Comptes Rendus
Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations
Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 661-666.

In this paper we prove a comparison principle between the semicontinuous viscosity sub- and supersolutions of the tangential oblique derivative problem and the mixed Dirichlet–Neumann problem for fully nonlinear elliptic equations. By means of the comparison principle, the existence of a unique viscosity solution is obtained.

On démontre dans cette Note un principe de comparaison entre les sous et supersolutions visqueuses semi-continues du problème avec une dérivée oblique tangentielle et aussi le problème mixte du type de Dirichlet–Neumann pour une classe d'équations elliptiques complètement non-linéaires. En appliquant ce principe de comparaison on démontre l'existence d'une solution visqueuse unique.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02321-X

Petar Popivanov 1; Nickolai Kutev 1

1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
@article{CRMATH_2002__334_8_661_0,
     author = {Petar Popivanov and Nickolai Kutev},
     title = {Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {661--666},
     publisher = {Elsevier},
     volume = {334},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02321-X},
     language = {en},
}
TY  - JOUR
AU  - Petar Popivanov
AU  - Nickolai Kutev
TI  - Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 661
EP  - 666
VL  - 334
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02321-X
LA  - en
ID  - CRMATH_2002__334_8_661_0
ER  - 
%0 Journal Article
%A Petar Popivanov
%A Nickolai Kutev
%T Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations
%J Comptes Rendus. Mathématique
%D 2002
%P 661-666
%V 334
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02321-X
%G en
%F CRMATH_2002__334_8_661_0
Petar Popivanov; Nickolai Kutev. Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 661-666. doi : 10.1016/S1631-073X(02)02321-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02321-X/

[1] M. Crandall; P.-L. Lions Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Volume 277 (1983), pp. 1-42

[2] M. Crandall; H. Ishii; P.-L. Lions User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67

[3] Yu. Egorov; V. Kondratiev On the oblique derivative problem, Math. Sb., Volume 78 (1969), pp. 148-176

[4] P. Guan; E. Sawyer Regularity estimates for the oblique derivative problem, Ann. Math., Volume 137 (1993), pp. 1-70

[5] L. Hörmander On the existence and regularity of solutions of linear pseudodifferential equations, Enseign. Math., Volume 17 (1971), pp. 99-163

[6] L. Hörmander, The Analysis of Linear Differential Operators, IV, Springer-Verlag, Berlin, 1985

[7] H. Ishii Perron's method for Hamilton–Jacobi equations, Duke Math. J., Volume 55 (1987), pp. 369-384

[8] H. Ishii On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE's, Comm. Pure Appl. Math., Volume 42 (1989), pp. 14-45

[9] H. Ishii; P.-L. Lions Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations, Volume 83 (1990), pp. 26-78

[10] P.-L. Lions Neumann type boundary conditions for Hamilton–Jacobi equations, Duke Math. J., Volume 52 (1985), pp. 793-820

[11] B. Paneah The Oblique Derivative Problem, Ser. Math. Topics, 17, Wiley–VCH, Berlin, 2000

[12] P. Popivanov; N. Kutev The tangential oblique derivative problem for nonlinear elliptic equations, Comm. Partial Differential Equations, Volume 16 (1989), pp. 413-428

[13] P. Popivanov; D. Palagachev The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations, Academie-Verlag–VCH, 1997

[14] B. Winzell A boundary value problem with an oblique derivative, Comm. Partial Differential Equations, Volume 6 (1981), pp. 305-328

Cited by Sources:

Comments - Policy