[Résolution plongée d'une variété torique non nécessairement normale]
Nous présentons une méthode de construction d'une résolution plongée partielle d'une variété torique affine non nécessairement normale ZΓ plongée de manière équivariante dans une variété torique affine normale Zρ. Cette résolution partielle est une normalisation plongée de ZΓ dans un espace ambiant torique normal et une résolution des singularités de l'espace ambiant, qui existe toujours, fournit une résolution plongée des singularités. L'avantage est que cette résolution partielle est entièrement déterminée par le plongement ZΓ⊂Zρ. Une conséquence est la construction de la normalisation sans calcul de la saturation du semigroupe Γ de la variété torique (voir [3]). Ce résultat est valide sur un corps k algébriquement clos de caractéristique quelconque.
We give a method to construct a partial embedded resolution of a nonnecessarily normal affine toric variety ZΓ equivariantly embedded in a normal affine toric variety Zρ. This partial resolution is an embedded normalization inside a normal toric ambient space and a resolution of singularities of the ambient space, which always exists, provides an embedded resolution. The advantage is that this partial resolution is completely determined by the embedding ZΓ⊂Zρ. As a by-product, the construction of the normalization is made without an explicit computation of the saturation of the semigroup Γ of the toric variety (see [3]). This result is valid for a base field k algebraically closed of arbitrary characteristic.
Accepté le :
Publié le :
Pedro Daniel González Pérez 1 ; Bernard Teissier 1
@article{CRMATH_2002__334_5_379_0, author = {Pedro Daniel Gonz\'alez P\'erez and Bernard Teissier}, title = {Embedded resolutions of non necessarily normal affine toric varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {379--382}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02273-2}, language = {en}, }
TY - JOUR AU - Pedro Daniel González Pérez AU - Bernard Teissier TI - Embedded resolutions of non necessarily normal affine toric varieties JO - Comptes Rendus. Mathématique PY - 2002 SP - 379 EP - 382 VL - 334 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(02)02273-2 LA - en ID - CRMATH_2002__334_5_379_0 ER -
Pedro Daniel González Pérez; Bernard Teissier. Embedded resolutions of non necessarily normal affine toric varieties. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 379-382. doi : 10.1016/S1631-073X(02)02273-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02273-2/
[1] Toric varieties and toric resolutions, Resolution of Singularities, Progr. Math., 181, Birkhäuser, 2000, pp. 259-283
[2] Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, 1996
[3] Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton University Press, 1993
[4] Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities, Progr. Math., 181, Birkhäuser, 2000, pp. 315-340
[5] P.D. González Pérez, Toric embedded resolutions of quasi-ordinary hypersurfaces, Preprint, 2001
[6] Toroidal Embeddings, Springer Lecture Notes in Math., 339, Springer-Verlag, 1973
[7] Arcs and wedges on sandwiched surface singularities, Amer. J. Math., Volume 121 (1999) no. 6, pp. 1191-1213
[8] Convex Bodies and Algebraic Geometry, Ann. of Math. Stud., 131, Springer-Verlag, 1988
[9] Gröbner Bases and Convex Polytopes, University Lecture Series, 8, American Mathematical Society, 1996
[10] B. Teissier, Valuations, deformations and toric geometry, in preparation
Cité par Sources :
Commentaires - Politique