[Ensembles singuliers des fonctions de Sobolev]
We are interested in finding Sobolev functions with “large” singular sets. Given
Nous sommes intéressés à trouver des fonctions de Sobolev dont l'ensemble des singularités est « grand ». Étant donné
Accepté le :
Publié le :
Darko Žubrinić 1
@article{CRMATH_2002__334_7_539_0, author = {Darko \v{Z}ubrini\'c}, title = {Singular sets of {Sobolev} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {539--544}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02316-6}, language = {en}, }
Darko Žubrinić. Singular sets of Sobolev functions. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 539-544. doi : 10.1016/S1631-073X(02)02316-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02316-6/
[1] Function Spaces and Potential Theory, Springer-Verlag, 1996
[2] Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble), Volume 13 (1956), pp. 125-185
[3] Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc., Volume 194 (1974), pp. 129-148
[4] Lebesgue spaces of differentiable functions and distributions, Partial Differential Equations, Proc. Sympos. Pure Math., 4, American Mathematical Society, Providence, RI, 1961, pp. 33-49
[5] Les potentiels d'energie finie, Acta Math., Volume 82 (1950), pp. 107-183
[6] Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble), Volume 5 (1953–1954), pp. 305-370
[7] Fractal Geometry, Wiley, New York, 1990
[8] Geometric Measure Theory, Springer-Verlag, 1969
[9] Extremal length and functional completion, Acta Math., Volume 98 (1957), pp. 171-219
[10] On generalized potentials of functions in the Lebesgue classes, Math. Scand., Volume 8 (1960), pp. 287-304
[11] Prescribed singular submanifolds of some quasilinear elliptic equations, Nonlinear Anal., Volume 34 (1998), pp. 839-856
[12] Use of (p,l)-capacity in problems of the theory of exceptional sets, Mat. Sb., Volume 90 (1973) no. 132, pp. 558-591 Math. USSR-Sb. 19 (1973) 547–580
[13] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993
[14] Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc., Volume 123 (1996) no. 587
[15] Hausdorff dimension, Topology Proc., Volume 11 (1986) no. 2, pp. 349-383
[16] Singular solutions to p-Laplacian type equations, Ark. Mat., Volume 37 (1999), pp. 275-289
[17] Some qualitative properties of solutions of quasilinear elliptic equations and applications, J. Differential Equations, Volume 170 (2001), pp. 247-280
[18] Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, 1997
[19] Continuity properties of potentials, Duke Math. J., Volume 42 (1975), pp. 157-166
[20] Removability of singular sets of harmonic maps, Arch. Rational Mech. Anal., Volume 127 (1994), pp. 199-217
[21] On the concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., Volume X (1969) no. 5, pp. 1108-1138 (in Russian); Siberian Math. J. 13 (1969) 818–842
[22] Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219-240
[23] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970
[24] Singularities of Solutions of Second Order Quasilinear Equations, Addison-Wesley–Longman, 1996
[25] Weakly Differentiable Functions; Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Math., Springer-Verlag, 1989
[26] Generating singularities of solutions of quasilinear elliptic equations, J. Math. Anal. Appl., Volume 244 (2000), pp. 10-16
- Bourgain’s Counterexample in the Sequential Convergence Problem for the Schrödinger Equation, Journal of Fourier Analysis and Applications, Volume 31 (2025) no. 3 | DOI:10.1007/s00041-025-10162-x
- Dimension of Divergence Sets of Oscillatory Integrals with Concave Phase, The Journal of Geometric Analysis, Volume 35 (2025) no. 1 | DOI:10.1007/s12220-024-01806-3
- A Carleson Problem for the Boussinesq Operator, Acta Mathematica Sinica, English Series, Volume 39 (2023) no. 1, p. 119 | DOI:10.1007/s10114-022-1221-4
- On the Dimension of the Divergence Set of the Ostrovsky Equation, Acta Mathematica Scientia, Volume 42 (2022) no. 4, p. 1607 | DOI:10.1007/s10473-022-0418-z
- Convergence over fractals for the periodic Schrödinger equation, Analysis PDE, Volume 15 (2022) no. 7, p. 1775 | DOI:10.2140/apde.2022.15.1775
- Counterexamples for the fractal Schrödinger convergence problem with an Intermediate Space Trick, Communications on Pure and Applied Analysis, Volume 21 (2022) no. 11, p. 3777 | DOI:10.3934/cpaa.2022122
- Pointwise convergence problem of the Korteweg–de Vries–Benjamin–Ono equation, Nonlinear Analysis: Real World Applications, Volume 67 (2022), p. 103611 | DOI:10.1016/j.nonrwa.2022.103611
- An Upbound of Hausdorff’s Dimension of the Divergence Set of the Fractional SchröDinger Operator On Hs(ℝn), Acta Mathematica Scientia, Volume 41 (2021) no. 4, p. 1223 | DOI:10.1007/s10473-021-0412-x
- Maximally singular weak solutions of Laplace equations, Rocky Mountain Journal of Mathematics, Volume 51 (2021) no. 6 | DOI:10.1216/rmj.2021.51.2147
- POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES, Forum of Mathematics, Sigma, Volume 6 (2018) | DOI:10.1017/fms.2018.11
- Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation, Communications in Mathematical Physics, Volume 351 (2017) no. 1, p. 341 | DOI:10.1007/s00220-016-2722-8
- Applications of Distance and Tube Zeta Functions, Fractal Zeta Functions and Fractal Drums (2017), p. 185 | DOI:10.1007/978-3-319-44706-3_3
- Distance and Tube Zeta Functions, Fractal Zeta Functions and Fractal Drums (2017), p. 43 | DOI:10.1007/978-3-319-44706-3_2
- The Schrödinger equation along curves and the quantum harmonic oscillator, Advances in Mathematics, Volume 229 (2012) no. 3, p. 1359 | DOI:10.1016/j.aim.2011.10.023
- On the dimension of divergence sets of dispersive equations, Mathematische Annalen, Volume 349 (2011) no. 3, p. 599 | DOI:10.1007/s00208-010-0529-z
- Singular dimension of the solution set of a class ofp-Laplace equations, Complex Variables and Elliptic Equations, Volume 55 (2010) no. 7, p. 669 | DOI:10.1080/17476930903568373
- Generating Singularities of Weak Solutions of
-Laplace Equations On Fractal Sets, Rocky Mountain Journal of Mathematics, Volume 39 (2009) no. 1 | DOI:10.1216/rmj-2009-39-1-359 - Fractal analysis of spiral trajectories of some planar vector fields, Bulletin des Sciences Mathématiques, Volume 129 (2005) no. 6, p. 457 | DOI:10.1016/j.bulsci.2004.11.007
- Maximally singular Sobolev functions, Journal of Mathematical Analysis and Applications, Volume 304 (2005) no. 2, p. 531 | DOI:10.1016/j.jmaa.2004.09.047
- Box dimension of spiral trajectories of some vector fields in ℝ3, Qualitative Theory of Dynamical Systems, Volume 6 (2005) no. 2, p. 251 | DOI:10.1007/bf02972676
- Singular sets of Lebesgue integrable functions, Chaos, Solitons Fractals, Volume 21 (2004) no. 5, p. 1281 | DOI:10.1016/j.chaos.2003.12.080
- Minkowski content and singular integrals, Chaos, Solitons Fractals, Volume 17 (2003) no. 1, p. 169 | DOI:10.1016/s0960-0779(02)00441-1
Cité par 22 documents. Sources : Crossref
Commentaires - Politique