Comptes Rendus
Holomorphic vector bundles on non-algebraic surfaces
[Fibrés vectoriels holomorphes sur les surfaces non algébriques]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 383-388.

Le problème de l'existence des structures holomorphes sur les fibrés vectoriels au-dessus des surfaces non algébriques est en général encore ouvert. Nous résolvons ce problème pour les fibrés de rang 2 sur les surfaces K3 et pour les fibrés de rangs arbitraires sur toutes les surfaces connues de la classe VII. Nos méthodes, qui s'appuient sur la théorie de Donaldson et sur la théorie des déformations, peuvent être utilisées pour résoudre le problème de l'existence des fibrés vectoriels holomorphes sur d'autres classes de surfaces non algébriques.

The existence problem for holomorphic structures on vector bundles over non-algebraic surfaces is, in general, still open. We solve this problem in the case of rank 2 vector bundles over K3 surfaces and in the case of vector bundles of arbitrary rank over all known surfaces of class VII. Our methods, which are based on Donaldson theory and deformation theory, can be used to solve the existence problem of holomorphic vector bundles on further classes of non-algebraic surfaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02278-1

Andrei Teleman 1, 2 ; Matei Toma 3, 4

1 CMI, Université de Provence, 39, rue F. Joliot Curie, 13453 Marseille cedex 13, France
2 Faculty of Mathematics, University of Bucharest, Romania
3 Fachbereich Mathematik-Informatik, Universität Osnabrück, 49069 Osnabrück, Germany
4 Mathematical Institute of the Romanian Academy, Romania
@article{CRMATH_2002__334_5_383_0,
     author = {Andrei Teleman and Matei Toma},
     title = {Holomorphic vector bundles on non-algebraic surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {383--388},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02278-1},
     language = {en},
}
TY  - JOUR
AU  - Andrei Teleman
AU  - Matei Toma
TI  - Holomorphic vector bundles on non-algebraic surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 383
EP  - 388
VL  - 334
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02278-1
LA  - en
ID  - CRMATH_2002__334_5_383_0
ER  - 
%0 Journal Article
%A Andrei Teleman
%A Matei Toma
%T Holomorphic vector bundles on non-algebraic surfaces
%J Comptes Rendus. Mathématique
%D 2002
%P 383-388
%V 334
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02278-1
%G en
%F CRMATH_2002__334_5_383_0
Andrei Teleman; Matei Toma. Holomorphic vector bundles on non-algebraic surfaces. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 383-388. doi : 10.1016/S1631-073X(02)02278-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02278-1/

[1] M. Aprodu, V. Brı̂nzănescu, M. Toma, Holomorphic vector bundles on primary Kodaira surfaces, Math. Z. (to appear)

[2] C. Bănică; X. Le Potier Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. Reine Angew. Math., Volume 378 (1987), pp. 1-31

[3] S. Donaldson; P. Kronheimer The Geometry of Four-Manifolds, Oxford University Press, 1990

[4] R. Friedman; J. Morgan Smooth 4-Manifolds and Complex Surfaces, Springer-Verlag, 1994

[5] M. Inoue On surfaces of class VII0, Invent. Math., Volume 24 (1974), pp. 269-310

[6] P. Kronheimer; T. Mrowka Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom., Volume 41 (1995), pp. 573-734

[7] M. Lübke; A. Teleman The Kobayashi–Hitchin Correspondence, World Scientific, 1995

[8] I. Nakamura On surfaces of class VII0 with curves, II, Tôhoku Math. J., Volume 42 (1990), pp. 475-516

[9] K.G. O'Grady Donaldson polynomials for K3 surfaces, J. Differential Geom., Volume 35 (1992), pp. 415-427

[10] G. Schumacher; M. Toma Moduli of Kähler manifolds equipped with Hermite–Einstein vector bundles, Rev. Roumaine Math. Pures Appl., Volume 38 (1993), pp. 703-719

[11] A.D. Teleman Projectively flat surfaces and Bogomolov's theorem on class VII0 surfaces, Internat. J. Math., Volume 5 (1994), pp. 253-264

[12] M. Toma Une classe de fibrés vectoriels holomorphes sur les 2-tores complexes, C. R. Acad. Sci. Paris, Volume 311 (1990), pp. 257-258

[13] M. Toma Stable bundles on non-algebraic surfaces giving rise to compact moduli spaces, C. R. Acad. Sci. Paris, Volume 323 (1996), pp. 501-505

[14] M. Toma Stable bundles with small c2 over 2-dimensional complex tori, Math. Z., Volume 232 (1999), pp. 511-525

Cité par Sources :

Commentaires - Politique