Comptes Rendus
Analytic Geometry
A Note on the cone of mobile curves
[Une Note sur le cône des courbes mobiles]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 71-73.

S. Boucksom, J.-P. Demailly, M. Păun et Thomas Peternell ont montré que le cône des courbes mobiles ME(X)¯ d'une variété projective complexe X est le dual du cône engendré par les classes de diviseurs effectifs, et ils ont conjecturé que cette dualité pouvait s'étendre dans le contexte kählerien. Nous montrons que cette conjecture implique que ME(X)¯ coïncide avec le cône des classes entières représentées par des formes positives fermées de type (n1,n1) et de classe C. Sans supposer que cette conjecture soit vraie, nous montrons que cette égalité de cônes a lieu en tout cas au niveau des fonctions degré associées.

S. Boucksom, J.-P. Demailly, M. Păun and Th. Peternell proved that the cone of mobile curves ME(X)¯ of a projective complex manifold X is dual to the cone generated by classes of effective divisors and conjectured an extension of this duality in the Kähler set-up. We show that their conjecture implies that ME(X)¯ coincides with the cone of integer classes represented by closed positive smooth (n1,n1)-forms. Without assuming the validity of the conjecture we prove that this equality of cones still holds at the level of degree functions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.11.003

Matei Toma 1, 2

1 Institut Élie-Cartan, Nancy-Université, CNRS, INRIA, B.P. 239, 54506 Vandoeuvre-lès-Nancy cedex, France
2 Institute of Mathematics of the Romanian Academy, Romania
@article{CRMATH_2010__348_1-2_71_0,
     author = {Matei Toma},
     title = {A {Note} on the cone of mobile curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {71--73},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.003},
     language = {en},
}
TY  - JOUR
AU  - Matei Toma
TI  - A Note on the cone of mobile curves
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 71
EP  - 73
VL  - 348
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2009.11.003
LA  - en
ID  - CRMATH_2010__348_1-2_71_0
ER  - 
%0 Journal Article
%A Matei Toma
%T A Note on the cone of mobile curves
%J Comptes Rendus. Mathématique
%D 2010
%P 71-73
%V 348
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2009.11.003
%G en
%F CRMATH_2010__348_1-2_71_0
Matei Toma. A Note on the cone of mobile curves. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 71-73. doi : 10.1016/j.crma.2009.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.003/

[1] L. Alessandrini; G. Bassanelli Modifications of compact balanced manifolds, C. R. Acad. Sci. Paris Sér. I Math., Volume 320 (1995), pp. 1517-1522

[2] S. Boucksom; J.-P. Demailly; M. Păun; Th. Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension | arXiv

[3] F. Campana; Th. Peternell Geometric stability of the cotangent bundle and the universal cover of a projective manifold | arXiv

[4] J.-P. Demailly Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409

[5] J.P. Demailly Complex analytic and algebraic geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html

[6] M. Lübke; A. Teleman The Kobayashi–Hitchin Correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995

Cité par Sources :

Commentaires - Politique