[Sur les variétés qui admettent des difféomorphismes de type quasi-Anosov]
Let M be an n-dimensional manifold supporting a quasi-Anosov diffeomorphism. If n=3 then either
Soit M une variété différentiable de dimension n qui admet un difféomorphisme de type quasi-Anosov. Si n=3 alors on a l'altenative suivante, ou bien
Accepté le :
Publié le :
Jana Rodriguez Hertz 1 ; Raúl Ures 1 ; José L. Vieitez 1
@article{CRMATH_2002__334_4_321_0, author = {Jana Rodriguez Hertz and Ra\'ul Ures and Jos\'e L. Vieitez}, title = {On manifolds supporting {quasi-Anosov} diffeomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {321--323}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02260-4}, language = {en}, }
Jana Rodriguez Hertz; Raúl Ures; José L. Vieitez. On manifolds supporting quasi-Anosov diffeomorphisms. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 321-323. doi : 10.1016/S1631-073X(02)02260-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02260-4/
[1] A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., Volume 223 (1976), pp. 267-278
[2] Expansive homeomorphisms of surfaces are pseudo-Anosov, Osaka J. Math., Volume 27 (1990), pp. 117-162
[3] Dynamical systems of expansive maps on compact manifolds, Sugaku Expo., Volume 5 (1992), pp. 133-154
[4] Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat., Volume 20 (1989) no. 1, pp. 113-133
[5] Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 351-370
[6] Expansive diffeomorphisms, Lecture Notes in Math., 468, Springer-Verlag, 1975, pp. 162-174
[7] R. Mañé, Personal communication
[8] Hyperbolic attractors of diffeomorphisms, Russian Math. Surveys, Volume 35 (1980) no. 3, pp. 109-121
[9] On hyperbolic attractors of diffeomorphisms (the non-orientable case), Russian Math. Surveys, Volume 35 (1980) no. 4, pp. 186-187
[10] Differentiable dynamical systems, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 747-817
[11] J. Vieitez, Lyapunov functions and expansive diffeomorphisms on 3D-manifolds, Ergodic Theory Dynam. Systems (to appear)
- Dynamical systems with nontrivially recurrent invariant manifolds, Dynamics, games and science I. DYNA 2008, in honor of Maurício Peixoto and David Rand, University of Minho, Braga, Portugal, September 8–12, 2008. Papers based on talks given at the international conference, Berlin: Springer, 2011, pp. 421-470 | DOI:10.1007/978-3-642-11456-4_29 | Zbl:1253.37037
- Quasi-Anosov diffeomorphisms of 3-manifolds, Transactions of the American Mathematical Society, Volume 361 (2009) no. 7, pp. 3707-3720 | DOI:10.1090/s0002-9947-09-04687-x | Zbl:1173.37027
Cité par 2 documents. Sources : zbMATH
☆ The first author was partially supported by a grant from PEDECIBA. The second author was partially supported by CONICYT, Fondo Clemente Estable.
Commentaires - Politique