[Ensembles singuliers des fonctions de Sobolev]
Nous sommes intéressés à trouver des fonctions de Sobolev dont l'ensemble des singularités est « grand ». Étant donné
We are interested in finding Sobolev functions with “large” singular sets. Given
Accepté le :
Publié le :
Darko Žubrinić 1
@article{CRMATH_2002__334_7_539_0, author = {Darko \v{Z}ubrini\'c}, title = {Singular sets of {Sobolev} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {539--544}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02316-6}, language = {en}, }
Darko Žubrinić. Singular sets of Sobolev functions. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 539-544. doi : 10.1016/S1631-073X(02)02316-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02316-6/
[1] Function Spaces and Potential Theory, Springer-Verlag, 1996
[2] Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble), Volume 13 (1956), pp. 125-185
[3] Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc., Volume 194 (1974), pp. 129-148
[4] Lebesgue spaces of differentiable functions and distributions, Partial Differential Equations, Proc. Sympos. Pure Math., 4, American Mathematical Society, Providence, RI, 1961, pp. 33-49
[5] Les potentiels d'energie finie, Acta Math., Volume 82 (1950), pp. 107-183
[6] Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble), Volume 5 (1953–1954), pp. 305-370
[7] Fractal Geometry, Wiley, New York, 1990
[8] Geometric Measure Theory, Springer-Verlag, 1969
[9] Extremal length and functional completion, Acta Math., Volume 98 (1957), pp. 171-219
[10] On generalized potentials of functions in the Lebesgue classes, Math. Scand., Volume 8 (1960), pp. 287-304
[11] Prescribed singular submanifolds of some quasilinear elliptic equations, Nonlinear Anal., Volume 34 (1998), pp. 839-856
[12] Use of (p,l)-capacity in problems of the theory of exceptional sets, Mat. Sb., Volume 90 (1973) no. 132, pp. 558-591 Math. USSR-Sb. 19 (1973) 547–580
[13] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993
[14] Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc., Volume 123 (1996) no. 587
[15] Hausdorff dimension, Topology Proc., Volume 11 (1986) no. 2, pp. 349-383
[16] Singular solutions to p-Laplacian type equations, Ark. Mat., Volume 37 (1999), pp. 275-289
[17] Some qualitative properties of solutions of quasilinear elliptic equations and applications, J. Differential Equations, Volume 170 (2001), pp. 247-280
[18] Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, 1997
[19] Continuity properties of potentials, Duke Math. J., Volume 42 (1975), pp. 157-166
[20] Removability of singular sets of harmonic maps, Arch. Rational Mech. Anal., Volume 127 (1994), pp. 199-217
[21] On the concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., Volume X (1969) no. 5, pp. 1108-1138 (in Russian); Siberian Math. J. 13 (1969) 818–842
[22] Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219-240
[23] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970
[24] Singularities of Solutions of Second Order Quasilinear Equations, Addison-Wesley–Longman, 1996
[25] Weakly Differentiable Functions; Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Math., Springer-Verlag, 1989
[26] Generating singularities of solutions of quasilinear elliptic equations, J. Math. Anal. Appl., Volume 244 (2000), pp. 10-16
Cité par Sources :
Commentaires - Politique