Comptes Rendus
Remarques sur la limite α0 pour les fluides de grade 2
Comptes Rendus. Mathématique, Volume 334 (2002) no. 1, pp. 83-86.

On considère la limite α→0 dans l'équation des fluides de grade 2. On montre la convergence faible des solutions vers une solution faible de l'équation de Navier–Stokes, en supposant que les données initiales convergent faiblement dans L2.

We consider the limit α→0 for the equation of the second grade fluids. We prove that weak convergence of the solutions to a weak solution of the Navier–Stokes equation holds under the assumption that the initial data weakly converges in L2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02187-8

Dragoş Iftimie 1, 2

1 IRMAR, Université de Rennes-1, campus de Beaulieu, 35042 Rennes, France
2 Centre de mathématiques, École polytechnique, 91128 Palaiseau, France
@article{CRMATH_2002__334_1_83_0,
     author = {Drago\c{s} Iftimie},
     title = {Remarques sur la limite $ \mathbf{\alpha \to 0}$ pour les fluides de~grade $ \mathrm{2}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {83--86},
     publisher = {Elsevier},
     volume = {334},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02187-8},
     language = {fr},
}
TY  - JOUR
AU  - Dragoş Iftimie
TI  - Remarques sur la limite $ \mathbf{\alpha \to 0}$ pour les fluides de grade $ \mathrm{2}$
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 83
EP  - 86
VL  - 334
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02187-8
LA  - fr
ID  - CRMATH_2002__334_1_83_0
ER  - 
%0 Journal Article
%A Dragoş Iftimie
%T Remarques sur la limite $ \mathbf{\alpha \to 0}$ pour les fluides de grade $ \mathrm{2}$
%J Comptes Rendus. Mathématique
%D 2002
%P 83-86
%V 334
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)02187-8
%G fr
%F CRMATH_2002__334_1_83_0
Dragoş Iftimie. Remarques sur la limite $ \mathbf{\alpha \to 0}$ pour les fluides de grade $ \mathrm{2}$. Comptes Rendus. Mathématique, Volume 334 (2002) no. 1, pp. 83-86. doi : 10.1016/S1631-073X(02)02187-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02187-8/

[1] Busuioc V., On second grade fluids with vanishing viscosity, Portugal. Math. (à paraı̂tre)

[2] Chemin J.-Y., Méthodes mathématiques en mécanique des fluides, I, Cours de DEA et Preprint Laboratoire d'Analyse Numérique A97004, 1997

[3] D. Cioranescu; V. Girault Weak and classical solutions of a family of second grade fluids, Internat. J. Non-Linear Mech., Volume 32 (1997) no. 2, pp. 317-335

[4] D. Cioranescu; E.H. Ouazar Existence and uniqueness for fluids of second grade, Nonlinear Partial Differential Equations and Their Applications, Collège de France seminar, Vol. VI (Paris, 1982/1983), Boston, MA, Pitman, 1984, pp. 178-197

[5] P. Constantin; C. Foiaş Navier–Stokes Equations, University of Chicago Press, Chicago, 1988

[6] J.E. Dunn; R.L. Fosdick Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Rational Mech. Anal., Volume 56 (1974), pp. 191-252

[7] G.P. Galdi; M. Grobbelaar-van Dalsen; N. Sauer Existence and uniqueness of classical solutions of the equations of motion for second-grade fluids, Arch. Rational Mech. Anal., Volume 124 (1993) no. 3, pp. 221-237

[8] G.P. Galdi; A. Sequeira Further existence results for classical solutions of the equations of a second-grade fluid, Arch. Rational Mech. Anal., Volume 128 (1994) no. 4, pp. 297-312

[9] Iftimie D., Remarques sur la limite α→0 pour les fluides de grade 2, Nonlinear Partial Differential Equations and Their Applications, Séminaire du Collège de France (à paraı̂tre)

[10] J. Leray Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248

[11] Marsden J.E., Ratiu T.S., Shkoller S., A nonlinear analysis of the averaged Euler equations and a new diffeomorphism group, Geom. Funct. Anal. (à paraı̂tre)

[12] J.E. Marsden; T.S. Ratiu; S. Shkoller The geometry and analysis of the averaged Euler equations and a new diffeomorphism group, Geom. Funct. Anal., Volume 10 (2000) no. 3, pp. 582-599

[13] M. Oliver; S. Shkoller The vortex blob method as a second-grade non-Newtonian fluid, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 295-314

[14] R.S. Rivlin; J.L. Ericksen Stress-deformation relations for isotropic materials, J. Rational Mech. Anal., Volume 4 (1955), pp. 323-425

[15] S. Shkoller Smooth global Lagrangian flow for the 2D Euler and second-grade fluid equations, Appl. Math. Lett., Volume 14 (2001) no. 5, pp. 539-543

[16] M.E. Taylor Partial Differential Equations. III, Springer-Verlag, New York, 1997

[17] R. Temam Navier–Stokes Equations, North-Holland, Amsterdam, 1984

Cité par Sources :

Commentaires - Politique