Comptes Rendus
Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes
Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 289-292.

Nous nous donnons a priori une solution globale des équations de Navier–Stokes incompressibles dans 3, dans la classe Ct(H˙1/2). Nous montrons successivement que la norme H˙1/2 tend vers 0 à l'infini, que cette norme contrôle la norme Lt2(H˙3/2), et qu'une telle solution globale est stable.

Suppose there exists a global solution u to the incompressible Navier–Stokes equations, such that uCt(H˙1/2). We prove that its H˙1/2 norm goes to 0 at infinity. We next use this fact to control the Lt2(H˙3/2) norm of u, and finally we prove that such a solution is stable.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02255-0

Isabelle Gallagher 1 ; Dragoş Iftimie 1, 2 ; Fabrice Planchon 3

1 Centre de mathématiques, UMR 7640, École polytechnique, 91128 Palaiseau, France
2 IRMAR, UMR 6625, Université de Rennes 1, campus de Beaulieu, 35042 Rennes, France
3 Laboratoire d'analyse numérique, UMR 7598, boîte 187, Université Paris-VI, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2002__334_4_289_0,
     author = {Isabelle Gallagher and Drago\c{s} Iftimie and Fabrice Planchon},
     title = {Non-explosion en temps grand et stabilit\'e de solutions globales des \'equations de {Navier{\textendash}Stokes}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {289--292},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02255-0},
     language = {fr},
}
TY  - JOUR
AU  - Isabelle Gallagher
AU  - Dragoş Iftimie
AU  - Fabrice Planchon
TI  - Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 289
EP  - 292
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02255-0
LA  - fr
ID  - CRMATH_2002__334_4_289_0
ER  - 
%0 Journal Article
%A Isabelle Gallagher
%A Dragoş Iftimie
%A Fabrice Planchon
%T Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes
%J Comptes Rendus. Mathématique
%D 2002
%P 289-292
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02255-0
%G fr
%F CRMATH_2002__334_4_289_0
Isabelle Gallagher; Dragoş Iftimie; Fabrice Planchon. Non-explosion en temps grand et stabilité de solutions globales des équations de Navier–Stokes. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 289-292. doi : 10.1016/S1631-073X(02)02255-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02255-0/

[1] C.P. Calderón Existence of weak solutions for the Navier–Stokes equations with initial data in Lp, Trans. Amer. Math. Soc., Volume 318 (1990) no. 1, pp. 179-200

[2] M. Cannone, F. Planchon, Fonctions de Lyapunov pour les équations de Navier–Stokes, Séminaire sur les Équations aux Dérivées Partielles, 1999–2000, Exp. No. XII, 7. École Polytech., Palaiseau, 2000

[3] J.-Y. Chemin Remarques sur l'existence globale pour le système de Navier–Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992) no. 1, pp. 20-28

[4] H. Fujita; T. Kato On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315

[5] I. Gallagher, F. Planchon, On infinite energy solutions to the Navier–Stokes equations: global 2D existence and 3D weak-strong uniqueness. Arch. Rational Mech. Anal. (2001) (à paraître)

[6] I. Gallagher, D. Iftimie, F. Planchon, Non blow-up at infinity and stability of global solutions to the Navier–Stokes equations, Manuscript

[7] P.-G. Lemarié-Rieusset, Recent progress in the Navier–Stokes problem, à paraître à CRC Press

[8] J. Leray Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248

[9] F. Planchon Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in R3, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 319-336

[10] G. Ponce; R. Racke; T. Sideris; E. Titi Global stability of large solutions to the 3D Navier–Stokes equations, Comm. Math. Phys., Volume 159 (1994) no. 2, pp. 329-341

[11] P. Tchamitchian, Communication personnelle

[12] W. von Wahl The Equations of Navier–Stokes and Abstract Parabolic Equations, Vieweg, Braunschweig, 1985

