Comptes Rendus
Singular sets of Sobolev functions
[Ensembles singuliers des fonctions de Sobolev]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 539-544.

We are interested in finding Sobolev functions with “large” singular sets. Given N,k, 1<p<∞, kp<N, for any compact subset A of N, such that its upper box dimension is less than Nkp, we construct a Sobolev function uWk,p(N) which is singular precisely on A. We introduce the notions of lower and upper singular dimensions of Sobolev space, and show that both are equal to Nkp.

Nous sommes intéressés à trouver des fonctions de Sobolev dont l'ensemble des singularités est « grand ». Étant donné N,k, 1<p<∞, kp<N, pour chaque sous-ensemble A compact de N, dont la « box-dimension » supérieure est plus petite que Nkp, nous construisons une fonction de Sobolev uWk,p(N) qui est singulière précisément sur A. Nous introduisons les notions de dimensions singulières inférieure et supérieure de l'espace de Sobolev, et montrons que ses valeurs sont Nkp.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02316-6

Darko Žubrinić 1

1 Department of Applied Mathematics, Faculty of Electrical Engineering, Unska 3, 10000 Zagreb, Croatia
@article{CRMATH_2002__334_7_539_0,
     author = {Darko \v{Z}ubrini\'c},
     title = {Singular sets of {Sobolev} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {539--544},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02316-6},
     language = {en},
}
TY  - JOUR
AU  - Darko Žubrinić
TI  - Singular sets of Sobolev functions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 539
EP  - 544
VL  - 334
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02316-6
LA  - en
ID  - CRMATH_2002__334_7_539_0
ER  - 
%0 Journal Article
%A Darko Žubrinić
%T Singular sets of Sobolev functions
%J Comptes Rendus. Mathématique
%D 2002
%P 539-544
%V 334
%N 7
%I Elsevier
%R 10.1016/S1631-073X(02)02316-6
%G en
%F CRMATH_2002__334_7_539_0
Darko Žubrinić. Singular sets of Sobolev functions. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 539-544. doi : 10.1016/S1631-073X(02)02316-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02316-6/

[1] D.R. Adams; L.I. Hedberg Function Spaces and Potential Theory, Springer-Verlag, 1996

[2] N. Aronszajn; K.T. Smith Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble), Volume 13 (1956), pp. 125-185

[3] T. Bagby; W. Ziemer Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc., Volume 194 (1974), pp. 129-148

[4] A.P. Calderón Lebesgue spaces of differentiable functions and distributions, Partial Differential Equations, Proc. Sympos. Pure Math., 4, American Mathematical Society, Providence, RI, 1961, pp. 33-49

[5] J. Deny Les potentiels d'energie finie, Acta Math., Volume 82 (1950), pp. 107-183

[6] J. Deny; J.L. Lions Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble), Volume 5 (1953–1954), pp. 305-370

[7] K.J. Falconer Fractal Geometry, Wiley, New York, 1990

[8] H. Federer Geometric Measure Theory, Springer-Verlag, 1969

[9] B. Fuglede Extremal length and functional completion, Acta Math., Volume 98 (1957), pp. 171-219

[10] B. Fuglede On generalized potentials of functions in the Lebesgue classes, Math. Scand., Volume 8 (1960), pp. 287-304

[11] M. Grillot Prescribed singular submanifolds of some quasilinear elliptic equations, Nonlinear Anal., Volume 34 (1998), pp. 839-856

[12] V.P. Havin; V.G. Mazya Use of (p,l)-capacity in problems of the theory of exceptional sets, Mat. Sb., Volume 90 (1973) no. 132, pp. 558-591 Math. USSR-Sb. 19 (1973) 547–580

[13] J. Heinonen; T. Kilpeläinen; O. Martio Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993

[14] S. Jaffard; Y. Meyer Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc., Volume 123 (1996) no. 587

[15] J. Keesling Hausdorff dimension, Topology Proc., Volume 11 (1986) no. 2, pp. 349-383

[16] T. Kilpeläinen Singular solutions to p-Laplacian type equations, Ark. Mat., Volume 37 (1999), pp. 275-289

[17] L. Korkut; M. Pašić; D. Žubrinić Some qualitative properties of solutions of quasilinear elliptic equations and applications, J. Differential Equations, Volume 170 (2001), pp. 247-280

[18] J. Malý; W.P. Ziemer Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, 1997

[19] N.G. Meyers Continuity properties of potentials, Duke Math. J., Volume 42 (1975), pp. 157-166

[20] L. Mou Removability of singular sets of harmonic maps, Arch. Rational Mech. Anal., Volume 127 (1994), pp. 199-217

[21] Yu.G. Reshetnyak On the concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., Volume X (1969) no. 5, pp. 1108-1138 (in Russian); Siberian Math. J. 13 (1969) 818–842

[22] J. Serrin Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219-240

[23] E.M. Stein Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970

[24] L. Veron Singularities of Solutions of Second Order Quasilinear Equations, Addison-Wesley–Longman, 1996

[25] W.P. Ziemer Weakly Differentiable Functions; Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Math., Springer-Verlag, 1989

[26] D. Žubrinić Generating singularities of solutions of quasilinear elliptic equations, J. Math. Anal. Appl., Volume 244 (2000), pp. 10-16

  • Chu-Hee Cho; Daniel Eceizabarrena Bourgain’s Counterexample in the Sequential Convergence Problem for the Schrödinger Equation, Journal of Fourier Analysis and Applications, Volume 31 (2025) no. 3 | DOI:10.1007/s00041-025-10162-x
  • Chu-hee Cho; Shobu Shiraki Dimension of Divergence Sets of Oscillatory Integrals with Concave Phase, The Journal of Geometric Analysis, Volume 35 (2025) no. 1 | DOI:10.1007/s12220-024-01806-3
  • Dan Li; Jun Feng Li A Carleson Problem for the Boussinesq Operator, Acta Mathematica Sinica, English Series, Volume 39 (2023) no. 1, p. 119 | DOI:10.1007/s10114-022-1221-4
  • Yajuan Zhao; Yongsheng Li; Wei Yan; Xiangqian Yan On the Dimension of the Divergence Set of the Ostrovsky Equation, Acta Mathematica Scientia, Volume 42 (2022) no. 4, p. 1607 | DOI:10.1007/s10473-022-0418-z
  • Daniel Eceizabarrena; Renato Lucà Convergence over fractals for the periodic Schrödinger equation, Analysis PDE, Volume 15 (2022) no. 7, p. 1775 | DOI:10.2140/apde.2022.15.1775
  • Daniel Eceizabarrena; Felipe Ponce-Vanegas Counterexamples for the fractal Schrödinger convergence problem with an Intermediate Space Trick, Communications on Pure and Applied Analysis, Volume 21 (2022) no. 11, p. 3777 | DOI:10.3934/cpaa.2022122
  • Yajuan Zhao; Xiangqian Yan; Wei Yan; Yongsheng Li Pointwise convergence problem of the Korteweg–de Vries–Benjamin–Ono equation, Nonlinear Analysis: Real World Applications, Volume 67 (2022), p. 103611 | DOI:10.1016/j.nonrwa.2022.103611
  • Dan Li; Junfeng Li; Jie Xiao An Upbound of Hausdorff’s Dimension of the Divergence Set of the Fractional SchröDinger Operator On Hs(ℝn), Acta Mathematica Scientia, Volume 41 (2021) no. 4, p. 1223 | DOI:10.1007/s10473-021-0412-x
  • Josipa-Pina Milišić; Darko Žubrinić Maximally singular weak solutions of Laplace equations, Rocky Mountain Journal of Mathematics, Volume 51 (2021) no. 6 | DOI:10.1216/rmj.2021.51.2147
  • XIUMIN DU; LARRY GUTH; XIAOCHUN LI; RUIXIANG ZHANG POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES, Forum of Mathematics, Sigma, Volume 6 (2018) | DOI:10.1017/fms.2018.11
  • Renato Lucà; Keith M. Rogers Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation, Communications in Mathematical Physics, Volume 351 (2017) no. 1, p. 341 | DOI:10.1007/s00220-016-2722-8
  • Michel L. Lapidus; Goran Radunović; Darko Žubrinić Applications of Distance and Tube Zeta Functions, Fractal Zeta Functions and Fractal Drums (2017), p. 185 | DOI:10.1007/978-3-319-44706-3_3
  • Michel L. Lapidus; Goran Radunović; Darko Žubrinić Distance and Tube Zeta Functions, Fractal Zeta Functions and Fractal Drums (2017), p. 43 | DOI:10.1007/978-3-319-44706-3_2
  • Sanghyuk Lee; Keith M. Rogers The Schrödinger equation along curves and the quantum harmonic oscillator, Advances in Mathematics, Volume 229 (2012) no. 3, p. 1359 | DOI:10.1016/j.aim.2011.10.023
  • Juan Antonio Barceló; Jonathan Bennett; Anthony Carbery; Keith M. Rogers On the dimension of divergence sets of dispersive equations, Mathematische Annalen, Volume 349 (2011) no. 3, p. 599 | DOI:10.1007/s00208-010-0529-z
  • Darko Žubrinić Singular dimension of the solution set of a class ofp-Laplace equations, Complex Variables and Elliptic Equations, Volume 55 (2010) no. 7, p. 669 | DOI:10.1080/17476930903568373
  • Darko Žubrinić Generating Singularities of Weak Solutions of p-Laplace Equations On Fractal Sets, Rocky Mountain Journal of Mathematics, Volume 39 (2009) no. 1 | DOI:10.1216/rmj-2009-39-1-359
  • Darko Žubrinić; Vesna Županović Fractal analysis of spiral trajectories of some planar vector fields, Bulletin des Sciences Mathématiques, Volume 129 (2005) no. 6, p. 457 | DOI:10.1016/j.bulsci.2004.11.007
  • Lana Horvat; Darko Žubrinić Maximally singular Sobolev functions, Journal of Mathematical Analysis and Applications, Volume 304 (2005) no. 2, p. 531 | DOI:10.1016/j.jmaa.2004.09.047
  • Darko Žubrinić; Vesna Županović Box dimension of spiral trajectories of some vector fields in ℝ3, Qualitative Theory of Dynamical Systems, Volume 6 (2005) no. 2, p. 251 | DOI:10.1007/bf02972676
  • Darko Žubrinić Singular sets of Lebesgue integrable functions, Chaos, Solitons Fractals, Volume 21 (2004) no. 5, p. 1281 | DOI:10.1016/j.chaos.2003.12.080
  • Darko Žubrinić Minkowski content and singular integrals, Chaos, Solitons Fractals, Volume 17 (2003) no. 1, p. 169 | DOI:10.1016/s0960-0779(02)00441-1

Cité par 22 documents. Sources : Crossref

Commentaires - Politique