[Sur la complétude des fonctions propres et associées d'un problème au bord elliptique dans un domaine avec points coniques sur le bord]
On montre que les fonctions propres et associées d'un problème au bord pour un opérateur elliptique d'ordre 2m, défini dans un domaine dans
We prove the completeness of the system of eigen and associated functions (i.e., root functions) of an elliptic boundary value problem in a domain, whose boundary is a smooth surface everywhere, except at a finite number of points, such that each point possesses a neighborhood, where the boundary is a conical surface.
Révisé le :
Publié le :
Youri V. Egorov 1 ; Vladimir A. Kondratiev 2 ; Bert-Wolfgang Schulze 3
@article{CRMATH_2002__334_8_649_0, author = {Youri V. Egorov and Vladimir A. Kondratiev and Bert-Wolfgang Schulze}, title = {On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {649--654}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02320-8}, language = {en}, }
TY - JOUR AU - Youri V. Egorov AU - Vladimir A. Kondratiev AU - Bert-Wolfgang Schulze TI - On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary JO - Comptes Rendus. Mathématique PY - 2002 SP - 649 EP - 654 VL - 334 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(02)02320-8 LA - en ID - CRMATH_2002__334_8_649_0 ER -
%0 Journal Article %A Youri V. Egorov %A Vladimir A. Kondratiev %A Bert-Wolfgang Schulze %T On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary %J Comptes Rendus. Mathématique %D 2002 %P 649-654 %V 334 %N 8 %I Elsevier %R 10.1016/S1631-073X(02)02320-8 %G en %F CRMATH_2002__334_8_649_0
Youri V. Egorov; Vladimir A. Kondratiev; Bert-Wolfgang Schulze. On completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 649-654. doi : 10.1016/S1631-073X(02)02320-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02320-8/
[1] On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., Volume 15 (1962), pp. 119-147
[2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math., Volume 12 (1959), pp. 623-727
[3] Elliptic boundary problems, Partial Differential Equations IX, Encyclopedia of Mathematical Sciences, 79, Springer, 1991, pp. 1-144
[4] On series with respect to root vectors of operators associated with forms having symmetric principal part, Funct. Anal. Appl., Volume 28 (1994) no. 3, pp. 151-167
[5] Weakly smooth nonselfadjoint spectral problems for elliptic boundary value problems (P. Demuth; E. Schrohe; B.-W. Schulze, eds.), Spectral Theory, Microlocal Analysis, Singular Manifolds, Birkhäuser, 2000, pp. 138-199
[6] On the eigenfunctions and eigenvalues of the general elliptic differential operator, Proc. Nat. Acad. Sci. USA, Volume 39 (1953), pp. 433-439
[7] Estimates and existence theorems for elliptic boundary value problems, Proc. Nat. Acad. Sci. USA, Volume 45 (1959), pp. 365-372
[8] On the spectral theory of strongly elliptic differential operators, Proc. Nat. Acad. Sci. USA, Volume 45 (1959), pp. 1423-1431
[9] Über die Verteilung der Eigenwerte partieller Differentialgleichungen, Ber. der Sächs. Akad. Wiss. Leipzig, Mat. Nat. Kl., Volume 88 (1936), pp. 119-132
[10] , Linear Operators, II, Interscience, New York, 1963
[11] Pseudo-Differential Operators, Singularities, Applications, Oper. Theory Adv. Appl., 93, Birkhäuser, 1997
[12] On the eigenvalues and eigenfunctions of certain classes of non-selfadjoint equations, Dokl. AN SSSR, Volume 77 (1951), pp. 11-14
[13] Boundary value problems for elliptic equations in domains with conical or singular points, Trudy Moskov. Mat. Obshch., Volume 16 (1967), pp. 209-292
[14] Theorems on the m-fold completeness of the generalized eigen- and associated functions from W21 of certain boundary value problems for elliptic equations and systems, Differentsial'nye Uravneniya, Volume 12 (1976) no. 10, pp. 1842-1851
[15] Remarks on elliptic boundary value problems, Comm. Pure Appl. Math., Volume 12 (1959), pp. 457-482
[16] Pseudo-Differential Operators on Manifolds with Singularities, North-Holland, Amsterdam, 1991
[17] Boundary Value Problems and Singular Pseudo-Differential Operators, Wiley, Chichester, 1998
- Singularities at Home, Unofficial Observations, Math in the Time of Corona (2020), p. 43 | DOI:10.1007/16618_2020_9
- Fold completeness of a system of root vectors of a system of unbounded polynomial operator pencils in Banach spaces. II: Application, Science China. Mathematics, Volume 56 (2013) no. 1, pp. 105-122 | DOI:10.1007/s11425-012-4426-7 | Zbl:1257.47075
- Vladimir Aleksandrovich Kondrat'ev, Differential Equations, Volume 46 (2010) no. 12, pp. 1807-1813 | DOI:10.1134/s0012266110120165 | Zbl:1209.01038
- On the completeness of the generalized eigenfunctions of elliptic operators on manifolds with conical singularities, Mathematische Nachrichten, Volume 283 (2010) no. 12, pp. 1680-1695 | DOI:10.1002/mana.201010074 | Zbl:1220.58007
- Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth, J. Math. Sci., New York 143, No. 4, 3183-3197; translation from Tr. Semin. Im. I. G. Petrovskogo 26, 3-26, 2007 | DOI:10.1007/s10958-007-0202-6 | Zbl:1511.01015
- Владимир Александрович Кондратьев (к 70-летию со дня рождения), Успехи математических наук, Volume 61 (2006) no. 6, p. 195 | DOI:10.4213/rm5579
- Vladimir Aleksandrovich Kondrat'ev (a tribute in honor of his 70th birthday), Differential Equations, Volume 41 (2005) no. 7, pp. 909-914 | DOI:10.1007/s10625-005-0230-2 | Zbl:1093.01532
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique