Edough massif is controversial, as it was regarded alternatively as an internal or external massif (see Section 5.4). All along the Mediterranean coast, the nappe stack is intruded by calc-alkaline granites dated at ca. 16 Ma [107,127], and overlain by Langhian–Serravallian post-orogenic basins [2].

Fig. 7

Sketch map of the Algerian Maghrebides showing the extension of the Kabylides, after [152], modified (see Fig. 1 for location). Abbreviations: T: Tizi Ouzou; VN: Voile-Noire.

Carte schématique des Maghrébides algériennes montrant l'extension des Kabylides, d'après [152], modifié (localisation sur la Fig. 1). Abréviations : T : Tizi Ouzou ; VN : Voile-Noire.

Fig. 8

Cross-sections of the Kabylides (location: Fig. 7), and isotopic age data. A: Lesser Kabylia, after [99]. B: Greater Kabylia, after [152], with plot of the main multimethod isotopic dates after the literature (see text). Framed ages: UPb zircon: ellipses; RbSr: lozenges; 40Ar39Ar: squares.

Coupes des Kabylides (localisation sur la Fig. 7) et âges isotopiques. A : Petite Kabylie, d'après [99] ; B : Grande Kabylie, d'après [152], avec indication des principaux âges isotopiques d'après la littérature (voir texte). Zircon UPb : ellipses ; RbSr : losanges ; 40Ar39Ar : carrés.

5.2 The Kabylias: structure and P–T data

The Lesser Kabylia continental allochthon includes two major units, i.e. the Lower Unit (Beni Ferguen nappe, [18]), which displays the higher-grade metamorphism, and the Upper Unit, with lower grade, and partly fossiliferous rocks. Likewise, Greater Kabylia is divided into a low-grade Upper Unit and a high-grade Lower Unit, the intervening contact being interpreted as a major detachment fault, labelled the Kabylian Detachment Fault (KDF) [152]. In the following, these major Kabylian units are referred to as the Upper and Lower Plates.

On top of the Kabylian Upper Plate, a well-dated Cambrian to Carboniferous sequence [12,20] is locally preserved beneath the Oligo-Miocene onlap. A Late Devonian (Eovariscan) phase is responsible for the greenschist-facies metamorphism of the pre-Carboniferous layers, whereas a Late Carboniferous (Hercynian) phase is responsible for the folding of the unconformable, Lower Carboniferous deposits. In the Chenoua massif, similar Devonian–Carboniferous terranes are unconformably overlain by Triassic redbeds [93]. Therefore, the uppermost crustal sequence of the Kabylian Upper Plate compares with the Ghomaride–Malaguide one. However, contrary to the latter, the Kabylian Upper Plate also involves a thick Phyllite sequence, at the bottom of the unconformable Cambrian conglomeratic layers [12]. Moreover, in Lesser Kabylia, the Upper Plate includes peraluminous granites emplaced at 270–280 Ma [130], and low-pressure metapelitic assemblages (garnet, biotite, cordierite, sillimanite) associated with their emplacement [99].

The Lesser Kabylia Lower Plate includes an upper subunit, made up of ortho- and paragneisses, and a lower subunit, which essentially consists of mica-rich graphitic schists with accessory calc-silicate layers, amphibolites and orthogneisses (Fig. 8A). Mahjoub et al. [99] recognize an early HT–LP mineral association quartz-muscovite-biotite 1-garnet 1-plagioclase ± post-kinematic andalusite (M1), followed by a higher pressure assemblage (M2) with more magnesian biotite 2 and garnet 2, kyanite (formed at the expense of andalusite), staurolite and rutile. M1 can be ascribed to a late Hercynian event, whereas the M2 event would correspond to an early Alpine thickening event (see below). The Greater Kabylia Lower Plate exposes a ca. 8-km-thick metamorphic pile that includes [152], from top to bottom, (i) micaschists with marbles, metarhyolites, amphibolites and metagabbros; (ii) orthogneisses derived from igneous bodies intruded within the micaschists (metamorphic contacts with chiastolite and cordierite); (iii) sillimanite-bearing, anatectic paragneisses; (iv) marbles, up to 1-km-thick, with HT minerals such as forsterite, diopside and phlogopite; and finally, (v) a deep unit of orthogneisses. The metamorphic rocks are locally crosscut by granites and pegmatites. In the case of the Sidi Ali Bou Nab granite of North Greater Kabylia, the pelitic hornfelses on top of the granite display HT–LP assemblages (biotite, chiastolite, cordierite or sillimanite), whereas in a mylonitic shear zone at the bottom of the granite (Fig. 8B), synkinematic kyanite and garnet replace the LP minerals.

Last but not least, it is worth noting the occurrence, in Lesser Kabylia, of a large peridotite massif, belonging to the polymetamorphic Lower Plate, but completely surrounded by the Cap Bougaroun Miocene granite. The ultramafic massif is quite similar to the Beni Bousera one, and mainly consists of foliated spinel-lherzolite with secondary overgrowth of plagioclase around spinel grains, and includes pyroxenite layers [19]. The ultramafics are associated with some granulites (‘kinzigites’) and calc-silicate layers.

5.3 Dating the Kabylian metamorphism

As reported above, Eovariscan metamorphism occurred in the Upper Plate, followed by Variscan granite emplacement and associated metamorphism. Consistently, 40Ar–39Ar plateau ages of 314 Ma on white mica, and 295 Ma on green biotite were measured in the (Late Proterozoic–Early Cambrian?) phyllite sequence [117]. By contrast, varied ages, ancient as well as recent, have been measured during the last couple of decades in the Greater Kabylia Lower Plate and Algiers massifs, which fueled warm controversies [17,117,128,129]. These ages (Fig. 8B) can be interpreted, even in the absence of Permian–Mesozoic formations, in the frame of a polymetamorphic, pre-Alpine and Alpine evolution of the deep Kabylian crust.

Panafrican UPb zircon conventional ages have been measured from the deepest orthogneisses of Greater Kabylia, i.e. 510 and 514 Ma [17]. Variscan ages were obtained by the same method from the Sidi Ali Bou Nab granite, 284±3 Ma (J.-J. Peucat, unpublished results, quoted in [152]), and from the associated mylonitic shear zone, 273±6 Ma [129]. The muscovite and muscovite-K felspar pair from Sidi Ali Bou Nab metapegmatites also yielded RbSr ages of 250 and 258 Ma, respectively [129], thus confirming a Variscan emplacement of the granite, and of its early deformation. These ages contrast with 40Ar–39Ar plateau ages of 25–26 Ma obtained on muscovite and biotite from the mylonitic kyanite–sillimanite-bearing gneisses beneath the granite [117]. In fact, the scatter of the 40Ar–39Ar results from the Tellian Internides compares with that observed in the Sebtide–Alpujarride units, as it ranges from 126 Ma to 25 Ma [117], or from 214 Ma to 40 Ma in a small area of East Greater Kabylia [34]. Moreover, frequent sigmoidal shape or saddle shaped depressions of the 40Ar–39Ar release spectra attest either to the incomplete resetting of presumably Variscan micas [117], or to the occasional incorporation of excess argon. Therefore, we consider that the hypotheses of high-temperature tectono-metamorphic events at 80 Ma [117,152] or 128 Ma [34] are not adequately demonstrated by the available isotopic data yet. We rather suggest that the Tellian Internides were affected by about the same 25–30-Myr-old metamorphic event than the Sebtide–Alpujarride units.

5.4 The Edough massif

In this dome-shaped massif, two stacked tectonic–metamorphic complexes are shown, separated from each other by a major detachment fault [26]. The lower complex, referred to as the Edough Lower Plate hereafter, mainly consists, from bottom to top, of migmatitic paragneisses and orthogneisses with kyanite–sillimanite–andalusite-bearing micaschists and marbles (‘Lower Unit’ in [66,119]), followed upward again by aluminous, andalusite–sillimanite-rich micaschists intruded by a meta-leucogranite in the northern part of the massif (‘Upper Unit’ in [66,119]), whereas they are free of such an intrusion and of andalusite–sillimanite minerals south of the massif, where they display staurotide–kyanite–garnet–rutile-bearing assemblages [26]. This Lower Plate also includes peridotites and metabasites, in a small outcrop within (below?) the migmatitic gneisses [16], on the one hand, and in the Voile Noire sliver on the other hand [27,119]. The ultrabasites are serpentinized harzburgitic tectonites associated with retromorphic eclogites and (Voile Noire sliver) ‘kinzigites’, similar to that of the Lesser Kabylia and Sebtide–Alpujarride units. The Voile Noire sliver shows granulite-facies assemblages, whereas the (overlying) micaschists units record peak PT conditions close to 1.2–1.4 GPa, 550–600 °C [27]. Remarkably, some quartzitic layers (metaphtanites) interleaved within the metapelitic schists north of Annaba yielded some Acritarchs fossils dating the protoliths from the Ordovician–Devonian [82].

By contrast, the Edough Upper Plate is mainly made up of low-grade greenschist-facies phyllites with Triassic (?) marbles, locally overlain through a calc-mylonite level by very-low-grade, fossiliferous Jurassic marbles and Cretaceous calcschists and turbidites [26]. The peak PT conditions here do not exceed 0.3–0.4 GPa, 350–400 °C, which suggests an important extensional movement between the upper and lower plates [26,27]. This movement occurred top-to-the-NW, as indicated by the widespread, late metamorphic kinematic indicators observed from the migmatites to the micaschists, to the Mesozoic meta-sediments themselves [26,66].

As for the isotopic datings, they yielded contrasted ages, according to the method used and/or to the sampled unit. UPb dating of idioblastic zircon separates, one from the gneiss dome and the other one from the overlying micaschists, yielded ages of 595±51 and 606±55 Ma, at the Concordia upper intercept, and 43±25 and 64±30 Ma at the lower intercept, respectively [77]. This suggests the occurrence of a Panafrican crust, affected by a Tertiary thermal event. SmNd garnet-whole rock pairs from the aluminous micaschists yielded an Hercynian age, 285±27 Ma, whereas recent ages, 22±4 and 20±2, were obtained from the gneiss dome. Likewise, plateau ages of 24.6±1.4 and 26.5±1.3 Ma were obtained on amphiboles from the retromorphic eclogites beneath the gneiss dome, whereas the micas from the gneisses and micaschists yielded plateau ages grouped around 16–17 Ma [119].

To conclude this section, we should emphasise the striking similarities between the Edough and Kabylian lithologies (both crustal and mantellic), metamorphic structure (upper and lower plate separated by a detachment), PT conditions (up to granulitic and/or eclogitic in the lower plate), and isotopic ages (Precambrian relics, strong Variscan imprints, and Late Oligocene–Aquitanian dates). This seems in contradiction with the alleged external position of the Edough massif [175], and with its origin from the African margin instead of the Alkapeca terrane [27]. We observe that, (i) the Numidian flysch directly overlies the external Cretaceous series northwest of the massif, which suggests that the poorly exposed contact of the flysch nappe over the boundary of the crystalline massif is an out-of-sequence fault; (ii) the low-grade Mesozoic sediments of the Upper Plate are either of Dorsalian–Predorsalian origin (i.e. internal), or more probably backthrust from the Tellian (external) domain; and (iii) the Numidian klippe observed on top of the Upper Plate units also emplaced through back-sliding from a more external position during the Early Miocene, as it occurred in the Kabylias [2,43] and Rif [33]. If correct, the Edough massif actually belongs to the Tellian Internides, as early assumed by Hilly [80], and more recently by Mahjoub et al. [99].

6 Discussion and conclusion

6.1 The Maghrebide Internides: a disrupted, extensional metamorphic complex

The Maghrebide Internides display a remarkably constant metamorphic structure involving an upper plate, virtually unaffected by Alpine recrystallizations except at its very base (Section 4.3), and a lower plate that generally consists of normally ordered, low- to high-grade units. Both plates are separated from each other by major detachments, i.e. the Zaouia Fault (Section 3.3) and Kabylian Detachment Fault (Sections 5.2, 5.4), which operated during the Latest Oligocene to Middle Miocene times as their Betic equivalents [8,64,95,104,126]. The upper plate includes Late Proterozoic (Kabylias)-Palaeozoic metasediments affected by Eovariscan HT–LP metamorphism, then deformed again and intruded by calc-alkaline granites during the Variscan orogeny (Kabylias). On top of the plate, or detached at its front in the Dorsale Calcaire, Triassic–Eocene sediments occur, followed by synorogenic clastics and olistostromes of Oligo-Miocene age. The lower plate includes Permian–Triassic metasediments (at least in the Sebtide–Alpujarride units), and a polymetamorphic continental material locally associated with infracontinental mantle units and granulite slivers (Beni Bousera-Ronda, Cape Bougaroun, Edough). The deepest gneisses from Greater Kabylia and Edough yielded UPb Panafrican ages, whereas UPb and SmNd Variscan dates were obtained from granulites (Beni Bousera), granites and mylonites (Greater Kabylia) and micaschists (Edough). Alpine metamorphism evolves from HP–LT gradients, still recorded in the lower-grade metasediments of northern Rif, to intermediate pressure gradients recorded in the higher-grade schists of northern Rif and Kabylias, to HT–LP gradients superimposed to the previous ones during decompression. Alpine peak PT conditions correspond to that of the eclogite facies, ∼1.6 GPa, 550–600 °C (Sections 3.2, 3.3), and likely occurred at about 30–25 Ma (Sections 3.4, 4.4, 5.3). Rapid cooling from 600 °C, or ∼700 °C in the deepest units, to ca. 300 °C occurred between 22–20 Ma.

6.2 Interpretation: competing models and unsolved questions

The Betic–Maghrebide orogen was interpreted either as (i) a collisional orogen, unrelated to any subduction zone [121,131,171], or (ii) an orogen related to a northwest-dipping subduction zone extending from Gibraltar to the Apennines, and operating from the Late Cretaceous onward [5,8,84,91,96,161,179]; or else, (iii) an orogen involving two subduction zones, i.e. a Late Cretaceous–Eocene, southeast-dipping Alpine-Betic subduction, and an Oligocene-Neogene, northwest-dipping Apenninic–Maghrebide subduction [32,36,41,42,62,73,74,115,144,182]. Dercourt et al. [40] assume that two subduction zones operated east of Corsica and Calabria, while only one north-dipping subduction would have operated along the southern margin of a Kabylia–Alboran block. Maldonado et al. [101] retain the occurrence of two opposite subductions dipping beneath the Alboran Domain, but assume that the youngest ‘subduction’ only concerned the delaminated, lower African lithosphere. Only the subduction-related models can account for the occurrence of blueschist- and eclogite-facies metamorphism reported above from the Maghrebide lower plate units (Beni Mezala; Section 3.1), and from the underlying complexes to the west, i.e. the upper Nevado-Filabride complex of central–eastern Betics [8,69,141–143,166], and to the east, i.e. in the ophiolite-bearing units of Calabria (see [150], with references therein).

The ‘one-subduction’ and ‘two-subduction’ competing models differ in the palaeogeographic interpretation of the Maghrebian, Betic and Peloritan-Calabrian continental terranes, which they ascribe either to the Iberian paleomargin (Fig. 9A–D), or to an Alkapeca (Mesomediterranean) intra-oceanic continental plateau (Fig. 9E–H), respectively. In support of the latter hypothesis, Michard [111,115] and Chalouan and Michard [32] emphasize that (i) the Triassic–Liassic sequences of the Ghomaride-Malaguide and Dorsale nappes strongly contrast with that of Morocco, southern Iberia, Sardinia, Corsica, and Briançonnais, and, on the contrary, compare with that of southern Apulia, Tuscany and Austroalpine areas, and (ii) the Eovariscan–Variscan evolution of the Alkapeca basement resembles that of eastern Morocco and Adria, rather than of southern Sardinia and eastern Iberia [29]. In particular, it is worth noting that the Sardic phase, responsible for tectometamorphic and magmatic events at ca. 450 Ma in Corsica–Sardinia [78,92] and the Briançonnais basement of Western Alps [13,75] is not known in the Alkapeca terranes. By contrast, the southern Calabria basement allochthon exposes a tilted cross-section of the Variscan continental crust, which demonstrates striking similarities with that of the Ivrea Zone of the Alps [71,72]. Therefore, Alkapeca could be a larger equivalent of the Sesia–Dent Blanche block of western Alps, drifted away from the Adriatic margin (lower plate of the asymmetric Tethyan rift) during the Jurassic [102]. Such an origin is consistent with the occurrence of granulites and peridotites in the basement of the Sesia and Ivrea zones in the Alps, and in the Alkapeca-derived blocks, while they are lacking in the Briançonnais-Dora Maira units of European (upper plate) origin [113]. Consistently, UPb high-resolution datings of zircon at 183–131 Ma in the Ronda ultramafics point to their early exhumation being related to the Pangea break-up [156], coeval with the Ivrea ultramafic uplift [158,161].

Fig. 9

Alternative scenarios for the geodynamic setting of the Maghrebide belt from Early Cretaceous to Early–Middle Miocene. Left (AD): two interpretations of the ‘one-subduction model’ (stage A: after [161]; stages BD: after [91]). Right (E, H): the ‘two-subduction model’, after [115]. In stage F, the hypothesis of an early development of the Apenninic subduction south of Alkapeca is shown after [41]. See text for discussion.

Scénarios alternatifs interprétant le cadre géodynamique de la chaîne des Maghrébides du Crétacé inférieur au Miocène inférieur–moyen. À gauche (AD) : deux variantes du modèle à une seule subduction (stade A d'après [161] ; stades BD d'après [91]). À droite (E, H) : modèle à deux subductions, d'après [115]. Au stade F, l'hypothèse d'un développement précoce de la subduction apenninique au bord sud d'Alkapeca est tirée de [41]. Voir discussion dans le texte.

