[Une Note sur le cône des courbes mobiles]
S. Boucksom, J.-P. Demailly, M. Păun et Thomas Peternell ont montré que le cône des courbes mobiles
S. Boucksom, J.-P. Demailly, M. Păun and Th. Peternell proved that the cone of mobile curves
Accepté le :
Publié le :
Matei Toma 1, 2
@article{CRMATH_2010__348_1-2_71_0, author = {Matei Toma}, title = {A {Note} on the cone of mobile curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--73}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.003}, language = {en}, }
Matei Toma. A Note on the cone of mobile curves. Comptes Rendus. Mathématique, Volume 348 (2010) no. 1-2, pp. 71-73. doi : 10.1016/j.crma.2009.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.003/
[1] Modifications of compact balanced manifolds, C. R. Acad. Sci. Paris Sér. I Math., Volume 320 (1995), pp. 1517-1522
[2] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension | arXiv
[3] Geometric stability of the cotangent bundle and the universal cover of a projective manifold | arXiv
[4] Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409
[5] Complex analytic and algebraic geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html
[6] The Kobayashi–Hitchin Correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier