Comptes Rendus
Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique
[On some limits in charged particle physics towards (magneto)hydrodynamic equations]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 239-244.

We discuss the connection between different scalings limits of the quantum-relativistic Dirac–Maxwell system. In particular we give rigorous results for the quasi-neutral/non-relativistic limit of the Vlasov–Maxwell system: we obtain a magneto-hydro-dynamic system when we consider the magnetic field as a non-relativistic effect and we obtain the Euler equation when we see it as a relativistic effect. A mathematical key is the modulated energy method.

Nous discutons les connexions entre les modèles obtenus par différents « scalings » à partir du système de Dirac–Maxwell quantique-relativiste. En particulier, nous examinons des limites quasi-neutres/non-relativistes du système de Vlasov–Maxwell. Dans le cas d'un scaling où les effets relativistes sont partiellement conservés, on obtient un modèle du type magnéto-hydrodynamique (MHD), sinon on obtient les équations d'Euler des fluides incompressibles. Un point clef de notre analyse asymptotique rigoureuse est la méthode d'énergie modulée.

Received:
Published online:
DOI: 10.1016/S1631-073X(02)02206-9

Yann Brenier 1; Norbert J. Mauser 2; Marjolaine Puel 3

1 Laboratoire J.A. Dieudonné, Parc Valrose, 06100 Nice, France
2 Wolfgang Pauli Institute, c/o Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
3 Laboratoire d'analyse numérique, Université Pierre et Marie Curie, BC 187, 75252 Paris cedex 05, France
@article{CRMATH_2002__334_3_239_0,
     author = {Yann Brenier and Norbert J. Mauser and Marjolaine Puel},
     title = {Sur quelques limites de la physique des particules charg\'ees vers la (magn\'eto)hydrodynamique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {239--244},
     publisher = {Elsevier},
     volume = {334},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02206-9},
     language = {fr},
}
TY  - JOUR
AU  - Yann Brenier
AU  - Norbert J. Mauser
AU  - Marjolaine Puel
TI  - Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 239
EP  - 244
VL  - 334
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02206-9
LA  - fr
ID  - CRMATH_2002__334_3_239_0
ER  - 
%0 Journal Article
%A Yann Brenier
%A Norbert J. Mauser
%A Marjolaine Puel
%T Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique
%J Comptes Rendus. Mathématique
%D 2002
%P 239-244
%V 334
%N 3
%I Elsevier
%R 10.1016/S1631-073X(02)02206-9
%G fr
%F CRMATH_2002__334_3_239_0
Yann Brenier; Norbert J. Mauser; Marjolaine Puel. Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique. Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 239-244. doi : 10.1016/S1631-073X(02)02206-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02206-9/

[1] K. Asano; S. Ukai On the Vlasov–Poisson limit of the Vlasov Maxwell equation, Pattern and Waves (1986), pp. 369-383

[2] P. Bechouche; N.J. Mauser; F. Poupaud (Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field, Comm. Math. Phys., Volume 197 (1998), pp. 405-425

[3] Y. Brenier Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, Volume 25 (2000), pp. 737-754

[4] Y. Brenier, N.J. Mauser, M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov–Maxwell system, to be submitted to Comm. Math. Phys. (2001)

[5] P. Degond Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equations for infinite light velocity, Math. Methods Appl. Sci., Volume 8 (1986), pp. 533-558

[6] P. Gérard; P.A. Markowich; N.J. Mauser; F. Poupaud Homogenization limits and wigner transforms, Comm. Pure Appl. Math., Volume 50 (1997), pp. 321-377

[7] Y. Guo; K. Nakamitsu; W. Strauss Global finite-energy solutions of the Maxwell–Schrödinger system, Comm. Math. Phys., Volume 170 (1995), pp. 181-196

[8] D.D. Holm, Notes on electron MHD vs Euler-alpha, Private communication

[9] P.-L. Lions Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture in Math. Appl., Oxford University Press, 1996

[10] P.-L. Lions; T. Paul Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993), pp. 553-618

[11] P.A. Markowich; N.J. Mauser The classical limit of a self-consistent quantum-Vlasov equation in 3-d, Math. Models Methods Appl. Sci., Volume 9 (1993), pp. 109-124

[12] N. Masmoudi; N.J. Mauser The self-consistent Pauli equation, Monatsh. Math., Volume 132 (2001), pp. 19-24

[13] N.J. Mauser Nonrelativistic limits of the Dirac equation with non-static field: first and second order corrections, Trans. Theory Statist. Phys., Volume 29 (2000), pp. 122-137

[14] M. Puel, Convergence of the Schrödinger–Poisson system to the incompressible Euler equations (2001) (submitted)

[15] J. Schaeffer The classical limit of the relativistic Vlasov–Maxwell system, Comm. Math. Phys., Volume 104 (1986), pp. 403-421

[16] P. Zhang, Y. Zheng, N.J. Mauser, Classical limit from Schrödinger–Poisson to Vlasov–Poisson equations for general initial data including the pure state case, in 1-d, Comm. Pure Appl. Math. (2001) (to appear)

Cited by Sources:

Comments - Politique