The ‘one-subduction’ model implies a subduction flip changing the southeast-dipping Alpine subduction into a northwest-dipping Apenninic subduction, either between the Ligurian Alps and Corsica [140], or south of Corsica (Fig. 9A, B). However, Lacombe and Jolivet [91] assume that two opposite subductions (Alpine, then Apenninic) operated successively on the Corsica transect (Fig. 9B, C) with a single, Apenninic = Ligurian–Maghrebian subduction prevailing more to the southwest. As far as Corsica is concerned, this is consistent with the structural and metamorphic homologies between Ligurian Alps and eastern Corsica [44,100], and with the deep seismic data across the north-Tyrrhenian–Adriatic profile [59]. But, once admitted that two subductions have operated successively in the Corsica–northern Apennine transect, there is no definitive reason to discard the hypothesis of the Alpine subduction going on southwest-ward up to the Azores–Gibraltar plate boundary. In that case, the Alpine (or Alpine–Betic) subduction would be responsible for the consumption of an Alpine–Betic oceanic gateway west of the Alkapeca plateau (Fig. 9F), and for the Nevado-Filabrides HP–LT metamorphism, whereas the Apenninic-Maghrebide subduction would account for the closure of the Maghrebian ocean, and for the high- to intermediate-pressure metamorphism of the Alpujarrides–Maghrebides. Dèzes et al. [41] suggest that the Apenninic subduction could have been initiated as early as the Late Palaeocene (Fig. 9F, dashed line). Indeed, the age constraints reported above from the Alpujarrides–Maghrebides suggest peak PT conditions around 30–25 Ma. The dates obtained from the Apennines and Calabria [85,150] also suggest a Late Oligocene HP–LT event, consistent with the age of the Apenninic subduction as inferred from the associated back-arc extension [62,96,106,144,151,173] (Fig. 9G and H). On the other hand, the available isotopic datings from the meta-ophiolite-bearing, upper Nevado-Filabride complex (Mulhacen Complex, [142]) include 39Ar/40Ar ages scattered between 90–15 Ma [38,39,118], and SmNd ages of 91±21 Ma and 62±11 Ma [142]. Augier et al. [8] infer from in situ laser 39Ar/40Ar dating on phengite that the peak of pressure should be around 30 Ma or older. These various data suggest, although ambiguously, an early, Late Cretaceous?–Eocene HP–LT evolution overprinted by the regional Early Miocene event. If correct, the Apenninic-Maghrebide subduction would postdate the Alpine–Betic subduction up to the Betic–Maghrebide transect. Remarkably, and following the proposal of Doglioni et al. [42], the Oligocene–Neogene subduction would continue southwestward the backthrust zone that formed in the western Alps during the collisional stage [116,158].

Final building of the Maghrebide Internides depends on two coeval geodynamic processes, the discussion of which is beyond the scope of this paper, i.e. the retreat of the Apenninic–Maghrebide subduction, and the Africa–Iberia convergence (see [8,55,62,91] for details and references). Subduction retreat is responsible for the Oligo-Miocene opening of the Alboran and Algerian basins [31,35,106], and triggered the operation of major extensional detachments such as the Zaouia Fault (Section 4.3), the Kabylian Detachment Fault (Section 5.2), and their equivalents observed throughout the Betic pile. Disruption of the Eocene tectonic prism, block migration and block rotations [28,58,88,137] resulted from the subduction retreat process. Being broadly contemporaneous with the ongoing plate convergence, the retreat-related extensional events should have alternated with contractional ones, both onshore [10,33] and offshore [31]. These combined geodynamic processes eventually resulted in the formation of the orogenic arcs at the eastern and western tips of the Maghrebides, and for their fast rollback towards the free boundaries (Atlantic and Ionian, respectively) [106]. In particular, the Betic–Rifian (Gibraltar) Arc coincides with the complex triple junction [115] between the vanishing Alpine–Betic subduction, the active Apenninic–Maghrebide subduction, and the Azores–Gibraltar transform zone, converted into a collisional zone between Iberia and Africa since Chron 18 (36 Ma) [70,149]. Compelling evidence for an active east-dipping subduction beneath the Alboran basin, with its accretionary prism in the Gulf of Cadiz, are gained from seismic, gravimetric and tomographic surveys [76,101,108,122,160].

To conclude, the PTt constraints from the Maghrebide Internides and western Betic Cordilleras (Gibraltar Arc) would be better accounted for by a ‘two-subduction’ geodynamic model, rather than by a ‘one-subduction’ scheme, in the framework of the Mediterranean Alpine belts. However, we must emphasize that important questions have to be answered yet before reaching a definitive model, such as the original palaeogeography of the postulated Alkapeca intra-oceanic plateau, the original location of the Nevado-Filabride complexes with respect to Iberia and Alkapeca, the timing of their HP–LT metamorphism, the age of peak pressure in the Alpujarride–Sebtide and equivalent Kabylian units (30–25 Ma or older?), and that of the thrusting of the Alpujarride–Malaguide metamorphic complex above the seemingly older Nevado-Filabres complex.

Acknowledgements

Field and laboratory works were supported by the CNRS–INSU, Programme DBT 5, the ‘Coopération inter-universitaire franco-marocaine’, A.I. 93/629, 98/161 and MA1999, and the ‘Programme d'appui à la recherche scientifique’ (Maroc), S.U. 26. We are gratefully indebted to Victor García-Dueñas, Paco González-Lodeiro and the numerous colleagues from Granada who guided us in the Betics. We are also indebted to Carlo Doglioni, Claudio Faccenna, Michel Durand-Delga, and Dominique Frizon de Lamotte for constructive criticism of early drafts of this paper.


References

[1] P. Agard; M. Jullien; B. Goffé; A. Baronnet; M. Bouybaouene TEM evidence for high-temperature (300 °C) smectite in multistage clay-mineral pseudomorphs in pelitic rocks (Rif, Morocco), Eur. J. Mineral., Volume 11 (1999), pp. 655-668

[2] M.O. Aïté; J.-P. Gélard Distension néogène post-collisionnelle sur le transect de Grande-Kabylie (Algérie), Bull. Soc. géol. France, Volume 168 (1997), pp. 423-436

[3] J.H. Akkerman; G. Maier; O.J. Simon On the geology of the Alpujárride Complex in the western Sierra de las Estancias (Betic Cordilleras, SE Spain), Geol. Mijnbouwkd., Volume 59 (1980), pp. 363-374

[4] F. Aldaya; V. García-Dueñas; F. Navarro-Vila Los mantos Alpujárrides del tercio central de la Cordilleras Béticas. Ensayo de correlación tectónica de los Alpujárrides, Acta Geol. Hisp., Volume 14 (1979), pp. 154-166

[5] J. Andrieux; D. Frizon de Lamotte; J. Braud A structural scheme for the western Mediterranean area in Jurassic and Early Cretaceous times, Geodin. Acta, Volume 3 (1989), pp. 5-15

[6] T.W. Argles; C.I. Prince; G.L. Foster; D. Vance New garnets for olds? Cautionary tales from young mountain belts, Earth Planet. Sci. Lett., Volume 172 (1999), pp. 301-309

[7] N.O. Arnaud; S.P. Kelley Evidence of excess argon during high pressure metamorphism in the Dora-Maira Massif (western Alps, Italy), using an ultra-violet ablation microprobe 40Ar–39Ar technique, Contrib. Mineral. Petrol., Volume 121 (1995), pp. 1-11

[8] R. Augier; P. Agard; P. Monié; L. Jolivet; C. Robin; G. Booth-Rea Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ 40Ar–39Ar ages and PTdt paths for the Nevado–Filabride complex, J. Metamorph. Geol., Volume 23 (2005), pp. 357-381

[9] J.C. Balanyá; V. García-Dueñas Les directions structurales dans le domaine d'Alboran de part et d'autre du détroit de Gibraltar, C. R. Acad. Sci. Paris, Ser. II, Volume 304 (1987), pp. 929-932

[10] J.C. Balanyá; V. García-Dueñas; J.M. Azañón; M. Sánchez-Gómez Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain (Betics, Gibraltar Arc), Tectonics, Volume 16 (1997), pp. 226-238

[11] C. Barrois; A. Offret Mémoire sur la constitution géologique du Sud de l'Andalousie de la Sierra Tejeda à la Sierra Nevada, Mém. Acad. Sci. Paris, Volume 30 (1889) no. 2, pp. 79-169

[12] S. Baudelot; B. Géry Découverte d'Acritarches du Cambrien supérieur et du Trémadoc dans le massif ancien de Grande Kabylie (Algérie), C. R. Acad. Sci. Paris, Ser. D, Volume 288 (1979), pp. 1513-1516

[13] J.-M. Bertrand; R.T. Pidgeon; J. Leterrier; F. Guillot; D. Gasquet; M. Gattiglio SHRIMP and IDTIMS UPb zircon ages of the pre-Alpine basement in the Internal Western Alps (Savoy and Piemont), Schweiz. Mineral. Petrol. Mitt., Volume 80 (2000), pp. 1-24

[14] J. Blichert-Toft; F. Albarède; J. Kornprobst Lu–Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco: Implications for basalt origin, Science, Volume 283 (1999), pp. 1303-1306

[15] J. Bonnin; M. Durand-Delga; A. Michard La « Mission d'Andalousie », expédition géologique de l'Académie des Sciences de Paris à la suite du grand séisme de 1884, C.R. Geoscience, Volume 334 (2002), pp. 795-808

[16] G. Bossière; P. Collomb; Y. Mahjoub Sur un gisement de péridotite découvert dans le massif cristallophyllien de l'Edough (Annaba, Algérie), C. R. Acad. Sci. Paris, Ser. D, Volume 283 (1976), pp. 885-888

[17] G. Bossière; J.-J. Peucat New geochronological information by RbSr and UPb investigations from the pre-Alpine basement of Grande-Kabylie (Algeria), Can. J. Earth Sci., Volume 22 (1985), pp. 675-685

[18] J.-P. Bouillin Mise en évidence d'importantes structures tangentielles au sein du socle de Petite Kabylie (Algérie), C. R. Acad. Sci. Paris, Ser. II, Volume 294 (1982), pp. 1271-1274

[19] J.-P. Bouillin; J. Kornprobst Associations ultrabasiques de Petite Kabylie : péridotites de type alpin et complexe stratifié ; comparaison avec les zones internes bético-rifaines, Bull. Soc. géol. France (7), Volume 16 (1974), pp. 183-194

[20] J.-P. Bouillin; M.-F. Perret Datation par conodontes du Carbonifère inférieur et mise en évidence d'une phase tectonique bretonne en Petite Kabylie (Algérie), C. R. Acad. Sci. Paris, Ser. II, Volume 295 (1982), pp. 47-50

[21] J.-P. Bouillin; G. Bossière; R. Bourrouilh; A. Coutelle; M. Durand-Delga; J.-P. Gélard; B. Géry; J.-F. Raoult; D. Raymond; M. Téfiani Mise au point sur l'âge des socles métamorphiques kabyles (Algérie), C. R. Acad. Sci. Paris, Ser. II, Volume 298 (1984), pp. 655-660

[22] J.-P. Bouillin; M. Durand-Delga; P. Olivier Betic-Rifian and Tyrrhenian Arcs: Distinctive features, genesis, and development stages (F.C. Wezel, ed.), The Origin of Arcs, Elsevier, 1986, pp. 281-304

[23] M.L. Bouybaouene, Étude pétrologique des métapélites des Sebtides supérieures, Rif interne, Maroc, PhD thesis, University Mohamed-V, Rabat, 1993, 160 pp

[24] M.L. Bouybaouene; B. Goffé; A. Michard High-pressure, low-temperature metamorphism in the Sebtides nappes, northern Rif, Morocco, Geogaceta, Volume 17 (1995), pp. 117-119

[25] M.L. Bouybaouene; B. Goffé; A. Michard High-pressure granulites on top of the Beni Bousera peridotites, Rif belt, Morocco: a record of an ancient thickened crust in the Alboran domain, Bull. Soc. géol. France, Volume 169 (1998), pp. 153-162

[26] R. Caby; D. Hammor Le massif cristallin de l'Edough (Algérie) : un ‘Metamorphic Core Complex’ d'âge Miocène dans les Maghrébides, C. R. Acad. Sci. Paris, Ser. II, Volume 314 (1992), pp. 829-835

[27] R. Caby; D. Hammor; C. Delor Metamorphic evolution, partial melting and Miocene exhumation of lower crust in the Edough metamorphic core complex, west Mediterranean orogen, eastern Algeria, Tectonophysics, Volume 342 (2001), pp. 239-273

[28] M. Calvo; J. Cuevas; J.M. Tubía Preliminary paleomagnetic results on Oligocene–Early Miocene mafic dykes from southern Spain, Tectonophysics, Volume 332 (2001), pp. 333-345

[29] A. Chalouan; A. Michard The Ghomarides nappes, Rif coastal Range, Morocco: a Variscan chip in the alpine belt, Tectonics, Volume 9 (1990), pp. 1565-1583

[30] A. Chalouan; A. Ouazani-Touhami; L. Mouhir; R. Saji; M. Benmakhlouf Les failles normales à faible pendage du Rif interne (Maroc) et leur effet sur l'amincissement crustal du domaine d'Alboran, Geogaceta, Volume 17 (1995), pp. 107-109

[31] A. Chalouan; R. Saji; A. Michard; A.W. Bally Neogene tectonic evolution of the southwestern Alboran basin as inferred from seismic data off Morocco, AAPG Bull., Volume 81 (1997), pp. 1161-1184

[32] A. Chalouan; A. Michard The Alpine Rif belt (Morocco): a case of mountain building in a subduction–subduction–transform fault triple-junction, Pure Appl. Geophys., Volume 161 (2004), pp. 489-519

[33] A. Chalouan; A. Michard; H. Feinberg; R. Montigny; O. Saddiqi The Rif mountain building (Morocco): a new tectonic scenario, Bull. Soc. géol. France, Volume 172 (2001), pp. 603-616

[34] A. Cheilletz; G. Ruffet; C. Marignac; O. Kolli; D. Gasquet; G. Féraud; J.-P. Bouillin 39Ar/40Ar dating of shear zones in the Variscan basement of Greater Kabylia (Algeria). Evidence of an Eo-Alpine event at 128 Ma (Hauterivian-Barremian boundary): geodynamic consequences, Tectonophysics, Volume 306 (1999), pp. 97-116

[35] M.C. Comas; J.P. Platt; J.I. Soto; A.B. Watts The origin and tectonic history of the Alboran basin: Insight from ODP leg161 results, Proc. Ocean Drill. Program Sci. Results, Volume 161 (1999), pp. 555-580

[36] A. Crespo-Blanc; J. Campos Structure and kinematics of the South-Iberian paleomargin and its relationship with the Flysch Trough units. Extensional tectonics within the Gibraltar Arc fold-and-thrust belt (western Betics), J. Struct. Geol., Volume 23 (2001), pp. 1615-1630

[37] G.R. Davies; P.H. Nixon; D.G. Pearson; M. Osaka Tectonic implications of graphitized diamonds from the Ronda peridotite massif, southern Spain, Geology, Volume 21 (1993), pp. 471-474

[38] K. De Jong; G. Féraud; G. Ruffet; M. Amouric; J.R. Wijbrans Excess argon incorporation in phengite of the Mulhacén Complex: submicroscopic illitization and fluid ingress during Late Miocene extension in the Betic Zone, south-eastern Spain, Chem. Geol., Volume 178 (2001), pp. 159-195

[39] K. De Jong Very fast exhumation of high-pressure metamorphic rocks with excess 40Ar and inherited 87Sr, Betic Cordilleras, southern Spain, Lithos, Volume 70 (2003), pp. 91-110

[40] Atlas of Tethys Environmental Maps (J. Dercourt; L.E. Ricou; B. Vrielinck, eds.), Gauthier-Villars, Paris, 1993 (307 p)

[41] P. Dèzes; S.M. Schmid; P.A. Ziegler Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere, Tectonophysics, Volume 389 (2004), pp. 1-33

[42] C. Doglioni; M. Fernandez; E. Gueguen; F. Sabat On the interference between the early Apennines–Maghrebides back-arc extension and the Alps-Betics orogen in the Neogene geodynamics of the Western Mediterranean, Bull. Soc. geol. It., Volume 118 (1999), pp. 75-89

[43] M. Durand-Delga La Méditerranée occidentale, étapes de sa genèse et problèmes structuraux liés à celle-ci, Mém. Soc. géol. France, Volume 10 (1980), pp. 203-224

[44] M. Durand-Delga Principaux traits de la Corse alpine et corrélations avec les Alpes ligures, Mem. Soc. Geol. It., Volume 28 (1984), pp. 285-329

[45] M. Durand-Delga; P. Olivier Evolution of the Alboran block margin from Early Mesozoic to Early Miocene time (V.J.H. Jacobshagen, ed.), The Atlas System of Morocco, Lect. Notes Earth Sci., vol. 15, 1988, pp. 460-480

[46] M. Durand-Delga; H. Feinberg; J. Magné; P. Olivier; R. Anglada Les formations oligo-miocènes discordantes sur les Malaguides et les Alpujarrides et leurs implications dans l'évolution géodynamique des Cordillères bétiques (Espagne) et de la Méditerranée d'Alboran, C. R. Acad. Sci. Paris, Ser. II, Volume 317 (1993), pp. 679-687

