On définit la notion de solveur de Riemann simple pour des systèmes hyperboliques avec terme source et on construit des schémas de type Godunov entropiques pour la dynamique des gaz avec gravité et le système de Saint-Venant.
The notion of simple Riemann solver is introduced for hyperbolic systems with source term and entropic Godunov-type schemes are derived for gas dynamic system with gravity and Saint-Venant system.
Accepté le :
Publié le :
Gérard Gallice 1
@article{CRMATH_2002__334_8_713_0, author = {G\'erard Gallice}, title = {Solveurs simples positifs et entropiques pour les syst\`emes hyperboliques avec terme source}, journal = {Comptes Rendus. Math\'ematique}, pages = {713--716}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02307-5}, language = {fr}, }
Gérard Gallice. Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 713-716. doi : 10.1016/S1631-073X(02)02307-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02307-5/
[1] E. Audusse, M.O. Bristeau, B. Perthame, Kinetic schemes for Saint-Venant equations with source terms on unstructured grids, Rapport de Recherche INRIA, N∘ 3989, 2000
[2] Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, Volume 23 (1994) no. 8, pp. 1049-1071
[3] A. Chinnayya, A.Y. Leroux, A new general Riemann solver for the shallow-water equations with friction and topography, Preprint, 1999
[4] Schémas de type Godunov entropiques et positifs préservant les discontinuités de contact, C. R. Acad. Sci. Paris, Série I, Volume 331 (2000), pp. 149-152
[5] T. Gallouet, J.-M. Hérard, N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, AIAA J., 2001, à paraı̂tre
[6] A steady-state captuting method for hyperbolic systems with geometrical source terms, Math. Modelling Numer. Anal., Volume 35 (2001) no. 4, pp. 631-645
[7] Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave propagation algorithm, J. Comput. Phys., Volume 146 (1998), pp. 346-365
[8] The surface gradient method for the treatment of source terms in the shallow-water equations, J. Comput. Phys., Volume 168 (2001), pp. 1-25
- How to enforce an entropy inequality of (fully) well-balanced Godunov-type schemes for the shallow water equations, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 59 (2025) no. 2, pp. 955-997 | DOI:10.1051/m2an/2025012 | Zbl:8028644
- Non-conservative Godunov-type schemes: application to two-phase flows with surface tension using Lagrange-transport splitting strategy, Journal of Computational Physics, Volume 532 (2025), p. 32 (Id/No 113958) | DOI:10.1016/j.jcp.2025.113958 | Zbl:8046725
- A well-balanced, positive, entropy-stable, and multi-dimensional-aware finite volume scheme for 2D shallow-water equations with unstructured grids, Journal of Computational Physics, Volume 503 (2024), p. 31 (Id/No 112829) | DOI:10.1016/j.jcp.2024.112829 | Zbl:7833830
- A semi-implicit fully exactly well-balanced relaxation scheme for the shallow water system, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 4, p. a2503-a2527 | DOI:10.1137/23m1621289 | Zbl:1554.76081
- Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system, Applied Mathematics and Computation, Volume 443 (2023), p. 24 (Id/No 127784) | DOI:10.1016/j.amc.2022.127784 | Zbl:1511.76059
- Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws, Applied Numerical Mathematics, Volume 184 (2023), pp. 18-48 | DOI:10.1016/j.apnum.2022.09.016 | Zbl:1506.65135
- On Lagrange-projection schemes for shallow water flows over movable bottom with suspended and bedload transport, Numerical Mathematics: Theory, Methods and Applications, Volume 16 (2023) no. 4, pp. 1087-1126 | DOI:10.4208/nmtma.oa-2023-0082 | Zbl:1549.65315
- An asymptotic preserving scheme for the shallow-water equations with Manning friction using viscous correction of the HLL scheme, Numerical Methods for Partial Differential Equations, Volume 39 (2023) no. 5, pp. 3919-3941 | DOI:10.1002/num.23030 | Zbl:1535.76068
- Exploring different possibilities for second‐order well‐balanced Lagrange‐projection numerical schemes applied to shallow water Exner equations, International Journal for Numerical Methods in Fluids, Volume 94 (2022) no. 6, p. 505 | DOI:10.1002/fld.5064
- Second-order well-balanced Lagrange-projection schemes for blood flow equations, Calcolo, Volume 58 (2021) no. 4, p. 39 (Id/No 43) | DOI:10.1007/s10092-021-00434-5 | Zbl:1477.65145
- Towards sodium combustion modeling with liquid water, Journal of Computational Physics, Volume 403 (2020), p. 109060 | DOI:10.1016/j.jcp.2019.109060
- Stability of stationary solutions of singular systems of balance laws, Confluentes Mathematici, Volume 10 (2018) no. 2, pp. 93-112 | DOI:10.5802/cml.52 | Zbl:1492.35163
- A simple fully well-balanced and entropy preserving scheme for the shallow-water equations, Applied Mathematics Letters, Volume 86 (2018), pp. 284-290 | DOI:10.1016/j.aml.2018.07.013 | Zbl:1410.65338
- A simple three‐wave approximate Riemann solver for the Saint‐Venant‐Exner equations, International Journal for Numerical Methods in Fluids, Volume 87 (2018) no. 10, p. 508 | DOI:10.1002/fld.4500
- A fully well-balanced Lagrange-projection-type scheme for the shallow-water equations, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 5, pp. 3071-3098 | DOI:10.1137/17m1156101 | Zbl:1403.35201
- Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations, Bulletin of the Brazilian Mathematical Society. New Series, Volume 47 (2016) no. 1, pp. 117-130 | DOI:10.1007/s00574-016-0126-1 | Zbl:1375.76096
- A well-balanced scheme for the shallow-water equations with topography, Computers Mathematics with Applications, Volume 72 (2016) no. 3, pp. 568-593 | DOI:10.1016/j.camwa.2016.05.015 | Zbl:1359.76206
- A simple and accurate coupled HLL-type approximate Riemann solver for the two-fluid two-pressure model of compressible flows, International Journal on Finite Volumes, Volume 13 (2016), p. 21 (Id/No hal-01419932) | Zbl:1481.76141
- A well-balanced finite volume scheme for a mixed hyperbolic/parabolic system to model chemotaxis, Journal of Scientific Computing, Volume 67 (2016) no. 2, pp. 618-643 | DOI:10.1007/s10915-015-0097-1 | Zbl:1350.65093
- A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations, Mathematics of Computation, Volume 85 (2016) no. 299, pp. 1281-1307 | DOI:10.1090/mcom3045 | Zbl:1382.76180
- Shock profiles for the shallow-water Exner models, Advances in Applied Mathematics and Mechanics, Volume 7 (2015) no. 3, pp. 267-294 | DOI:10.4208/aamm.2013.m331 | Zbl:1488.35360
- On the Eulerian large eddy simulation of disperse phase flows: an asymptotic preserving scheme for small Stokes number flows, Multiscale Modeling Simulation, Volume 13 (2015) no. 1, pp. 291-315 | DOI:10.1137/140960438 | Zbl:1320.35274
- A simple well-balanced, non-negative and entropy-satisfying finite volume scheme for the shallow-water system, Finite volumes for complex applications VII – elliptic, parabolic and hyperbolic problems. Proceedings of the FVCA 7, Berlin, Germany, June 15–20, 2014. Vol. II, Cham: Springer, 2014, pp. 955-963 | DOI:10.1007/978-3-319-05591-6_97 | Zbl:1350.76036
- An entropy preserving MOOD scheme for the Euler equations, International Journal on Finite Volumes, Volume 11 (2014), p. 39 (Id/No hal-01115334) | Zbl:1490.65164
- Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 6, p. A2874 | DOI:10.1137/130908671
- A Godunov-type method for the seven-equation model of compressible two-phase flow, Computers and Fluids, Volume 54 (2012), pp. 67-91 | DOI:10.1016/j.compfluid.2011.10.004 | Zbl:1291.76212
- A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 2, p. 468 | DOI:10.1137/100814445
- Asymptotic preserving scheme for Euler system with large friction, Journal of Scientific Computing, Volume 48 (2011) no. 1-3, pp. 164-172 | DOI:10.1007/s10915-011-9459-5 | Zbl:1426.76351
- Godunov-type schemes for hyperbolic systems with parameter-dependent source: the case of Euler system with friction, M
AS. Mathematical Models Methods in Applied Sciences, Volume 20 (2010) no. 11, pp. 2109-2166 | DOI:10.1142/s021820251000488x | Zbl:1213.35034
Cité par 29 documents. Sources : Crossref, zbMATH
Commentaires - Politique