[Analyse fractale des trajectoires spirales de quelques champs de vecteurs dans
We study box dimension and Minkowski content of spiral solutions of some dynamical systems in
Nous étudions la ‘box dimension’ et le contenu de Minkowski des solutions spirales de quelques systèmes dynamiques dans
Accepté le :
Publié le :
Darko Žubrinić 1 ; Vesna Županović 1
@article{CRMATH_2006__342_12_959_0, author = {Darko \v{Z}ubrini\'c and Vesna \v{Z}upanovi\'c}, title = {Fractal analysis of spiral trajectories of some vector fields in $ {\mathbb{R}}^{3}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {959--963}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.021}, language = {en}, }
TY - JOUR AU - Darko Žubrinić AU - Vesna Županović TI - Fractal analysis of spiral trajectories of some vector fields in $ {\mathbb{R}}^{3}$ JO - Comptes Rendus. Mathématique PY - 2006 SP - 959 EP - 963 VL - 342 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2006.04.021 LA - en ID - CRMATH_2006__342_12_959_0 ER -
Darko Žubrinić; Vesna Županović. Fractal analysis of spiral trajectories of some vector fields in $ {\mathbb{R}}^{3}$. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 959-963. doi : 10.1016/j.crma.2006.04.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.021/
[1] Hopf–Takens bifurcations and centers, J. Differential Equations, Volume 202 (2004) no. 1, pp. 1-31
[2] Generalized Liénard equations, cyclicity and Hopf–Takens bifurcations, Qualitative Theory of Dynamical Systems, Volume 6 (2005), pp. 195-222
[3] Dimension de spirales, Bull. Soc. Math. France, Volume 111 (1983), pp. 193-201
[4] Measure Theory and Fine Properties of Functions, CRC Press, 1992
[5] Fractal Geometry, John Wiley and Sons, 1990
[6] Tubes, Addison-Wesley, 1990
[7] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983
[8] Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc., Volume 127 (1997) no. 608
[9] Maximally singular Sobolev functions, J. Math. Anal. Appl., Volume 304 (2005) no. 2, pp. 531-541
[10] The Riemann zeta-function and the one-dimensional Weyl–Berry conjecture for fractal drums, Proc. London Math. Soc. (3), Volume 66 (1993) no. 1, pp. 41-69
[11] Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Univ. Press, Cambridge, 1995
[12] Minkowski–Bouligand dimension of solutions of the one-dimensional p-Laplacian, J. Differential Equations, Volume 190 (2003), pp. 268-305
[13] Some metric-singular properties of the graph of solutions of the one-dimensional p-Laplacian, Electronic J. Differential Equations, Volume 2004 (2004) no. 60, pp. 1-25
[14] Unfoldings of certain singularities of vector fields: Generalized Hopf bifurcations, J. Differential Equations, Volume 14 (1973), pp. 476-493
[15] Curves and Fractal Dimension, Springer-Verlag, 1995
[16] Singular sets of Sobolev functions, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 539-544
[17] Singular sets of Lebesgue integrable functions, Chaos, Solitons, Fractals, Volume 21 (2004), pp. 1281-1287
[18] D. Žubrinić, Analysis of Minkowski contents of fractal sets and applications Real Anal. Exchange, in press
[19] Fractal analysis of spiral trajectories of some planar vector fields, Bull. Sci. Math., Volume 129 (2005) no. 6, pp. 457-485
[20] D. Žubrinić, V. Županović, Box dimension of spiral trajectories of some vector fields in
Cité par Sources :
Commentaires - Politique