[Une Note sur le cône des courbes mobiles]
S. Boucksom, J.-P. Demailly, M. Păun and Th. Peternell proved that the cone of mobile curves
S. Boucksom, J.-P. Demailly, M. Păun et Thomas Peternell ont montré que le cône des courbes mobiles
Accepté le :
Publié le :
Matei Toma 1, 2
@article{CRMATH_2010__348_1-2_71_0, author = {Matei Toma}, title = {A {Note} on the cone of mobile curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--73}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.003}, language = {en}, }
Matei Toma. A Note on the cone of mobile curves. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 71-73. doi : 10.1016/j.crma.2009.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.003/
[1] Modifications of compact balanced manifolds, C. R. Acad. Sci. Paris Sér. I Math., Volume 320 (1995), pp. 1517-1522
[2] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension | arXiv
[3] Geometric stability of the cotangent bundle and the universal cover of a projective manifold | arXiv
[4] Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409
[5] Complex analytic and algebraic geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html
[6] The Kobayashi–Hitchin Correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995
- Balanced manifolds and SKT metrics, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 201 (2022) no. 5, pp. 2505-2517 | DOI:10.1007/s10231-022-01207-9 | Zbl:1504.53082
- On the positivity of high-degree Schur classes of an ample vector bundle, Science China. Mathematics, Volume 65 (2022) no. 1, pp. 51-62 | DOI:10.1007/s11425-020-1868-7 | Zbl:1484.14014
- Hermitian metrics,
forms and Monge-Ampère equations, Journal für die Reine und Angewandte Mathematik, Volume 755 (2019), pp. 67-101 | DOI:10.1515/crelle-2017-0017 | Zbl:1435.32052 - Duality between the pseudoeffective and the movable cone on a projective manifold, Journal of the American Mathematical Society, Volume 32 (2019) no. 3, pp. 675-689 | DOI:10.1090/jams/922 | Zbl:1429.32031
- Several special complex structures and their deformation properties, The Journal of Geometric Analysis, Volume 28 (2018) no. 4, pp. 2984-3047 | DOI:10.1007/s12220-017-9944-7 | Zbl:1420.32006
- The Monge-Ampère equation for
-plurisubharmonic functions on a compact Kähler manifold, Journal of the American Mathematical Society, Volume 30 (2017) no. 2, pp. 311-346 | DOI:10.1090/jams/875 | Zbl:1366.32015 - Characterizing volume via cone duality, Mathematische Annalen, Volume 369 (2017) no. 3-4, pp. 1527-1555 | DOI:10.1007/s00208-016-1501-3 | Zbl:1379.32015
- A survey on balanced metrics, Geometry and topology of manifolds. 10th China-Japan geometry conference for friendship, held in Shanghai, China, September 7–11, 2014, Tokyo: Springer, 2016, pp. 127-138 | DOI:10.1007/978-4-431-56021-0_6 | Zbl:1351.32027
- Relations between the Kähler cone and the balanced cone of a Kähler manifold, Advances in Mathematics, Volume 263 (2014), pp. 230-252 | DOI:10.1016/j.aim.2014.06.018 | Zbl:1300.32023
Cité par 9 documents. Sources : zbMATH
Commentaires - Politique