  • Leonardo Kosloff; César J. Niche; Gabriela Planas Decay rates for the 4D energy‐critical nonlinear heat equation, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 4, p. 1468 | DOI:10.1112/blms.13006
  • Masahiro Ikeda; Leonardo Kosloff; César J. Niche; Gabriela Planas Algebraic decay rates for 3D Navier–Stokes and Navier–Stokes–Coriolis equations in H˙12, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-00991-6
  • Achraf Azanzal; Chakir Allalou; Said Melliani Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier–Besov spaces, Boletín de la Sociedad Matemática Mexicana, Volume 28 (2022) no. 3 | DOI:10.1007/s40590-022-00468-x
  • Huan Xu Maximal L1 regularity for solutions to inhomogeneous incompressible Navier-Stokes equations, Journal of Differential Equations, Volume 335 (2022), p. 1 | DOI:10.1016/j.jde.2022.07.008
  • Achraf Azanzal; Chakir Allalou; Said Melliani Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces., Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, p. 23 | DOI:10.1007/s41808-021-00140-x
  • Lotfi Jlali Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces, Open Mathematics, Volume 19 (2021) no. 1, p. 898 | DOI:10.1515/math-2021-0060
  • V.T.T. Duong; D.Q. Khai; N.M. Tri Time decay rates of the L3-norm for strong solutions to the Navier-Stokes equations in R3, Journal of Mathematical Analysis and Applications, Volume 485 (2020) no. 2, p. 123864 | DOI:10.1016/j.jmaa.2020.123864
  • Azzeddine El Baraka; Mohamed Toumlilin Well-Posedness and Stability for the Generalized Incompressible Magneto-Hydrodynamic Equations in Critical Fourier-Besov-Morrey Spaces, Acta Mathematica Scientia, Volume 39 (2019) no. 6, p. 1551 | DOI:10.1007/s10473-019-0607-6
  • Isabelle Gallagher Critical Function Spaces for the Well-Posedness of the Navier-Stokes Initial Value Problem, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 647 | DOI:10.1007/978-3-319-13344-7_12
  • Stephen Gustafson; Dimitrios Roxanas Global, decaying solutions of a focusing energy-critical heat equation in R4, Journal of Differential Equations, Volume 264 (2018) no. 9, p. 5894 | DOI:10.1016/j.jde.2018.01.023
  • Piero D’Ancona; Renato Lucà Stability Properties of the Regular Set for the Navier–Stokes Equation, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 2, p. 819 | DOI:10.1007/s00021-017-0349-y
  • Zhuan Ye; Xiaopeng Zhao Global well-posedness of the generalized magnetohydrodynamic equations, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 5 | DOI:10.1007/s00033-018-1021-y
  • Zhuan Ye Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 4, p. 1111 | DOI:10.1007/s10231-015-0507-x
  • Isabelle Gallagher Critical Function Spaces for the Wellposedness of the Navier-Stokes Initial Value Problem, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_12-1
  • Jean-Yves Chemin; Ping Zhang Remarks on the Global Solutions of 3-D Navier-Stokes System with One Slow Variable, Communications in Partial Differential Equations, Volume 40 (2015) no. 5, p. 878 | DOI:10.1080/03605302.2014.989329
  • Jamel Benameur Long time decay to the Lei–Lin solution of 3D Navier–Stokes equations, Journal of Mathematical Analysis and Applications, Volume 422 (2015) no. 1, p. 424 | DOI:10.1016/j.jmaa.2014.08.039
  • Weiliang Xiao; Jiecheng Chen; Dashan Fan; Xuhuan Zhou Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier-Besov Spaces, Abstract and Applied Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/463639
  • Wenjing Song; Hua Li; Ganshan Yang; George Xianzhi Yuan Nonhomogeneous boundary value problem for "Equation missing" similar solutions of incompressible two-dimensional Euler equations, Journal of Inequalities and Applications, Volume 2014 (2014) no. 1 | DOI:10.1186/1029-242x-2014-277
  • Jamel Benameur; Ridha Selmi Time decay and exponential stability of solutions to the periodic 3D Navier–Stokes equation in critical spaces, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 17, p. 2817 | DOI:10.1002/mma.3024
  • Tomás Chacón Rebollo; Roger Lewandowski Evolutionary NS-TKE Model, Mathematical and Numerical Foundations of Turbulence Models and Applications (2014), p. 247 | DOI:10.1007/978-1-4939-0455-6_8
  • W. Rusin Navier–Stokes equations, stability and minimal perturbations of global solutions, Journal of Mathematical Analysis and Applications, Volume 386 (2012) no. 1, p. 115 | DOI:10.1016/j.jmaa.2011.07.050
  • I. Herbst; E. Skibsted Analyticity estimates for the Navier–Stokes equations, Advances in Mathematics, Volume 228 (2011) no. 4, p. 1990 | DOI:10.1016/j.aim.2011.05.026
  • Carlos E. Kenig; Gabriel S. Koch An alternative approach to regularity for the Navier–Stokes equations in critical spaces, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 2, p. 159 | DOI:10.1016/j.anihpc.2010.10.004
  • Gabriel S. Koch Profile decompositions and applications to Navier-Stokes, Journées équations aux dérivées partielles (2010), p. 1 | DOI:10.5802/jedp.69
  • Yann Lucas; Mikhail Panfilov; Michel Buès The impact of instability appearance on the quadratic law for flow through porous media, Transport in Porous Media, Volume 71 (2008) no. 1, p. 99 | DOI:10.1007/s11242-007-9113-8
  • Pierre Germain Equations de Navier–Stokes dans R2 : existence et comportement asymptotique de solutions d'énergie infinie, Bulletin des Sciences Mathématiques, Volume 130 (2006) no. 2, p. 123 | DOI:10.1016/j.bulsci.2005.06.004
  • Marco Cannone Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations, Volume 3 (2005), p. 161 | DOI:10.1016/s1874-5792(05)80006-0
  • P. Auscher; S. Dubois; P. Tchamitchian On the stability of global solutions to Navier–Stokes equations in the space, Journal de Mathématiques Pures et Appliquées, Volume 83 (2004) no. 6, p. 673 | DOI:10.1016/j.matpur.2004.01.003

Cité par 28 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: