[Vibrations de systèmes élastiques avec un grand nombre de petites inclusions à forte densité]
On considère un problème spectral qui modélise les vibrations propres d'un milieu complexe constitué d'un milieu élastique et d'un grand nombre de petites inclusions rigides à forte densité. On étudie le comportement asymptotique de ce problème lorsque le nombre d'inclusions et leur densité tendent vers l'infini. On obtient un problème spectral limite pour une famille rationnelle fractionnaire d'opérateurs qui décrit le comportement macroscopique du système (vibrations globales).
We consider a spectral problem modeling natural vibrations of a complex medium that consists of an elastic medium and tiny rigid inclusions. We study the asymptotic behaviour of solutions of this problem when the total number of inclusions and their density tend to infinity. We obtain a limit problem being a spectral problem for a linear fractional operator pencil that describes the macroscopic behaviour of the system (global vibrations).
Accepté le :
Publié le :
Volodymyr Rybalko 1
@article{CRMATH_2002__334_3_245_0, author = {Volodymyr Rybalko}, title = {Vibrations of elastic systems with a large number of tiny heavy inclusions}, journal = {Comptes Rendus. Math\'ematique}, pages = {245--250}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02233-1}, language = {en}, }
Volodymyr Rybalko. Vibrations of elastic systems with a large number of tiny heavy inclusions. Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 245-250. doi : 10.1016/S1631-073X(02)02233-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02233-1/
[1] Vibrations of a body with many concentrated masses near the boundary: high frequency vibrations, Spectral Analysis of Complex Structures (Paris, 1993), Hermann, Paris, 1995, pp. 85-101
[2] On vibrations of a body with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 2, pp. 249-273
[3] Vibrations of a membrane with many concentrated masses near the boundary, Math. Models Methods Appl. Sci., Volume 5 (1995) no. 5, pp. 565-585
[4] The Integral Equations of the Theory of Elasticity, Teubner-Texte zur Mathematik, Teubner, Stuttgart, 1995
[5] The Neumann sieve, Nonlinear Variational Problems (Isola d'Elba, 1983), Res. Notes Math., 127, Pitman, Boston, 1985, pp. 24-32
[6] Frequencies of natural oscillations of bodies with concentrated masses, Functional and Numerical Methods in Mathematical Physics, 271, Naukova Dumka, Kiev, 1988, pp. 165-171 (in Russian)
[7] Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), Lecture Notes in Phys., 195, Springer, Berlin–New York, 1984, pp. 346-368
[8] Vibration de systèmes élastiques avec des masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino, Volume 42 (1984) no. 3, pp. 43-63
Cité par Sources :
Commentaires - Politique