Comptes Rendus
Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source
Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 713-716.

On définit la notion de solveur de Riemann simple pour des systèmes hyperboliques avec terme source et on construit des schémas de type Godunov entropiques pour la dynamique des gaz avec gravité et le système de Saint-Venant.

The notion of simple Riemann solver is introduced for hyperbolic systems with source term and entropic Godunov-type schemes are derived for gas dynamic system with gravity and Saint-Venant system.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02307-5

Gérard Gallice 1

1 CEA-CESTA, BP 2, 33114 Le Barp, France
@article{CRMATH_2002__334_8_713_0,
     author = {G\'erard Gallice},
     title = {Solveurs simples positifs et entropiques pour les syst\`emes hyperboliques avec terme source},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {713--716},
     publisher = {Elsevier},
     volume = {334},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02307-5},
     language = {fr},
}
TY  - JOUR
AU  - Gérard Gallice
TI  - Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 713
EP  - 716
VL  - 334
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02307-5
LA  - fr
ID  - CRMATH_2002__334_8_713_0
ER  - 
%0 Journal Article
%A Gérard Gallice
%T Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source
%J Comptes Rendus. Mathématique
%D 2002
%P 713-716
%V 334
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02307-5
%G fr
%F CRMATH_2002__334_8_713_0
Gérard Gallice. Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 713-716. doi : 10.1016/S1631-073X(02)02307-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02307-5/

[1] E. Audusse, M.O. Bristeau, B. Perthame, Kinetic schemes for Saint-Venant equations with source terms on unstructured grids, Rapport de Recherche INRIA, N 3989, 2000

[2] A. Bermudez; M.E. Vazquez Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, Volume 23 (1994) no. 8, pp. 1049-1071

[3] A. Chinnayya, A.Y. Leroux, A new general Riemann solver for the shallow-water equations with friction and topography, Preprint, 1999

[4] G. Gallice Schémas de type Godunov entropiques et positifs préservant les discontinuités de contact, C. R. Acad. Sci. Paris, Série I, Volume 331 (2000), pp. 149-152

[5] T. Gallouet, J.-M. Hérard, N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, AIAA J., 2001, à paraı̂tre

[6] S. Jin A steady-state captuting method for hyperbolic systems with geometrical source terms, Math. Modelling Numer. Anal., Volume 35 (2001) no. 4, pp. 631-645

[7] R.J. Leveque Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave propagation algorithm, J. Comput. Phys., Volume 146 (1998), pp. 346-365

[8] J.G. Zhou; D.M. Causon; C.G. Mingham; D.M. Ingram The surface gradient method for the treatment of source terms in the shallow-water equations, J. Comput. Phys., Volume 168 (2001), pp. 1-25

