Nous nous donnons a priori une solution globale des équations de Navier–Stokes incompressibles dans
Suppose there exists a global solution u to the incompressible Navier–Stokes equations, such that
Publié le :
Isabelle Gallagher 1 ; Dragoş Iftimie 1, 2 ; Fabrice Planchon 3
@article{CRMATH_2002__334_4_289_0, author = {Isabelle Gallagher and Drago\c{s} Iftimie and Fabrice Planchon}, title = {Non-explosion en temps grand et stabilit\'e de solutions globales des \'equations de {Navier{\textendash}Stokes}}, journal = {Comptes Rendus. Math\'ematique}, pages = {289--292}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02255-0}, language = {fr}, }
TY - JOUR AU - Isabelle Gallagher AU - Dragoş Iftimie AU - Fabrice Planchon TI - Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes JO - Comptes Rendus. Mathématique PY - 2002 SP - 289 EP - 292 VL - 334 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(02)02255-0 LA - fr ID - CRMATH_2002__334_4_289_0 ER -
%0 Journal Article %A Isabelle Gallagher %A Dragoş Iftimie %A Fabrice Planchon %T Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes %J Comptes Rendus. Mathématique %D 2002 %P 289-292 %V 334 %N 4 %I Elsevier %R 10.1016/S1631-073X(02)02255-0 %G fr %F CRMATH_2002__334_4_289_0
Isabelle Gallagher; Dragoş Iftimie; Fabrice Planchon. Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 289-292. doi : 10.1016/S1631-073X(02)02255-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02255-0/
[1] Existence of weak solutions for the Navier–Stokes equations with initial data in Lp, Trans. Amer. Math. Soc., Volume 318 (1990) no. 1, pp. 179-200
[2] M. Cannone, F. Planchon, Fonctions de Lyapunov pour les équations de Navier–Stokes, Séminaire sur les Équations aux Dérivées Partielles, 1999–2000, Exp. No. XII, 7. École Polytech., Palaiseau, 2000
[3] Remarques sur l'existence globale pour le système de Navier–Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992) no. 1, pp. 20-28
[4] On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315
[5] I. Gallagher, F. Planchon, On infinite energy solutions to the Navier–Stokes equations: global 2D existence and 3D weak-strong uniqueness. Arch. Rational Mech. Anal. (2001) (à paraître)
[6] I. Gallagher, D. Iftimie, F. Planchon, Non blow-up at infinity and stability of global solutions to the Navier–Stokes equations, Manuscript
[7] P.-G. Lemarié-Rieusset, Recent progress in the Navier–Stokes problem, à paraître à CRC Press
[8] Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[9] Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in
[10] Global stability of large solutions to the 3D Navier–Stokes equations, Comm. Math. Phys., Volume 159 (1994) no. 2, pp. 329-341
[11] P. Tchamitchian, Communication personnelle
[12] The Equations of Navier–Stokes and Abstract Parabolic Equations, Vieweg, Braunschweig, 1985
- Decay rates for the 4D energy‐critical nonlinear heat equation, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 4, p. 1468 | DOI:10.1112/blms.13006
- Algebraic decay rates for 3D Navier–Stokes and Navier–Stokes–Coriolis equations in
, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-00991-6 - Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier–Besov spaces, Boletín de la Sociedad Matemática Mexicana, Volume 28 (2022) no. 3 | DOI:10.1007/s40590-022-00468-x
- Maximal L1 regularity for solutions to inhomogeneous incompressible Navier-Stokes equations, Journal of Differential Equations, Volume 335 (2022), p. 1 | DOI:10.1016/j.jde.2022.07.008
- Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces., Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, p. 23 | DOI:10.1007/s41808-021-00140-x
- Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces, Open Mathematics, Volume 19 (2021) no. 1, p. 898 | DOI:10.1515/math-2021-0060
- Time decay rates of the L3-norm for strong solutions to the Navier-Stokes equations in R3, Journal of Mathematical Analysis and Applications, Volume 485 (2020) no. 2, p. 123864 | DOI:10.1016/j.jmaa.2020.123864
- Well-Posedness and Stability for the Generalized Incompressible Magneto-Hydrodynamic Equations in Critical Fourier-Besov-Morrey Spaces, Acta Mathematica Scientia, Volume 39 (2019) no. 6, p. 1551 | DOI:10.1007/s10473-019-0607-6
- Critical Function Spaces for the Well-Posedness of the Navier-Stokes Initial Value Problem, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 647 | DOI:10.1007/978-3-319-13344-7_12
- Global, decaying solutions of a focusing energy-critical heat equation in R4, Journal of Differential Equations, Volume 264 (2018) no. 9, p. 5894 | DOI:10.1016/j.jde.2018.01.023
- Stability Properties of the Regular Set for the Navier–Stokes Equation, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 2, p. 819 | DOI:10.1007/s00021-017-0349-y
- Global well-posedness of the generalized magnetohydrodynamic equations, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 5 | DOI:10.1007/s00033-018-1021-y
- Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 4, p. 1111 | DOI:10.1007/s10231-015-0507-x
- Critical Function Spaces for the Wellposedness of the Navier-Stokes Initial Value Problem, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_12-1
- Remarks on the Global Solutions of 3-D Navier-Stokes System with One Slow Variable, Communications in Partial Differential Equations, Volume 40 (2015) no. 5, p. 878 | DOI:10.1080/03605302.2014.989329
- Long time decay to the Lei–Lin solution of 3D Navier–Stokes equations, Journal of Mathematical Analysis and Applications, Volume 422 (2015) no. 1, p. 424 | DOI:10.1016/j.jmaa.2014.08.039
- Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier-Besov Spaces, Abstract and Applied Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/463639
- Nonhomogeneous boundary value problem for "Equation missing" similar solutions of incompressible two-dimensional Euler equations, Journal of Inequalities and Applications, Volume 2014 (2014) no. 1 | DOI:10.1186/1029-242x-2014-277
- Time decay and exponential stability of solutions to the periodic 3D Navier–Stokes equation in critical spaces, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 17, p. 2817 | DOI:10.1002/mma.3024
- Evolutionary NS-TKE Model, Mathematical and Numerical Foundations of Turbulence Models and Applications (2014), p. 247 | DOI:10.1007/978-1-4939-0455-6_8
- Navier–Stokes equations, stability and minimal perturbations of global solutions, Journal of Mathematical Analysis and Applications, Volume 386 (2012) no. 1, p. 115 | DOI:10.1016/j.jmaa.2011.07.050
- Analyticity estimates for the Navier–Stokes equations, Advances in Mathematics, Volume 228 (2011) no. 4, p. 1990 | DOI:10.1016/j.aim.2011.05.026
- An alternative approach to regularity for the Navier–Stokes equations in critical spaces, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 2, p. 159 | DOI:10.1016/j.anihpc.2010.10.004
- Profile decompositions and applications to Navier-Stokes, Journées équations aux dérivées partielles (2010), p. 1 | DOI:10.5802/jedp.69
- The impact of instability appearance on the quadratic law for flow through porous media, Transport in Porous Media, Volume 71 (2008) no. 1, p. 99 | DOI:10.1007/s11242-007-9113-8
- Equations de Navier–Stokes dans R2 : existence et comportement asymptotique de solutions d'énergie infinie, Bulletin des Sciences Mathématiques, Volume 130 (2006) no. 2, p. 123 | DOI:10.1016/j.bulsci.2005.06.004
- Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations, Volume 3 (2005), p. 161 | DOI:10.1016/s1874-5792(05)80006-0
- On the stability of global solutions to Navier–Stokes equations in the space, Journal de Mathématiques Pures et Appliquées, Volume 83 (2004) no. 6, p. 673 | DOI:10.1016/j.matpur.2004.01.003
Cité par 28 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier