[Sur la complétude des fonctions propres et associées d'un problème au bord elliptique dans un domaine avec points coniques sur le bord]
We prove the completeness of the system of eigen and associated functions (i.e., root functions) of an elliptic boundary value problem in a domain, whose boundary is a smooth surface everywhere, except at a finite number of points, such that each point possesses a neighborhood, where the boundary is a conical surface.
On montre que les fonctions propres et associées d'un problème au bord pour un opérateur elliptique d'ordre 2m, défini dans un domaine dans
Révisé le :
Publié le :
Youri V. Egorov 1 ; Vladimir A. Kondratiev 2 ; Bert-Wolfgang Schulze 3
@article{CRMATH_2002__334_8_649_0, author = {Youri V. Egorov and Vladimir A. Kondratiev and Bert-Wolfgang Schulze}, title = {On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {649--654}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02320-8}, language = {en}, }
TY - JOUR AU - Youri V. Egorov AU - Vladimir A. Kondratiev AU - Bert-Wolfgang Schulze TI - On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary JO - Comptes Rendus. Mathématique PY - 2002 SP - 649 EP - 654 VL - 334 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(02)02320-8 LA - en ID - CRMATH_2002__334_8_649_0 ER -
%0 Journal Article %A Youri V. Egorov %A Vladimir A. Kondratiev %A Bert-Wolfgang Schulze %T On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary %J Comptes Rendus. Mathématique %D 2002 %P 649-654 %V 334 %N 8 %I Elsevier %R 10.1016/S1631-073X(02)02320-8 %G en %F CRMATH_2002__334_8_649_0
Youri V. Egorov; Vladimir A. Kondratiev; Bert-Wolfgang Schulze. On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 649-654. doi : 10.1016/S1631-073X(02)02320-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02320-8/
[1] On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., Volume 15 (1962), pp. 119-147
[2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math., Volume 12 (1959), pp. 623-727
[3] Elliptic boundary problems, Partial Differential Equations IX, Encyclopedia of Mathematical Sciences, 79, Springer, 1991, pp. 1-144
[4] On series with respect to root vectors of operators associated with forms having symmetric principal part, Funct. Anal. Appl., Volume 28 (1994) no. 3, pp. 151-167
[5] Weakly smooth nonselfadjoint spectral problems for elliptic boundary value problems (P. Demuth; E. Schrohe; B.-W. Schulze, eds.), Spectral Theory, Microlocal Analysis, Singular Manifolds, Birkhäuser, 2000, pp. 138-199
[6] On the eigenfunctions and eigenvalues of the general elliptic differential operator, Proc. Nat. Acad. Sci. USA, Volume 39 (1953), pp. 433-439
[7] Estimates and existence theorems for elliptic boundary value problems, Proc. Nat. Acad. Sci. USA, Volume 45 (1959), pp. 365-372
[8] On the spectral theory of strongly elliptic differential operators, Proc. Nat. Acad. Sci. USA, Volume 45 (1959), pp. 1423-1431
[9] Über die Verteilung der Eigenwerte partieller Differentialgleichungen, Ber. der Sächs. Akad. Wiss. Leipzig, Mat. Nat. Kl., Volume 88 (1936), pp. 119-132
[10] , Linear Operators, II, Interscience, New York, 1963
[11] Pseudo-Differential Operators, Singularities, Applications, Oper. Theory Adv. Appl., 93, Birkhäuser, 1997
[12] On the eigenvalues and eigenfunctions of certain classes of non-selfadjoint equations, Dokl. AN SSSR, Volume 77 (1951), pp. 11-14
[13] Boundary value problems for elliptic equations in domains with conical or singular points, Trudy Moskov. Mat. Obshch., Volume 16 (1967), pp. 209-292
[14] Theorems on the m-fold completeness of the generalized eigen- and associated functions from W21 of certain boundary value problems for elliptic equations and systems, Differentsial'nye Uravneniya, Volume 12 (1976) no. 10, pp. 1842-1851
[15] Remarks on elliptic boundary value problems, Comm. Pure Appl. Math., Volume 12 (1959), pp. 457-482
[16] Pseudo-Differential Operators on Manifolds with Singularities, North-Holland, Amsterdam, 1991
[17] Boundary Value Problems and Singular Pseudo-Differential Operators, Wiley, Chichester, 1998
- Singularities at Home, Unofficial Observations, Math in the Time of Corona (2020), p. 43 | DOI:10.1007/16618_2020_9
- Fold completeness of a system of root vectors of a system of unbounded polynomial operator pencils in Banach spaces. II: Application, Science China. Mathematics, Volume 56 (2013) no. 1, pp. 105-122 | DOI:10.1007/s11425-012-4426-7 | Zbl:1257.47075
- Vladimir Aleksandrovich Kondrat'ev, Differential Equations, Volume 46 (2010) no. 12, pp. 1807-1813 | DOI:10.1134/s0012266110120165 | Zbl:1209.01038
- On the completeness of the generalized eigenfunctions of elliptic operators on manifolds with conical singularities, Mathematische Nachrichten, Volume 283 (2010) no. 12, pp. 1680-1695 | DOI:10.1002/mana.201010074 | Zbl:1220.58007
- Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth, J. Math. Sci., New York 143, No. 4, 3183-3197; translation from Tr. Semin. Im. I. G. Petrovskogo 26, 3-26, 2007 | DOI:10.1007/s10958-007-0202-6 | Zbl:1511.01015
- Владимир Александрович Кондратьев (к 70-летию со дня рождения), Успехи математических наук, Volume 61 (2006) no. 6, p. 195 | DOI:10.4213/rm5579
- Vladimir Aleksandrovich Kondrat'ev (a tribute in honor of his 70th birthday), Differential Equations, Volume 41 (2005) no. 7, pp. 909-914 | DOI:10.1007/s10625-005-0230-2 | Zbl:1093.01532
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier