[Une preuve élémentaire de l'unicité des mesures invariantes produits pour certains processus en dimension infinie]
Considérons une diffusion en dimension infinie avec un espace d'état
Consider an infinite dimensional diffusion process with state space
Accepté le :
Publié le :
Alejandro F. Ramı́rez 1
@article{CRMATH_2002__334_2_139_0, author = {Alejandro F. Ram{\i}́rez}, title = {An elementary proof of the uniqueness of invariant product measures for some infinite dimensional processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {139--144}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02201-X}, language = {en}, }
TY - JOUR AU - Alejandro F. Ramı́rez TI - An elementary proof of the uniqueness of invariant product measures for some infinite dimensional processes JO - Comptes Rendus. Mathématique PY - 2002 SP - 139 EP - 144 VL - 334 IS - 2 PB - Elsevier DO - 10.1016/S1631-073X(02)02201-X LA - en ID - CRMATH_2002__334_2_139_0 ER -
Alejandro F. Ramı́rez. An elementary proof of the uniqueness of invariant product measures for some infinite dimensional processes. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 139-144. doi : 10.1016/S1631-073X(02)02201-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02201-X/
[1] Diffusions on an infinite dimensional torus, J. Functional Anal., Volume 42 (1981), pp. 29-63
[2] Nonreversible stationary measures for infinite interacting particle systems, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Volume 66 (1984), pp. 407-424
[3] Interacting Particle Systems, Springer-Verlag, New York, 1985
[4] A coupling of infinite particle systems, J. Math. Kyoto Univ., Volume 35 (1995) no. 1, pp. 43-52
[5] Relative entropy and mixing properties of infinite dimensional diffusions, Probab. Theory Related Fields, Volume 110 (1998) no. 3, pp. 369-395
[6] Relative entropy and mixing properties of interacting particle systems, J. Math. Kyoto Univ., Volume 36 (1996) no. 4, pp. 869-875
Cité par Sources :
Commentaires - Politique