[47] M. Durand-Delga; P. Rossi; P. Olivier; D. Puglisi Situation structurale et nature ophiolitique de roches basiques jurassiques associées aux flyschs maghrébins du Rif (Maroc) et de Sicile (Italie), C. R. Acad. Sci. Paris, Ser. IIa, Volume 331 (2000), pp. 29-38

[48] M. Durand-Delga; S. Gardin; M. Esteras; H. Paquet Le domaine Tariquide (arc de Gibraltar, Espagne et Maroc) : succession sédimentaire et événements structuraux au Lias et au Dogger, C. R. Geoscience, Volume 337 (2005), pp. 787-798

[49] D. Elazzab, Contribution du géomagnétisme à l'étude de la mise en place du magmatisme atlasique et rifain post-paléogène, PhD thesis, University of Fès–Saïss, 1999, 260 p

[50] D. Elazzab; A. Galdeano; H. Feinberg; A. Michard Prolongement en profondeur d'une écaille ultrabasique allochtone : traitement des données aéromagnétiques et modélisation 3D des péridotites des Beni Malek (Rif, Maroc), Bull. Soc. géol. France, Volume 168 (1997), pp. 667-683

[51] N. El Hatimi; G. Duée; Y. Hervouët La dorsale calcaire du Haouz : ancienne marge continentale passive téthysienne (Rif, Maroc), Bull. Soc. géol. France, Volume 162 (1991), pp. 79-90

[52] K. El Kadiri; A. Linares; F. Oloriz La Dorsale Calcaire rifaine (Maroc septentrional) : évolution stratigraphique et géodynamique durant le Jurassique-Crétacé, Notes Mém. Serv. géol. Maroc, Volume 336 (1992), pp. 217-265

[53] A. El Maz; M. Guiraud Paragenèse à faible variance dans les métapélites de la série de Filali (Rif interne marocain) : description, interprétation et conséquences géodynamiques, Bull. Soc. géol. France, Volume 172 (2001), pp. 469-485

[54] M. Esteras; J. Izquierdo; N.G. Sandoval; A. Bahmad Evolución morfológica y estratigráfica plio-cuaternaria del Umbral de Camarinal (Estrecho de Gibraltar) basada en sondeos marinos, Rev. Soc. Geol. Esp., Volume 13 (2000), pp. 539-550

[55] C. Faccenna; C. Piromallo; A. Crespo-Blanc; L. Jolivet; F. Rossetti Lateral slab deformation and the origin of the Mediterranean arcs, Tectonics, Volume 23 (2004), p. TC001488

[56] P. Favre Analyse quantitative du rifting et de la relaxation thermique de la partie occidentale de la marge transformante nord-africaine : le Rif externe (Maroc). Comparaison avec la structure actuelle de la chaîne, Geodin. Acta, Volume 8 (1995), pp. 59-81

[57] H. Feinberg; A. Maaté; S. Bouhdadi; M. Durand-Delga; M. Maaté; J. Magné; P. Olivier Significations des dépôts de l'Oligocène supérieur–Miocène inférieur du Rif interne (Maroc) dans l'évolution géodynamique de l'arc de Gibraltar, C. R. Acad. Sci., Ser. II, Volume 310 (1990), pp. 1487-1495

[58] H. Feinberg; O. Saddiqi; A. Michard New constraints on the bending of the Gibraltar Arc from paleomagnetism of the Ronda peridotite (Betic Cordilleras, Spain), Geol. Soc. Lond. Spec. Publ., Volume 105 (1996), pp. 43-52

[59] I.R. Finetti; M. Boccaletti; M. Bonini; A. Del Ben; R. Geletti; M. Pipan; F. Sani Crustal section based on CROP seismic data across the North Tyrrhenian–Northern Apennines–Adriatic Sea, Tectonophysics, Volume 343 (2001), pp. 135-163

[60] D. Frizon de Lamotte, La structure du Rif oriental (Maroc), Rôle de la tectonique longitudinale et importance des fluides, Mém. Sci. Terre, Univ. Paris-6 85–03 (1985) 1–436

[61] D. Frizon de Lamotte La structure du Rif externe (Maroc) : mise au point sur le rôle des décrochements, des chevauchements et des glissements gravitaires, J. Afr. Earth Sci., Volume 6 (1987), pp. 755-766

[62] D. Frizon de Lamotte; B. Saint Bezar; R. Bracène; E. Mercier The two main steps of the Atlas building and geodynamics of the western Mediterranean, Tectonics, Volume 19 (2000), pp. 740-761

[63] D. Frizon de Lamotte; A. Crespo-Blanc; B. Saint-Bézar; M. Comas; M. Fernandez; H. Zeyen; H. Ayarza; C. Robert-Charrue; A. Chalouan; M. Zizi; A. Teixell; M.L. Arboleya; F. Alvarez-Lobato; M. Julivert; A. Michard TRASNSMED-transect I [Betics, Alboran Sea, Rif, Moroccan Meseta, High Atlas, Jbel Saghro, Tindouf basin] (W. Cavazza; F. Roure; W. Spakman; G.M. Stampfli; P.A. Ziegler, eds.), The TRANSMED Atlas – the Mediterranean Region from Crust to Mantle, Springer, Berlin, 2004

[64] V. García-Dueñas; J.C. Balanyá; J.M. Martínez-Martínez Miocene extensional detachment in the outcropping basement of the northern Alboran Basin (Betics) and their tectonic implications, Geo-Mar. Lett., Volume 12 (1992), pp. 88-95

[65] V. García-Dueñas; J.C. Balanyá; M. Sánchez-Gómez El despegue extensional de Lahsene y los jirones de serpentinitas del anticlinal de Taryat (Melilla, Rif), Geogaceta, Volume 17 (1995), pp. 138-139

[66] G. Gleizes; J. Bouloton; G. Bossière; P. Collomb Données lithologiques et pétro-structurales nouvelles sur le massif cristallophyllien de l'Edough (Est-Algérien), C. R. Acad. Sci. Paris, Ser. II, Volume 306 (1988), pp. 1001-1008

[67] B. Goffé; A. Michard; V. García-Dueñas; F. Gonzalez Lodeiro; P. Monié; J. Campos; J. Galindo-Zaldivar; A. Jabaloy; J.M. Martínez; J.F. Simancas First evidence of high-pressure, low-temperature metamorphism in the Alpujarride nappes, Betic Cordilleras (SE Spain), Eur. J. Mineral., Volume 1 (1989), pp. 139-142

[68] B. Goffé; J.M. Azañón; M.L. Bouybaouene; M. Jullien Metamorphic cookeite in Alpine metapelites from Rif (northern Morocco) and Betic chains (southern Spain), Eur. J. Mineral., Volume 6 (1996), pp. 897-911

[69] M.T. Gómez-Pugnaire; J.M. Fernández-Soler High-pressure metamorphism in metabasites from the Betic Cordilleras (S.E. Spain) and its evolution during the Alpine orogeny, Contrib. Mineral. Petrol., Volume 95 (1987), pp. 231-244

[70] E. Gràcia; J. Dañobeitia; J. Vergés; R. Bartolomé; D. Cordoba Crustal architecture and tectonic evolution of the Gulf of Cadiz (SW Iberian margin) at the convergence of the Eurasian and African plates, Tectonics, Volume 22 (2003) no. 4, pp. 1033-1058

[71] T. Graessner; V. Schenk Low-pressure metamorphism of Paleozoic pelites in the Asromonte, southern Calabria: constraints for the thermal evolution in Calabrian crustal cross-section during the Hercynian orogeny, J. Metamorph. Geol., Volume 17 (1999), pp. 157-172

[72] T. Graessner; V. Schenk; M. Bröcker; K. Mezger Geochronological constraints on the timing of granitoid magmatism, metamorphism and post-metamorphic cooling in the Hercynian crustal cross-section of Calabria, J. Metamorph. Geol., Volume 18 (2000), pp. 409-421

[73] F. Guerrera; A. Martín-Algarra; V. Perrone Late Oligocene-Miocene syn-/-late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines, Terra Nova, Volume 5 (1993), pp. 525-544

[74] F. Guerrera; M. Martín-Martín; V. Perrone; M. Tramontana Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch basin and Lucanian Ocean): consequences for Western Mediterranean geodynamics, Terra Nova, Volume 17 (2005), pp. 358-367

[75] F. Guillot; U. Schaltegger; J.-M. Bertrand; E. Deloule; T. Baudin Zircon UPb geochronology of Ordovician magmatism in the polycyclic Ruitor Massif (Internal W. Alps), Int. J. Earth Sci., Volume 91 (2002), pp. 964-978

[76] M.-A. Gutscher; J. Malod; J.-P. Rehault; I. Contrucci; F. Klingelhoefer; L. Mendes-Victor; W. Spakman Evidence for active subduction beneath Gibraltar, Geology, Volume 30 (2002), pp. 1071-1074

[77] D. Hammor; J. Lancelot Métamorphisme miocène de granites panafricains dans le massif de l'Edough (Nord-Est de l'Algérie), C. R. Acad. Sci. Paris, Ser. IIa, Volume 327 (1998), pp. 391-396

[78] H. Helbing; M. Tiepolo Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution, J. Geol. Soc. Lond., Volume 162 (2005), pp. 689-700

[79] J. Hernandez; F.D. de Larouzière; J. Bolze; P. Bordet Le magmatisme néogène bético-rifain et le couloir de décrochement trans-Alboran, Bull. Soc. géol. France (8), Volume 3 (1987), pp. 257-267

[80] J. Hilly Étude géologique du massif de l'Edough et du Cap-de-Fer (Est constantinois), Bull. Serv. Carte géol. Alger (Nouv. Sér.), Volume 19 (1962) (408 p)

[81] B. Hoyez, Le Numidien et les flyschs oligo-miocènes de la bordure sud de la Méditerranée occidentale, unpublished thesis, University of Lille, France, 1989, 464 p

[82] J. Ilavsky; P. Snopkova Découverte d'Acritarches paléozoïques dans les terrains métamorphiques de l'Edough (Wilaya d'Annaba, Algérie), C. R. Acad. Sci. Paris, Ser. II, Volume 305 (1987), pp. 881-884

[83] E. Janots, F. Negro, F. Brunet, B. Goffé, M. Engi, M.L. Bouybaouene, Evolution of the REE mineralogy in HP–LT metapelites of the Sebtide complex, Rif, Morocco: monazite stability and geochronology, Lithos (in press)

[84] L. Jolivet; C. Faccenna Mediterranean extension and the Africa–Eurasia collision, Tectonics, Volume 19 (2000), pp. 1095-1106

[85] R. Kliegfield; J. Hunziker; R.D. Dalmayer; S. Schamel Dating of deformation phases using KAr and 39Ar/40Ar techniques: results from the Northern Apennines, J. Struct. Geol., Volume 8 (1986), pp. 781-798

[86] J. Kornprobst Contribution à l'étude pétrographique et structurale de la zone interne du Rif (Maroc septentrional), Notes Mém. Serv. géol. Maroc, Volume 251 (1974) (256 p)

[87] J. Kornprobst; M. Piboule; M. Roden; A. Tabit Corundum-bearing garnet pyroxenites at Beni Bousera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle?, J. Petrol., Volume 31 (1990), pp. 717-745

[88] W. Krijgsman; M. Garcès Paleomagnetic constraints on the geodynamic evolution of the Gibraltar Arc, Terra Nova, Volume 16 (2004), pp. 281-287

[89] W. Kuhnt; D. Obert Evolution crétacée de la marge tellienne, Bull. Soc. géol. France, Volume 162 (1991), pp. 515-522

[90] N. Kumar; L. Reisberg; A. Zindler A major and trace elements and strontium, neodymium, and osmium isotopic study of a thick pyroxenite layer from the Beni Bousera ultramafic complex of northern Morocco, Geochim. Cosmochim. Acta, Volume 60 (1996), pp. 1429-1444

[91] O. Lacombe; L. Jolivet Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny, Tectonics, Volume 24 (2005), p. TC1003 | DOI

[92] J.-M. Lardeaux; R.P. Menot; J.-B. Orsini; G. Naud; G. Libourel Corsica and Sardinia in the Variscan chain (J.D. Keppie, ed.), Pre-Mesozoic Geology of France and Related Areas, Springer, Berlin, 1994, pp. 467-479

[93] C. Lepvrier La tectonique hercynienne dans les massifs anciens kabyles. L'exemple du Djebel Chenoua (Algérie), C. R. Acad. Sci. Paris, Ser. D, Volume 278 (1974), pp. 1325-1328

[94] L. Lonergan; M. Mange-Rajetsky Evidence for Internal Zone unroofing from foreland basin sediments, Betic Cordillera, SE Spain, J. Geol. Soc. Lond., Volume 151 (1994), pp. 515-529

[95] L. Lonergan; J.P. Platt The Malaguide-Alpujarride boundary: a major extensional contact in the Internal Zone of the Eastern Betic Cordilleras, SE Spain, J. Struct. Geol., Volume 17 (1995), pp. 1655-1671

[96] L. Lonergan; N. White Origin of the Betic-Rif mountain belt, Tectonics, Volume 16 (1997), pp. 504-522

[97] T.P. Loomis Tertiary mantle diapirism, orogeny and plate tectonics east of strait of Gibraltar, Am. J. Sci., Volume 275 (1975), pp. 1-30

[98] A. Maaté, Estratigrafía y evolución paleogeográfica alpina del dominio Ghomaride (Rif interno, Marruecos), PhD thesis, University of Granada, Spain, 1996, 397 p

[99] Y. Mahjoub; P. Choukroune; J.R. Kienast Kinematics of a complex Alpine segment: superimposed tectonic and metamorphic events in the Petite Kabylie Massif (northern Algeria), Bull. Soc. géol. France, Volume 168 (1997), pp. 649-661

[100] J. Malavieille; A. Chemenda; C. Larroque Evolutionary model for Alpine Corsica: mechanism for ophiolite emplacement and exhumation of high-pressure rocks, Terra Nova, Volume 10 (1998), pp. 317-322

[101] A. Maldonado; L. Somoza; L. Pallarés The Betic orogen and the Iberian–African boundary in the Gulf of Cadiz: geological evolution (central North Atlantic), Mar. Geol., Volume 155 (1999), pp. 9-43

[102] G. Manatschal; D. Bernoulli Architecture and tectonic evolution of non-volcanic margins: Present-day Galicia and ancient Adria, Tectonics, Volume 18 (1999), pp. 1099-1119

[103] A. Martín-Algarra; A. Messina; V. Perrone; S. Russo; A. Maaté; M. Martín-Martín A lost realm in the Internal Domains of the Betic-Rif orogen (Spain and Morocco): Evidence from conglomerates and consequences for Alpine geodynamic evolution, J. Geol., Volume 108 (2000), pp. 447-467

[104] J.M. Martínez-Martínez; J.I. Soto; J.C. Balanyá Orthogonal folding of extensional detachments: Structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain), Tectonics, Volume 21 (2002) | DOI

[105] G. Mascle; P. Tricart; L. Torelli; et al.; 16 authors Structure of the Sardinia Channel: crustal thinning and tardi-orogenic extension in the Apenninic-Maghrebian orogen; results of the Cyana submersible survey (SARCYA and SARTUCYA) in the Western Mediterranean, Bull. Soc. géol. France, Volume 175 (2004), pp. 607-627

[106] A. Mauffret; D. Frizon de Lamotte; S. Lallemant; C. Gorini; A. Maillard E-W opening of the Algerian basin (Western Mediterranean), Terra Nova, Volume 16 (2004), pp. 257-264

[107] R.C. Maury; S. Fourcade; C. Coulon; M. El Azzouzi; H. Bellon; A. Coutelle; A. Ouabadi; B. Semroud; M. Megartsi; J. Cotten; O. Belanteur; A. Louni-Hacini; A. Piqué; R. Capdevila; J. Hernandez; J.-P. Réhault Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff, C. R. Acad. Sci. Paris, Ser. IIa, Volume 331 (2000), pp. 159-173

[108] T. Medialdea; R. Vegas; L. Somoza; J.T. Vásquez; A. Maldonado; V. Díaz-del-Rio; A. Maestro; D. Córdoba; M.C. Fernández-Puga Structure and evolution of the ‘Olistostrome’ complex of the Gibraltar Arc in the Gulf of Cádiz (eastern Central Atlantic): evidence from two long seismic cross-sections, Mar. Geol., Volume 209 (2004), pp. 173-198

[109] M. Meghraoui; J.L. Morel; J. Andrieux; M. Dahmani Tectonique plio-quaternaire de la chaîne tello-rifaine et de la mer d'Alboran. Une zone complexe de convergence continent-continent, Bull. Soc. géol. France, Volume 167 (1996), pp. 141-158

[110] A. Michard; A. Chalouan; R. Montigny; M. Ouazzani-Touhami Les nappes cristallophylliennes du Rif (Sebtides-Maroc), témoins d'un édifice alpin de type pennique incluant le manteau supérieur, C. R. Acad. Sci. Paris, Ser. D, Volume 296 (1983), pp. 1337-1340

[111] A. Michard; B. Goffé; A. Chalouan; O. Saddiqi Les corrélations entre les chaînes Bético-Rifaines et les Alpes et leurs conséquences, Bull. Soc. géol. France, Volume 162 (1991), pp. 1151-1160

[112] A. Michard; H. Feinberg; D. Elazzab; M.L. Bouybaouene; O. Saddiqi A serpentinite ridge in a collisional paleomargin setting: the Beni Malek massif, External Rif, Morocco, Earth Planet. Sci. Lett., Volume 113 (1992), pp. 435-442

