Comptes Rendus
Une inégalité de concentration à gauche pour les processus empiriques
Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 501-504.

Nous donnons des constantes dans l'inégalité de concentration à gauche de Talagrand pour les processus empiriques indexés par des classes de fonctions, en partant de la méthode de Herbst. Le point nouveau est que la constante du facteur variance est exacte, ce qui répond à une conjecture de Massart.

We give new constants in Talagrand's left concentration inequality for maxima of empirical processes. Our approach is based on the Herbst method. The improvement we get concerns the constant in the variance factor, which is the one conjectured by Massart.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02303-8

Thierry Klein 1

1 Laboratoire de mathématiques, LAMA CNRS UMR 8100, Université de Versailles–Saint-Quentin, Versailles, France
@article{CRMATH_2002__334_6_501_0,
     author = {Thierry Klein},
     title = {Une in\'egalit\'e de concentration \`a gauche pour les processus empiriques},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {501--504},
     publisher = {Elsevier},
     volume = {334},
     number = {6},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02303-8},
     language = {fr},
}
TY  - JOUR
AU  - Thierry Klein
TI  - Une inégalité de concentration à gauche pour les processus empiriques
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 501
EP  - 504
VL  - 334
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02303-8
LA  - fr
ID  - CRMATH_2002__334_6_501_0
ER  - 
%0 Journal Article
%A Thierry Klein
%T Une inégalité de concentration à gauche pour les processus empiriques
%J Comptes Rendus. Mathématique
%D 2002
%P 501-504
%V 334
%N 6
%I Elsevier
%R 10.1016/S1631-073X(02)02303-8
%G fr
%F CRMATH_2002__334_6_501_0
Thierry Klein. Une inégalité de concentration à gauche pour les processus empiriques. Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 501-504. doi : 10.1016/S1631-073X(02)02303-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02303-8/

[1] M. Ledoux On Talagrand's deviation inequalities for product measures, ESAIM Probability and Statistics, Volume 1 (1996), pp. 63-87

[2] P. Massart About the constant in Talagrand's concentration inequalities for empirical processes, Ann. Probab., Volume 28 (2000), pp. 863-884

[3] E. Rio Théorie asymptotique des processus aléatoires faiblement dépendants (J.M. Ghidaglia; X. Guyon, eds.), Math. Appl., 31, Springer, 2000

[4] E. Rio, Une inégalité de Bernstein pour les maxima de processus empiriques, Preprint 57 de l'Université de Versailles–Saint-Quentin, 2001

[5] M. Talagrand New concentration inequalities in product spaces, Invent. Math., Volume 126 (1996), pp. 503-563

  • Antoine Marchina Concentration inequalities for suprema of unbounded empirical processes, Annales Henri Lebesgue, Volume 4 (2021), p. 831 | DOI:10.5802/ahl.90
  • Antoine Marchina About the rate function in concentration inequalities for suprema of bounded empirical processes, Stochastic Processes and their Applications, Volume 129 (2019) no. 10, p. 3967 | DOI:10.1016/j.spa.2018.11.010
  • Adrien Saumard On optimality of empirical risk minimization in linear aggregation, Bernoulli, Volume 24 (2018) no. 3 | DOI:10.3150/17-bej925
  • Sara van de Geer; Martin J. Wainwright On Concentration for (Regularized) Empirical Risk Minimization, Sankhya A, Volume 79 (2017) no. 2, p. 159 | DOI:10.1007/s13171-017-0111-9
  • Luca Oneto; Alessandro Ghio; Sandro Ridella; Davide Anguita Global Rademacher Complexity Bounds: From Slow to Fast Convergence Rates, Neural Processing Letters, Volume 43 (2016) no. 2, p. 567 | DOI:10.1007/s11063-015-9429-2
  • Luca Oneto; Alessandro Ghio; Sandro Ridella; Davide Anguita, 2015 International Joint Conference on Neural Networks (IJCNN) (2015), p. 1 | DOI:10.1109/ijcnn.2015.7280414
  • Adrien Saumard Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression, Electronic Journal of Statistics, Volume 6 (2012) no. none | DOI:10.1214/12-ejs679
  • Davit Varron; Ingrid Van Keilegom Uniform in bandwidth exact rates for a class of kernel estimators, Annals of the Institute of Statistical Mathematics, Volume 63 (2011) no. 6, p. 1077 | DOI:10.1007/s10463-010-0286-5
  • Peter L. Bartlett; Shahar Mendelson; Petra Philips On the Optimality of Sample-Based Estimates of the Expectation of the Empirical Minimizer, ESAIM: Probability and Statistics, Volume 14 (2010), p. 315 | DOI:10.1051/ps:2008036
  • Davit Varron A limited in bandwidth uniformity for the functional limit law of the increments of the empirical process, Electronic Journal of Statistics, Volume 2 (2008) no. none | DOI:10.1214/08-ejs193
  • Ingo Steinwart; Clint Scovel Fast rates for support vector machines using Gaussian kernels, The Annals of Statistics, Volume 35 (2007) no. 2 | DOI:10.1214/009053606000001226
  • Peter L. Bartlett; Shahar Mendelson Empirical minimization, Probability Theory and Related Fields, Volume 135 (2006) no. 3, p. 311 | DOI:10.1007/s00440-005-0462-3
  • Vladimir Koltchinskii Local Rademacher complexities and oracle inequalities in risk minimization, The Annals of Statistics, Volume 34 (2006) no. 6 | DOI:10.1214/009053606000001019
  • T. Klein; E. Rio Concentration around the mean for maxima of empirical processes, The Annals of Probability, Volume 33 (2005) no. 3 | DOI:10.1214/009117905000000044
  • Stéphane Boucheron; Gábor Lugosi; Olivier Bousquet Concentration Inequalities, Advanced Lectures on Machine Learning, Volume 3176 (2004), p. 208 | DOI:10.1007/978-3-540-28650-9_9
  • Peter L. Bartlett; Shahar Mendelson; Petra Philips Local Complexities for Empirical Risk Minimization, Learning Theory, Volume 3120 (2004), p. 270 | DOI:10.1007/978-3-540-27819-1_19
  • Evarist Giné; Vladimir Koltchinskii; Jon A. Wellner Ratio Limit Theorems for Empirical Processes, Stochastic Inequalities and Applications (2003), p. 249 | DOI:10.1007/978-3-0348-8069-5_15
  • Dmitry Panchenko Symmetrization approach to concentration inequalities for empirical processes, The Annals of Probability, Volume 31 (2003) no. 4 | DOI:10.1214/aop/1068646378

Cité par 18 documents. Sources : Crossref

Commentaires - Politique