Comptes Rendus
Spectral boundary controllability of networks of strings
[Contrôlabilité spectrale de réseaux de cordes vibrantes]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 545-550.

In this Note we give a necessary and sufficient condition for the spectral controllability from one simple node of a general network of strings that undergoes transversal vibrations in a sufficiently large time. This condition asserts that no eigenfunction vanishes identically on the string that contains the controlled node. The proof combines the Beurling–Malliavin's theorem and an asymptotic formula for the eigenvalues of the network. The optimal control time may be characterized as twice the sum of the lengths of all the strings of the network.

On considère un réseau général de cordes vibrantes et on étudie le problème du contrôle spectral moyennant des contrôles agissant sur une extrémité libre du réseau. Moyennant une généralisation des théorèmes de Beurling–Malliavin et à l'aide d'une formule asymptotique des valeurs propres du réseau, on donne une condition nécessaire et suffisante pour la contrôlabilité approchée et spectrale au temps T0=2∑i=1Mi, où les ℓi sont les longueurs des cordes du réseau. Cette condition exige qu'aucune fonction propre ne s'annule identiquement le long de la corde où le contrôle agit.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02314-2

René Dáger 1 ; Enrique Zuazua 1

1 Departamento de Matemática, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
@article{CRMATH_2002__334_7_545_0,
     author = {Ren\'e D\'ager and Enrique Zuazua},
     title = {Spectral boundary controllability of networks of strings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {545--550},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02314-2},
     language = {en},
}
TY  - JOUR
AU  - René Dáger
AU  - Enrique Zuazua
TI  - Spectral boundary controllability of networks of strings
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 545
EP  - 550
VL  - 334
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02314-2
LA  - en
ID  - CRMATH_2002__334_7_545_0
ER  - 
%0 Journal Article
%A René Dáger
%A Enrique Zuazua
%T Spectral boundary controllability of networks of strings
%J Comptes Rendus. Mathématique
%D 2002
%P 545-550
%V 334
%N 7
%I Elsevier
%R 10.1016/S1631-073X(02)02314-2
%G en
%F CRMATH_2002__334_7_545_0
René Dáger; Enrique Zuazua. Spectral boundary controllability of networks of strings. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 545-550. doi : 10.1016/S1631-073X(02)02314-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02314-2/

[1] S.A. Avdonin; W. Moran Simultaneous control problems for systems of elastic strings and beams, Systems Control Lett., Volume 44 (2001) no. 2, pp. 147-155

[2] S.A. Avdonin; M. Tucsnak Simultaneous controllability in sharp time for two elastic strings, ESAIM:COCV, Volume 6 (2001), pp. 259-273

[3] C. Baiocchi, V. Komornik, P. Loreti, Ingham–Beurling type theorems with weakened gap conditions, Acta Math. Hungar, to appear

[4] J. von Below, Parabolic network equations, Habilitation thesis, Eberhard-Karls-Universität, Tübingen, 1993

[5] R. Dáger; E. Zuazua Controllability of star-shaped networks of strings, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001) no. 7, pp. 621-626

[6] R. Dáger; E. Zuazua Controllability of tree-shaped networks of strings, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001) no. 12, pp. 1087-1092

[7] R. Dáger; E. Zuazua Controllability of star-shaped networks of strings (A. Bermúdez et al., eds.), Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation, SIAM Proceedings, 2000, pp. 1006-1010

[8] A. Haraux; S. Jaffard Pointwise and spectral control of plate vibrations, Rev. Mat. Iberoamericana, Volume 7 (1991) no. 1, pp. 1-24

[9] J. Lagnese; G. Leugering; E.J.P.G. Schmit Modelling, Analysis and Control of Multi-Link Flexible Structures, Systems Control Found. Appl., Birhäuser, Basel, 1994

[10] J.-L. Lions Contrôlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués, Vol. 1, Masson, Paris, 1988

  • Gaukhar Arepova; Ludmila Alexeyeva; Dana Arepova Solution to the Dirichlet Problem of the Wave Equation on a Star Graph, Mathematics, Volume 11 (2023) no. 20, p. 4234 | DOI:10.3390/math11204234
  • Piermarco Cannarsa; Alessandro Duca; Cristina Urbani Exact controllability to eigensolutions of the bilinear heat equation on compact networks, Discrete and Continuous Dynamical Systems - S, Volume 15 (2022) no. 6, p. 1377 | DOI:10.3934/dcdss.2022011
  • Hai-E. Zhang; Gen-Qi Xu; Hao Chen; Min Li Stability of a Variable Coefficient Star-Shaped Network with Distributed Delay, Journal of Systems Science and Complexity, Volume 35 (2022) no. 6, p. 2077 | DOI:10.1007/s11424-022-1157-x
  • Ya-Xuan Zhang; Zhong-Jie Han; Gen-Qi Xu Stability and Spectral Properties of General Tree-Shaped Wave Networks with Variable Coefficients, Acta Applicandae Mathematicae, Volume 164 (2019) no. 1, p. 219 | DOI:10.1007/s10440-018-00236-y
  • Zhong-Jie Han; Enrique Zuazua Decay rates for elastic-thermoelastic star-shaped networks, Networks Heterogeneous Media, Volume 12 (2017) no. 3, p. 461 | DOI:10.3934/nhm.2017020
  • Yuriy Golovaty; Volodymyr Flyud Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions, Open Mathematics, Volume 15 (2017) no. 1, p. 404 | DOI:10.1515/math-2017-0030
  • Julie Valein; Enrique Zuazua Stabilization of the Wave Equation on 1-d Networks, SIAM Journal on Control and Optimization, Volume 48 (2009) no. 4, p. 2771 | DOI:10.1137/080733590
  • Tamás Mátrai; Eszter Sikolya Asymptotic behavior of flows in networks, Forum Mathematicum, Volume 19 (2007) no. 3 | DOI:10.1515/forum.2007.018
  • S. Avdonin; K. Nurtazina; T. Sheronova, 2006 14th Mediterranean Conference on Control and Automation (2006), p. 1 | DOI:10.1109/med.2006.328800
  • Vilmos Komornik; Paola Loreti A further note on a theorem of Ingham and simultaneous observability in critical time, Inverse Problems, Volume 20 (2004) no. 5, p. 1649 | DOI:10.1088/0266-5611/20/5/020

Cité par 10 documents. Sources : Crossref

This work has been partially supported by grants PB96-0663 of the DGES (Spain) and the EU TMR project “Homogenization and Multiple Scales”.

Commentaires - Politique