[On some limits in charged particle physics towards (magneto)hydrodynamic equations]
We discuss the connection between different scalings limits of the quantum-relativistic Dirac–Maxwell system. In particular we give rigorous results for the quasi-neutral/non-relativistic limit of the Vlasov–Maxwell system: we obtain a magneto-hydro-dynamic system when we consider the magnetic field as a non-relativistic effect and we obtain the Euler equation when we see it as a relativistic effect. A mathematical key is the modulated energy method.
Nous discutons les connexions entre les modèles obtenus par différents « scalings » à partir du système de Dirac–Maxwell quantique-relativiste. En particulier, nous examinons des limites quasi-neutres/non-relativistes du système de Vlasov–Maxwell. Dans le cas d'un scaling où les effets relativistes sont partiellement conservés, on obtient un modèle du type magnéto-hydrodynamique (MHD), sinon on obtient les équations d'Euler des fluides incompressibles. Un point clef de notre analyse asymptotique rigoureuse est la méthode d'énergie modulée.
Published online:
Yann Brenier 1; Norbert J. Mauser 2; Marjolaine Puel 3
@article{CRMATH_2002__334_3_239_0, author = {Yann Brenier and Norbert J. Mauser and Marjolaine Puel}, title = {Sur quelques limites de la physique des particules charg\'ees vers la (magn\'eto)hydrodynamique}, journal = {Comptes Rendus. Math\'ematique}, pages = {239--244}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02206-9}, language = {fr}, }
TY - JOUR AU - Yann Brenier AU - Norbert J. Mauser AU - Marjolaine Puel TI - Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique JO - Comptes Rendus. Mathématique PY - 2002 SP - 239 EP - 244 VL - 334 IS - 3 PB - Elsevier DO - 10.1016/S1631-073X(02)02206-9 LA - fr ID - CRMATH_2002__334_3_239_0 ER -
%0 Journal Article %A Yann Brenier %A Norbert J. Mauser %A Marjolaine Puel %T Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique %J Comptes Rendus. Mathématique %D 2002 %P 239-244 %V 334 %N 3 %I Elsevier %R 10.1016/S1631-073X(02)02206-9 %G fr %F CRMATH_2002__334_3_239_0
Yann Brenier; Norbert J. Mauser; Marjolaine Puel. Sur quelques limites de la physique des particules chargées vers la (magnéto)hydrodynamique. Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 239-244. doi : 10.1016/S1631-073X(02)02206-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02206-9/
[1] On the Vlasov–Poisson limit of the Vlasov Maxwell equation, Pattern and Waves (1986), pp. 369-383
[2] (Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field, Comm. Math. Phys., Volume 197 (1998), pp. 405-425
[3] Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, Volume 25 (2000), pp. 737-754
[4] Y. Brenier, N.J. Mauser, M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov–Maxwell system, to be submitted to Comm. Math. Phys. (2001)
[5] Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equations for infinite light velocity, Math. Methods Appl. Sci., Volume 8 (1986), pp. 533-558
[6] Homogenization limits and wigner transforms, Comm. Pure Appl. Math., Volume 50 (1997), pp. 321-377
[7] Global finite-energy solutions of the Maxwell–Schrödinger system, Comm. Math. Phys., Volume 170 (1995), pp. 181-196
[8] D.D. Holm, Notes on electron MHD vs Euler-alpha, Private communication
[9] Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture in Math. Appl., Oxford University Press, 1996
[10] Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993), pp. 553-618
[11] The classical limit of a self-consistent quantum-Vlasov equation in 3-d, Math. Models Methods Appl. Sci., Volume 9 (1993), pp. 109-124
[12] The self-consistent Pauli equation, Monatsh. Math., Volume 132 (2001), pp. 19-24
[13] Nonrelativistic limits of the Dirac equation with non-static field: first and second order corrections, Trans. Theory Statist. Phys., Volume 29 (2000), pp. 122-137
[14] M. Puel, Convergence of the Schrödinger–Poisson system to the incompressible Euler equations (2001) (submitted)
[15] The classical limit of the relativistic Vlasov–Maxwell system, Comm. Math. Phys., Volume 104 (1986), pp. 403-421
[16] P. Zhang, Y. Zheng, N.J. Mauser, Classical limit from Schrödinger–Poisson to Vlasov–Poisson equations for general initial data including the pure state case, in 1-d, Comm. Pure Appl. Math. (2001) (to appear)
Cited by Sources:
Comments - Politique