[Les méthodes de multiconfiguration en chimie quantique : condition de Palais–Smale et existence de minima]
Dans cette Note, nous proposons une nouvelle preuve de l'existence d'un minimum pour les méthodes de multiconfiguration en Chimie Quantique. Nous utilisons une propriété de Palais–Smale (avec information de type Morse), dont la démonstration repose sur les équations d'Euler–Lagrange écrites sous une forme compacte aisément utilisable.
In this Note, we propose a new proof for the existence of a minimum in the multiconfiguration methods in Quantum Chemistry. We use a Palais–Smale condition with Morse-type information, whose proof is based on the Euler–Lagrange equations, written in a simple and useful way.
Accepté le :
Publié le :
Mathieu Lewin 1
@article{CRMATH_2002__334_4_299_0, author = {Mathieu Lewin}, title = {The multiconfiguration methods in quantum chemistry: {Palais{\textendash}Smale} condition and existence of minimizers}, journal = {Comptes Rendus. Math\'ematique}, pages = {299--304}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02252-5}, language = {en}, }
TY - JOUR AU - Mathieu Lewin TI - The multiconfiguration methods in quantum chemistry: Palais–Smale condition and existence of minimizers JO - Comptes Rendus. Mathématique PY - 2002 SP - 299 EP - 304 VL - 334 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(02)02252-5 LA - en ID - CRMATH_2002__334_4_299_0 ER -
Mathieu Lewin. The multiconfiguration methods in quantum chemistry: Palais–Smale condition and existence of minimizers. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 299-304. doi : 10.1016/S1631-073X(02)02252-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02252-5/
[1] A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc., Volume 303 (1987), pp. 517-527
[2] G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions, Preprint, Mathematical Institute, University of Oxford, UK, 1999 (to appear in Arch. Rat. Mech. Anal.)
[3] G. Friesecke, On the infinitude of nonzero eigenvalues of the single-electron density matrix for atoms and molecules, Preprint, Mathematical Institute, University of Warwick, Coventry, UK, 2001 (submitted to Proc. Roy. Soc. London Ser. A)
[4] Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, 1993
[5] A general approach for multiconfiguration methods in quantum molecular chemistry, Ann. Inst. H. Poincare Anal. Non Linéaire, Volume 11 (1994) no. 6, pp. 441-484
[6] M. Lewin, The multiconfiguration methods in quantum chemistry (in preparation)
[7] The Hartree–Fock theory for Coulomb systems, Comm. Math. Phys., Volume 53 (1977), pp. 185-194
[8] Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys., Volume 109 (1987), pp. 33-87
[9] Quantum theory of many-particle systems. I. Physical interpretations by mean of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev., Volume 97 (1955) no. 6, pp. 1474-1489
Cité par Sources :
Commentaires - Politique