[113] A. Michard; C. Chopin; C. Henry Compression versus extension in the exhumation of the Dora-Maira coesite-bearing unit, Western Alps, Italy, Tectonophysics, Volume 221 (1993), pp. 173-193

[114] A. Michard; B. Goffé; M.L. Bouybaouene; O. Saddiqi Late Hercynian-Mesozoic thinning in the Alboran domain: metamorphic data from the northern Rif, Morocco, Terra Nova, Volume 9 (1997), pp. 1-8

[115] A. Michard; A. Chalouan; H. Feinberg; B. Goffé; R. Montigny How does the Alpine belt end between Spain and Morocco?, Bull. Soc. géol. France, Volume 173 (2002), pp. 3-15

[116] A. Michard; D. Avigad; B. Goffé; C. Chopin The high-pressure metamorphic front of the southwestern Alps (Ubaye-Maira transect, France, Italy), Schweiz, Mineral. Petrol. Mitt., Volume 84 (2004), pp. 215-235

[117] P. Monié; R. Caby; H. Maluski 39Ar/40Ar investigations within the Grande-Kabylie massif (northern Algeria): evidences for its Alpine structuration, Eclog. geol. Helv., Volume 77 (1984), pp. 115-141

[118] P. Monié; J. Galindo Zaldivar; F. Gonzalez Lodeiro; B. Goffé; A. Jabaloy 39Ar/40Ar geochronology of Alpine tectonism in the Betic Cordilleras (southern Spain), J. Geol. Soc. Lond., Volume 148 (1991), pp. 288-297

[119] P. Monié; R. Montigny; H. Maluski Âge Burdigalien de la tectonique ductile extensive dans le massif de l'Edough (Kabylies, Algérie). Données radiométriques 39Ar/40Ar, Bull. Soc. géol. France, Volume 163 (1992), pp. 571-584

[120] P. Monié; R.L. Torres-Roldán; A. García-Casco Cooling and exhumation of the western Betic Cordilleras, 39Ar/40Ar thermochronological constraints on a collapsed terrane, Tectonophysics, Volume 238 (1994), pp. 353-379

[121] J.M. Montel; J. Kornprobst; D. Vielzeuf Preservation of old UThPb ages in shielded monazites: example from the Beni-Bousera Hercynian kinzigites (Morocco), J. Metamorph. Geol., Volume 18 (2000), pp. 335-342

[122] J. Morales; I. Serrano; A. Jabaloy; J. Galindo-Zaldivar; D. Zhao; F. Torcal; F. Vidal; F. González-Lodeiro Active continental subduction beneath the Betic Cordillera and the Alboran Sea, Geology, Volume 27 (1999), pp. 735-738

[123] F. Negro, Exhumation des roches métamorphiques du Domaine d'Alboran : étude de la chaîne rifaine (Maroc) et corrélation avec les Cordillères bétiques (Espagne), thèse, University Paris-11–Orsay, 2005, 250 p

[124] H.J. Nijhuis, Plurifacial Alpine metamorphism in the southeastern Sierra de los Filabres south Lubrin, SE Spain, PhD Thesis, University of Amsterdam, 1964, 151 p

[125] P. Olivier, Évolution de la limite entre zones internes et externes dans l'arc de Gibraltar (Maroc, Espagne), thèse d'État, University of Toulouse, 1984, 230 p

[126] M. Orozco; J.M. Molina; A. Crespo-Blanc; F.M. Alonso-Chaves Palaeokarst and rauhwacke development, mountain uplift and subaerial sliding of tectonic sheets (northern Sierra de los Filabres, Betic Cordilleras, Spain), Geol. Mijnbouwkd., Volume 78 (1999), pp. 103-117

[127] M.-J. Penven; J.-L. Zimmermann Mise en évidence d'un âge Langhien pour le plutonisme calco-alcalin de la Kabylie de Collo (Algérie), C. R. Acad. Sci. Paris, Ser. II, Volume 303 (1986), pp. 403-406

[128] J.-J. Peucat; G. Bossière Âges RbSr sur micas du socle métamorphique kabyle (Algérie) : mise en évidence d'événements thermiques alpins, Bull. Soc. géol. France (7), Volume 23 (1981), pp. 439-447

[129] J.-J. Peucat; G. Bossière Âge UPb fini-hercynien de la ceinture mylonitique de haute-pression–haute température de Grande Kabylie (Algérie), C. R. Acad. Sci. Paris, Ser. II, Volume 313 (1991), pp. 1261-1267

[130] J.-J. Peucat; Y. Mahjoub; A. Drareni UPb and RbSr geochronology evidence for Late Hercynian extension and Alpine overthrusting in Kabylian metamorphic basement massifs (northeastern Algeria), Tectonophysics, Volume 258 (1996), pp. 195-213

[131] J.P. Platt; R.L.M. Vissers Extensional collapse of thickened continental lithosphere: a working hypothesis for the Alboran Sea and Gibraltar Arc, Geology, Volume 17 (1989), pp. 540-543

[132] J.P. Platt; M.J. Whitehouse Early Miocene high-temperature metamorphism and rapid exhumation in the Betic Cordillera (Spain): evidence from UPb zircon ages, Earth Planet. Sci. Lett., Volume 171 (1999), pp. 591-605

[133] J.P. Platt; J.I. Soto; M.J. Whitehouse; A.J. Hurford; S.P. Kelley Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alboran extensional basin, western Mediterranean, Tectonics, Volume 17 (1998), pp. 671-689

[134] J.P. Platt; M.J. Whitehouse; S.P. Kelley; A. Carter; L. Hollick Simultaneous extensional exhumation across the Alboran basin: Implications for the causes of late orogenic extension, Geology, Volume 31 (2003), pp. 251-254

[135] J.P. Platt; T.W. Argles; A. Carter; S.P. Kelley; M.J. Whitehouse; L. Lonergan Exhumation of the Ronda peridotite and its crustal envelope: constraints from thermal modelling of a PT–time array, J. Geol. Soc. Lond., Volume 160 (2003), pp. 655-676

[136] J.P. Platt; S.P. Kelley; A. Carter; M. Orozco Timing of tectonic events in the Alpujarride Complex, Betic Cordilleras, southern Spain, J. Geol. Soc. Lond., Volume 162 (2005), pp. 1-12

[137] E.S. Platzmann; J.P. Platt; S.P. Kelley Large clockwise rotations in an extensional allochthon, Alboran Domain (Southern Spain), J. Geol. Soc. Lond., Volume 17 (2000), pp. 1187-1197

[138] M. Polvé, Les isotopes du Nd et du Sr dans les lherzolites orogéniques : contribution à la détermination de la structure et de la dynamique du manteau supérieur, PhD thesis, University Paris-7, 1983, 361 p

[139] H.N.A. Priem; N.A. Boelrijk; E.H. Hebeda; I.S. Oen; E.H.T. Verdurmen; R.H. Verschure Isotopic dating of the emplacement of the ultramafic masses in the Serrania de Ronda, southern Spain, Contrib. Mineral. Petrol., Volume 70 (1979), pp. 103-109

[140] G. Principi; B. Treves Il sistema Corso-Appenninico come prisma d'accrezione. Riflessi sul problema generale del limite Alpi-Appennini, Mem. Soc. geol. It., Volume 28 (1984), pp. 549-576

[141] E. Puga; J.M. Nieto; A. Díaz de Federico; J.L. Bodinier; L. Morten Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacén Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process, Lithos, Volume 49 (1999), pp. 23-56

[142] E. Puga; A. Díaz de Federico; J.M. Nieto Tectono-stratigraphic subdivision and petrological characterization of the deepest complexes of the Betic zone: a review, Geodin. Acta, Volume 15 (2002), pp. 23-43

[143] E. Puga; C.M. Fanning; J.M. Nieto; A. Díaz de Federico Recrystallization textures in zircon generated by ocean-floor and eclogite-facies metamorphism: a cathodoluminescence and UPb SHRIMP study, with constraints from REE elements, Can. Mineral., Volume 43 (2005) no. 1, pp. 183-202

[144] J.-P. Réhault; G. Boillot; A. Mauffret The Western Mediterranean basin geological evolution, Mar. Geol., Volume 55 (1984), pp. 447-477

[145] L. Reisberg; A. Zindler Extreme isotopic variations in the upper mantle: evidence from Ronda, Earth Planet. Sci. Lett., Volume 81 ( 1986–1987 ), pp. 29-45

[146] L. Reisberg; A. Zindler; E. Jagoutz Further Sr and Nd isotopic results from peridotites of the Ronda Ultramafic Complex, Earth Planet. Sci. Lett., Volume 96 (1989), pp. 161-180

[147] I. Reuber; A. Michard; A. Chalouan; T. Juteau; B. Jermoumi Structure and emplacement of the alpine-type peridotite from Beni Bousera, Rif, Morocco: A polyphase tectonic interpretation, Tectonophysics, Volume 82 (1982), pp. 231-251

[148] E. Roca; D. Frizon de Lamotte; A. Mauffret; R. Bracene; J. Vergès; N. Benaouali; M. Fernandez; J.A. Muñoz; H. Zeyen TRANSMED-transcect II [Aquitaine Basin, Pyrenees, Ebro basin, Catalan coastal ranges, Valancia trough, Balearic promontory, Algerian basin, Tell, Sahara Atlas, Sahara platform] (W. Cavazza; F. Roure; W. Spakman; G.M. Stampfli; P.A. Ziegler, eds.), The TRANSMED Atlas: The Mediterranean region from Crust to Mantle, Springer, Berlin, 2004

[149] W.R. Roest; S.P. Srivastava Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the Present, Geology, Volume 19 (1991), pp. 613-616

[150] F. Rossetti; B. Goffé; P. Monié; C. Faccenna; G. Vignaroli Alpine orogenic PTt-deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): The nappe edifice of north Calabria revised with insights on the Tyrrhenian–Apennine system formation, Tectonics, Volume 23 (2004) | DOI

[151] L.H. Royden Evolution of retreating subduction boundaries formed during continental collision, Tectonics, Volume 12 (1993), pp. 629-638

[152] A. Saadallah; R. Caby Alpine extensional detachment tectonics in the Grande Kabylie metamorphic core complex of the Maghrebides (northern Algeria), Tectonophysics, Volume 267 (1996), pp. 257-273

[153] O. Saddiqi, Exhumation des roches profondes, péridotites et roches métamorphiques HP–BT dans deux transects de la chaîne alpine : arc de Gibraltar et montagnes d'Oman, PhD thesis, University of Casablanca Aïn Chock, 1995, 245 p

[154] O. Saddiqi; I. Reuber; A. Michard Sur la tectonique de dénudation du manteau infracontinental dans les Beni Bousera, Rif septentrional, Maroc, C. R. Acad. Sci. Paris, Ser. II, Volume 307 (1988), pp. 657-662

[155] M. Sánchez-Gómez; J.M. Azañon; V. García-Dueñas; J.I. Soto Correlation between metamorphic rocks recovered from site 976 and the Alpujarride rocks of the Western Betics, Proc. Ocean Drilling Program, Sci. Results, Volume 161 (1999), pp. 307-317

[156] L. Sánchez-Rodríguez, Pre-Alpine and Alpine evolution of the Ronda Ultramafic complex and its country-rocks (Betic chain, southern Spain): UPb SHRIMP zircon and fission-track dating, PhD thesis, ETH Zürich, Switzerland, 1998, 170 p

[157] L. Sánchez-Rodriguez; D. Gebauer Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust: UPb sensitive high-resolution ion microprobe dating of zircon, Tectonophysics, Volume 316 (2000), pp. 19-44

[158] S. Schmid; E. Kissling The arc of the western Alps in the light of geophysical data on deep crustal structure, Tectonics, Volume 19 (2000), pp. 62-85

[159] M. Sosson; A.-C. Morillon; J. Bourgois; G. Féraud; G. Poupeau; P. Saint-Marc Late exhumation stages of the Alpujarride Complex, western Betic Cordilleras, Spain; new thermochronological and structural data on Los Reales and Ojen nappes, Tectonophysics, Volume 285 (1998), pp. 253-273

[160] W. Spakman; R. Wortel A tomographic view on Western Mediterranean geodynamics (W. Cavazza; F.M. Roure; W. Spakman; G.M. Stampfli; P.A. Ziegler, eds.), The Transmed Atlas – The Mediterranean Region from Crust to Mantle, Springer, Berlin, 2004, pp. 32-52

[161] G.M. Stampfli; R. Marchant Geodynamic evolution of the Tethyan margins of the Western Alps (O.A. Pfiffner; P. Lehner; P.Z. Heitzman; S. Mueller; A. Steck, eds.), Deep structure of the Swiss Alps – Results from NRP 20, Birkhauser, Basel, Switzerland, 1997, pp. 139-153

[162] G. Suter, Carte structurale de la Chaîne rifaine au 1 :500 000, Notes Mém. Serv. géol. Maroc (1980) 245b

[163] A. Tabit; J. Kornprobst; A.B. Woodland Les péridotites à grenat du massif des Beni Bousera (Maroc) : mélanges tectoniques et interdiffusion du fer et du magnésium, C. R. Acad. Sci. Paris, Ser. II, Volume 325 (1997), pp. 665-670

[164] M. Torné; M. Fernández; M.C. Comas; J.I. Soto Lithospheric structure beneath the Alboran basin: results from 3D gravity modeling and tectonic relevance, J. Geophys. Res., Volume 105 B2 (2000), pp. 3209-3228

[165] R.L. Torres-Roldan The tectonic subdivision of the Betic Zone (Betic Cordilleras, southern Spain): its significance and possible geotectonic scenario for the westernmost Alpine belt, Am. J. Sci., Volume 279 (1979), pp. 19-51

[166] V. Trommsdorff; V. López Sánchez-Vizcaino; M.T. Gómez-Pugnaire; O. Müntener High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain, Contrib. Mineral. Petrol., Volume 132 (1998), pp. 139-148

[167] M.J. Tubía; J. Cuevas Structures et cinématique liées à la mise en place des péridotites de Ronda (Cordillères bétiques, Espagne), Bull. Soc. géol. France (7), Volume 21 (1987), pp. 49-56

[168] M.J. Tubía; J.I. Gil Ibarguchi Eclogites of the Ojen nappe: a record of subduction in the Alpujarride complex (Betic Cordlleras, southern Spain), J. Geol Soc. Lond., Volume 148 (1991), pp. 801-804

[169] M.J. Tubía; J. Cuevas; J.I. Gil Ibarguchi Sequential development of the metamorphic aureole beneath the Ronda peridotites and its bearing on the tectonic evolution of the Betic Cordillera, Tectonophysics, Volume 279 (1997), pp. 227-252

[170] M.J. Tubía; J. Cuevas; J.J. Esteban Tectonic evidence in the Ronda peridotites, Spain, for mantle diapirism related to delamination, Geology, Volume 32 (2004), pp. 941-944

[171] S.P. Turner; J.P. Platt; R.M.M. George; S.P. Kelley; D.G. Pearson; G.M. Nowell Magmatism associated with orogenic collapse of the Betic-Alboran Domain, SE Spain, J. Petrol., Volume 40 (1999), pp. 1011-1036

[172] D. Van der Wal; R.L.M. Vissers Uplift and emplacement of upper mantle rocks in the western Mediterranean, Geology, Volume 21 (1993), pp. 1119-1122

[173] J. Vergès; F. Sàbat Constraints on the Neogene Mediterranean kinematic evolution along a 1000 km transect from Iberia to Africa, Geol. Soc. London Spec. Publ., Volume 156 (1999), pp. 63-80

[174] O. Vidal; B. Goffé; R. Bousquet; T. Parra Calibration and testing of an empirical chloritoid-chlorite Mg–Fe exchange thermometer and thermodynamic data for daphnite, J. Metamorph. Geol., Volume 17 (1999), pp. 25-39

[175] J.M. Vila Le Djebel Edough : un massif cristallin externe du Nord-Est de la Berbérie, Bull. Soc. géol. France (7), Volume 12 (1970), pp. 805-812

[176] R.L.M. Vissers; J.P. Platt; D. Van der Wal Late orogenic extension of the Betic Cordillera and the Alboran Domain: a lithospheric view, Tectonics, Volume 14 (1995), pp. 786-803

[177] M.N. Zaghloul, Les unités Federico septentrionales (Rif interne, Maroc) : inventaire des déformations et contexte géodynamique, PhD thesis, université Mohamed-V, Rabat, 1994, 218 p

[178] A. Zakir; A. Chalouan; H. Feinberg Évolution tectono-sédimentaire d'un domaine d'avant-chaîne : exemple des bassins d'El Habt et de Sidi Mrayt, Rif externe nord-occidental : précisions stratigraphiques et modélisation tectonique, Bull. Soc. géol. Fr., Volume 175 (2004), pp. 383-397

[179] H.P. Zeck Mantle peridotites outlining the Gibraltar arc-centrifugal extensional allochtons derived from the earlier Alpine, westward subducted nappe pile, Tectonophysics, Volume 281 (1997), pp. 195-207

[180] H.P. Zeck; M.J. Whitehouse Hercynian, Pan-African, Proterozoic and Archean ion-microprobe zircon ages from a Betic core complex, Alpine belt, W Mediterranean – consequences for its PTt path, Contrib. Mineral. Petrol., Volume 134 (1999), pp. 134-149

[181] H.P. Zeck; P. Monié; I.M. Villa; B.T. Hansen Very high rates of cooling and uplift in the Alpine belt of the Betic Cordillerras, southern Spain, Geology, Volume 20 (1992), pp. 79-82

[182] P.A. Ziegler Evolution of the Arctic–North Atlantic and the Western Tethys, AAPG Mem., Volume 43 (1988) (198 p., 30 pl)


Comments - Policy