  • Ludovic Martaud; Christophe Berthon How to enforce an entropy inequality of (fully) well-balanced Godunov-type schemes for the shallow water equations, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 59 (2025) no. 2, pp. 955-997 | DOI:10.1051/m2an/2025012 | Zbl:8028644
  • Lucas Tallois; Simon Peluchon; Gérard Gallice; Philippe Villedieu Non-conservative Godunov-type schemes: application to two-phase flows with surface tension using Lagrange-transport splitting strategy, Journal of Computational Physics, Volume 532 (2025), p. 32 (Id/No 113958) | DOI:10.1016/j.jcp.2025.113958 | Zbl:8046725
  • Alessia Del Grosso; Manuel J. Castro; Agnes Chan; Gérard Gallice; Raphaël Loubère; Pierre-Henri Maire A well-balanced, positive, entropy-stable, and multi-dimensional-aware finite volume scheme for 2D shallow-water equations with unstructured grids, Journal of Computational Physics, Volume 503 (2024), p. 31 (Id/No 112829) | DOI:10.1016/j.jcp.2024.112829 | Zbl:7833830
  • Celia Caballero-Cárdenas; Manuel Jesús Castro; Christophe Chalons; Tomás Morales de Luna; María Luz Muñoz-Ruiz A semi-implicit fully exactly well-balanced relaxation scheme for the shallow water system, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 4, p. a2503-a2527 | DOI:10.1137/23m1621289 | Zbl:1554.76081
  • C. Caballero-Cárdenas; M. J. Castro; T. Morales de Luna; M. L. Muñoz-Ruiz Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system, Applied Mathematics and Computation, Volume 443 (2023), p. 24 (Id/No 127784) | DOI:10.1016/j.amc.2022.127784 | Zbl:1511.76059
  • I. Gómez-Bueno; S. Boscarino; M. J. Castro; C. Parés; G. Russo Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws, Applied Numerical Mathematics, Volume 184 (2023), pp. 18-48 | DOI:10.1016/j.apnum.2022.09.016 | Zbl:1506.65135
  • Alessia Del Grosso; Manuel J. Castro Díaz; Christophe Chalons; Tomás Morales de Luna On Lagrange-projection schemes for shallow water flows over movable bottom with suspended and bedload transport, Numerical Mathematics: Theory, Methods and Applications, Volume 16 (2023) no. 4, pp. 1087-1126 | DOI:10.4208/nmtma.oa-2023-0082 | Zbl:1549.65315
  • Solène Bulteau; Christophe Berthon; Marianne Bessemoulin-Chatard An asymptotic preserving scheme for the shallow-water equations with Manning friction using viscous correction of the HLL scheme, Numerical Methods for Partial Differential Equations, Volume 39 (2023) no. 5, pp. 3919-3941 | DOI:10.1002/num.23030 | Zbl:1535.76068
  • Christophe Chalons; Alessia Del Grosso Exploring different possibilities for second‐order well‐balanced Lagrange‐projection numerical schemes applied to shallow water Exner equations, International Journal for Numerical Methods in Fluids, Volume 94 (2022) no. 6, p. 505 | DOI:10.1002/fld.5064
  • A. Del Grosso; C. Chalons Second-order well-balanced Lagrange-projection schemes for blood flow equations, Calcolo, Volume 58 (2021) no. 4, p. 39 (Id/No 43) | DOI:10.1007/s10092-021-00434-5 | Zbl:1477.65145
  • Damien Furfaro; Richard Saurel; Lucas David; François Beauchamp Towards sodium combustion modeling with liquid water, Journal of Computational Physics, Volume 403 (2020), p. 109060 | DOI:10.1016/j.jcp.2019.109060
  • Nicolas Seguin Stability of stationary solutions of singular systems of balance laws, Confluentes Mathematici, Volume 10 (2018) no. 2, pp. 93-112 | DOI:10.5802/cml.52 | Zbl:1492.35163
  • Christophe Berthon; Victor Michel-Dansac A simple fully well-balanced and entropy preserving scheme for the shallow-water equations, Applied Mathematics Letters, Volume 86 (2018), pp. 284-290 | DOI:10.1016/j.aml.2018.07.013 | Zbl:1410.65338
  • E. Audusse; C. Chalons; P. Ung A simple three‐wave approximate Riemann solver for the Saint‐Venant‐Exner equations, International Journal for Numerical Methods in Fluids, Volume 87 (2018) no. 10, p. 508 | DOI:10.1002/fld.4500
  • Manuel J. Castro Díaz; Christophe Chalons; Tomás Morales de Luna A fully well-balanced Lagrange-projection-type scheme for the shallow-water equations, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 5, pp. 3071-3098 | DOI:10.1137/17m1156101 | Zbl:1403.35201
  • C. Berthon; C. Chalons; S. Cornet; Gians Sperone Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations, Bulletin of the Brazilian Mathematical Society. New Series, Volume 47 (2016) no. 1, pp. 117-130 | DOI:10.1007/s00574-016-0126-1 | Zbl:1375.76096
  • Victor Michel-Dansac; Christophe Berthon; Stéphane Clain; Françoise Foucher A well-balanced scheme for the shallow-water equations with topography, Computers Mathematics with Applications, Volume 72 (2016) no. 3, pp. 568-593 | DOI:10.1016/j.camwa.2016.05.015 | Zbl:1359.76206
  • Christophe Chalons A simple and accurate coupled HLL-type approximate Riemann solver for the two-fluid two-pressure model of compressible flows, International Journal on Finite Volumes, Volume 13 (2016), p. 21 (Id/No hal-01419932) | Zbl:1481.76141
  • Christophe Berthon; Anaïs Crestetto; Françoise Foucher A well-balanced finite volume scheme for a mixed hyperbolic/parabolic system to model chemotaxis, Journal of Scientific Computing, Volume 67 (2016) no. 2, pp. 618-643 | DOI:10.1007/s10915-015-0097-1 | Zbl:1350.65093
  • Christophe Berthon; Christophe Chalons A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations, Mathematics of Computation, Volume 85 (2016) no. 299, pp. 1281-1307 | DOI:10.1090/mcom3045 | Zbl:1382.76180
  • C. Berthon; B. Boutin; R. Turpault Shock profiles for the shallow-water Exner models, Advances in Applied Mathematics and Mechanics, Volume 7 (2015) no. 3, pp. 267-294 | DOI:10.4208/aamm.2013.m331 | Zbl:1488.35360
  • C. Chalons; M. Massot; A. Vié On the Eulerian large eddy simulation of disperse phase flows: an asymptotic preserving scheme for small Stokes number flows, Multiscale Modeling Simulation, Volume 13 (2015) no. 1, pp. 291-315 | DOI:10.1137/140960438 | Zbl:1320.35274
  • Emmanuel Audusse; Christophe Chalons; Philippe Ung A simple well-balanced, non-negative and entropy-satisfying finite volume scheme for the shallow-water system, Finite volumes for complex applications VII – elliptic, parabolic and hyperbolic problems. Proceedings of the FVCA 7, Berlin, Germany, June 15–20, 2014. Vol. II, Cham: Springer, 2014, pp. 955-963 | DOI:10.1007/978-3-319-05591-6_97 | Zbl:1350.76036
  • Christophe Berthon; Vivien Desveaux An entropy preserving MOOD scheme for the Euler equations, International Journal on Finite Volumes, Volume 11 (2014), p. 39 (Id/No hal-01115334) | Zbl:1490.65164
  • Christophe Chalons; Mathieu Girardin; Samuel Kokh Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 6, p. A2874 | DOI:10.1137/130908671
  • A. Ambroso; C. Chalons; P.-A. Raviart A Godunov-type method for the seven-equation model of compressible two-phase flow, Computers and Fluids, Volume 54 (2012), pp. 67-91 | DOI:10.1016/j.compfluid.2011.10.004 | Zbl:1291.76212
  • Christophe Berthon; Bruno Dubroca; Afeintou Sangam A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 2, p. 468 | DOI:10.1137/100814445
  • F. Coquel; E. Godlewski Asymptotic preserving scheme for Euler system with large friction, Journal of Scientific Computing, Volume 48 (2011) no. 1-3, pp. 164-172 | DOI:10.1007/s10915-011-9459-5 | Zbl:1426.76351
  • Christophe Chalons; Frédéric Coquel; Edwige Godlewski; Pierre-Arnaud Raviart; Nicolas Seguin Godunov-type schemes for hyperbolic systems with parameter-dependent source: the case of Euler system with friction, M3AS. Mathematical Models Methods in Applied Sciences, Volume 20 (2010) no. 11, pp. 2109-2166 | DOI:10.1142/s021820251000488x | Zbl:1213.35034

Cité par 29 documents. Sources : Crossref, zbMATH

Commentaires - Politique