Comptes Rendus
Analytic Geometry
A Note on the cone of mobile curves
[Une Note sur le cône des courbes mobiles]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 71-73.

S. Boucksom, J.-P. Demailly, M. Păun and Th. Peternell proved that the cone of mobile curves ME(X)¯ of a projective complex manifold X is dual to the cone generated by classes of effective divisors and conjectured an extension of this duality in the Kähler set-up. We show that their conjecture implies that ME(X)¯ coincides with the cone of integer classes represented by closed positive smooth (n1,n1)-forms. Without assuming the validity of the conjecture we prove that this equality of cones still holds at the level of degree functions.

S. Boucksom, J.-P. Demailly, M. Păun et Thomas Peternell ont montré que le cône des courbes mobiles ME(X)¯ d'une variété projective complexe X est le dual du cône engendré par les classes de diviseurs effectifs, et ils ont conjecturé que cette dualité pouvait s'étendre dans le contexte kählerien. Nous montrons que cette conjecture implique que ME(X)¯ coïncide avec le cône des classes entières représentées par des formes positives fermées de type (n1,n1) et de classe C. Sans supposer que cette conjecture soit vraie, nous montrons que cette égalité de cônes a lieu en tout cas au niveau des fonctions degré associées.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.11.003

Matei Toma 1, 2

1 Institut Élie-Cartan, Nancy-Université, CNRS, INRIA, B.P. 239, 54506 Vandoeuvre-lès-Nancy cedex, France
2 Institute of Mathematics of the Romanian Academy, Romania
@article{CRMATH_2010__348_1-2_71_0,
     author = {Matei Toma},
     title = {A {Note} on the cone of mobile curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {71--73},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.003},
     language = {en},
}
TY  - JOUR
AU  - Matei Toma
TI  - A Note on the cone of mobile curves
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 71
EP  - 73
VL  - 348
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2009.11.003
LA  - en
ID  - CRMATH_2010__348_1-2_71_0
ER  - 
%0 Journal Article
%A Matei Toma
%T A Note on the cone of mobile curves
%J Comptes Rendus. Mathématique
%D 2010
%P 71-73
%V 348
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2009.11.003
%G en
%F CRMATH_2010__348_1-2_71_0
Matei Toma. A Note on the cone of mobile curves. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 71-73. doi : 10.1016/j.crma.2009.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.003/

[1] L. Alessandrini; G. Bassanelli Modifications of compact balanced manifolds, C. R. Acad. Sci. Paris Sér. I Math., Volume 320 (1995), pp. 1517-1522

[2] S. Boucksom; J.-P. Demailly; M. Păun; Th. Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension | arXiv

[3] F. Campana; Th. Peternell Geometric stability of the cotangent bundle and the universal cover of a projective manifold | arXiv

[4] J.-P. Demailly Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409

[5] J.P. Demailly Complex analytic and algebraic geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html

[6] M. Lübke; A. Teleman The Kobayashi–Hitchin Correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995

  • Ionuţ Chiose; Rareş Răsdeaconu; Ioana Şuvaina Balanced manifolds and SKT metrics, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 201 (2022) no. 5, pp. 2505-2517 | DOI:10.1007/s10231-022-01207-9 | Zbl:1504.53082
  • Jian Xiao On the positivity of high-degree Schur classes of an ample vector bundle, Science China. Mathematics, Volume 65 (2022) no. 1, pp. 51-62 | DOI:10.1007/s11425-020-1868-7 | Zbl:1484.14014
  • Valentino Tosatti; Ben Weinkove Hermitian metrics, (n1,n1) forms and Monge-Ampère equations, Journal für die Reine und Angewandte Mathematik, Volume 755 (2019), pp. 67-101 | DOI:10.1515/crelle-2017-0017 | Zbl:1435.32052
  • David Witt Nyström Duality between the pseudoeffective and the movable cone on a projective manifold, Journal of the American Mathematical Society, Volume 32 (2019) no. 3, pp. 675-689 | DOI:10.1090/jams/922 | Zbl:1429.32031
  • Sheng Rao; Quanting Zhao Several special complex structures and their deformation properties, The Journal of Geometric Analysis, Volume 28 (2018) no. 4, pp. 2984-3047 | DOI:10.1007/s12220-017-9944-7 | Zbl:1420.32006
  • Valentino Tosatti; Ben Weinkove The Monge-Ampère equation for (n1)-plurisubharmonic functions on a compact Kähler manifold, Journal of the American Mathematical Society, Volume 30 (2017) no. 2, pp. 311-346 | DOI:10.1090/jams/875 | Zbl:1366.32015
  • Jian Xiao Characterizing volume via cone duality, Mathematische Annalen, Volume 369 (2017) no. 3-4, pp. 1527-1555 | DOI:10.1007/s00208-016-1501-3 | Zbl:1379.32015
  • Jixiang Fu A survey on balanced metrics, Geometry and topology of manifolds. 10th China-Japan geometry conference for friendship, held in Shanghai, China, September 7–11, 2014, Tokyo: Springer, 2016, pp. 127-138 | DOI:10.1007/978-4-431-56021-0_6 | Zbl:1351.32027
  • Jixiang Fu; Jian Xiao Relations between the Kähler cone and the balanced cone of a Kähler manifold, Advances in Mathematics, Volume 263 (2014), pp. 230-252 | DOI:10.1016/j.aim.2014.06.018 | Zbl:1300.32023

Cité par 9 documents. Sources : zbMATH

Commentaires - Politique