Comptes Rendus
On manifolds supporting quasi-Anosov diffeomorphisms
[Sur les variétés qui admettent des difféomorphismes de type quasi-Anosov]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 321-323.

Let M be an n-dimensional manifold supporting a quasi-Anosov diffeomorphism. If n=3 then either M=𝕋3, in which case the diffeomorphisms is Anosov, or else its fundamental group contains a copy of 6. If n=4 then Π1(M) contains a copy of 4, provided that the diffeomorphism is not Anosov.

Soit M une variété différentiable de dimension n qui admet un difféomorphisme de type quasi-Anosov. Si n=3 alors on a l'altenative suivante, ou bien M=𝕋3, et dans ce cas le difféomorphisme est en fait d'Anosov, ou bien le goupe fondamental de M contient une copie de 6. Si n=4, alors Π1(M) contient une copie de 4, pourvu que le difféomorphisme ne soit pas d'Anosov.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02260-4

Jana Rodriguez Hertz 1 ; Raúl Ures 1 ; José L. Vieitez 1

1 CC 30, IMERL – Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay
@article{CRMATH_2002__334_4_321_0,
     author = {Jana Rodriguez Hertz and Ra\'ul Ures and Jos\'e L. Vieitez},
     title = {On manifolds supporting {quasi-Anosov} diffeomorphisms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {321--323},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02260-4},
     language = {en},
}
TY  - JOUR
AU  - Jana Rodriguez Hertz
AU  - Raúl Ures
AU  - José L. Vieitez
TI  - On manifolds supporting quasi-Anosov diffeomorphisms
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 321
EP  - 323
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02260-4
LA  - en
ID  - CRMATH_2002__334_4_321_0
ER  - 
%0 Journal Article
%A Jana Rodriguez Hertz
%A Raúl Ures
%A José L. Vieitez
%T On manifolds supporting quasi-Anosov diffeomorphisms
%J Comptes Rendus. Mathématique
%D 2002
%P 321-323
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02260-4
%G en
%F CRMATH_2002__334_4_321_0
Jana Rodriguez Hertz; Raúl Ures; José L. Vieitez. On manifolds supporting quasi-Anosov diffeomorphisms. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 321-323. doi : 10.1016/S1631-073X(02)02260-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02260-4/

[1] J. Franks; C. Robinson A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., Volume 223 (1976), pp. 267-278

[2] K. Hiraide Expansive homeomorphisms of surfaces are pseudo-Anosov, Osaka J. Math., Volume 27 (1990), pp. 117-162

[3] K. Hiraide Dynamical systems of expansive maps on compact manifolds, Sugaku Expo., Volume 5 (1992), pp. 133-154

[4] J. Lewowicz Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat., Volume 20 (1989) no. 1, pp. 113-133

[5] R. Mañé Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 351-370

[6] R. Mañé Expansive diffeomorphisms, Lecture Notes in Math., 468, Springer-Verlag, 1975, pp. 162-174

[7] R. Mañé, Personal communication

[8] R. Plykin Hyperbolic attractors of diffeomorphisms, Russian Math. Surveys, Volume 35 (1980) no. 3, pp. 109-121

[9] R. Plykin On hyperbolic attractors of diffeomorphisms (the non-orientable case), Russian Math. Surveys, Volume 35 (1980) no. 4, pp. 186-187

[10] S. Smale Differentiable dynamical systems, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 747-817

[11] J. Vieitez, Lyapunov functions and expansive diffeomorphisms on 3D-manifolds, Ergodic Theory Dynam. Systems (to appear)

  • Viacheslav Grines; Evgeny Zhuzhoma Dynamical systems with nontrivially recurrent invariant manifolds, Dynamics, games and science I. DYNA 2008, in honor of Maurício Peixoto and David Rand, University of Minho, Braga, Portugal, September 8–12, 2008. Papers based on talks given at the international conference, Berlin: Springer, 2011, pp. 421-470 | DOI:10.1007/978-3-642-11456-4_29 | Zbl:1253.37037
  • T. Fisher; M. Rodriguez Hertz Quasi-Anosov diffeomorphisms of 3-manifolds, Transactions of the American Mathematical Society, Volume 361 (2009) no. 7, pp. 3707-3720 | DOI:10.1090/s0002-9947-09-04687-x | Zbl:1173.37027

Cité par 2 documents. Sources : zbMATH

The first author was partially supported by a grant from PEDECIBA. The second author was partially supported by CONICYT, Fondo Clemente Estable.

Commentaires - Politique