Comptes Rendus
Extreme value attractors for star unimodal copulas
[Attracteurs de valeurs extrêmes pour les copules 2-unimodales]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 689-692.

Nous déterminons les attracteurs des valeurs maximales pour les copules 2-unimodales (par rapport à (a,b)). Si (a,b)≠(1,1) ces attracteurs forment une famille de copules à deux paramètres généralisant celle de Cuadras–Augé alors que si (a,b)=(1,1) elles couvrent toutes les copules de valeurs maximales. Nous examinons aussi la relation entre l'unimodalité et les copules Archimax.

We determine maximum attractors for copulas star (or 2-) unimodal (about a point (a,b)R2). If (a,b)≠(1,1) these attractors form a two-parameter family of copulas extending that of Cuadras–Augé, whereas if (a,b)=(1,1) they cover all maximum value copulas. We also examine the relationship between unimodality and Archimax copulas.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02322-1

Ioan Cuculescu 1 ; Radu Theodorescu 2

1 Facultatea de matematică, Universitatea Bucureşti, str. Academiei 14, RO-70109 Bucureşti, Romania
2 Département de mathématiques et de statistique, Université Laval, Québec, QC, Canada G1K 7P4
@article{CRMATH_2002__334_8_689_0,
     author = {Ioan Cuculescu and Radu Theodorescu},
     title = {Extreme value attractors for star unimodal copulas},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {689--692},
     publisher = {Elsevier},
     volume = {334},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02322-1},
     language = {en},
}
TY  - JOUR
AU  - Ioan Cuculescu
AU  - Radu Theodorescu
TI  - Extreme value attractors for star unimodal copulas
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 689
EP  - 692
VL  - 334
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02322-1
LA  - en
ID  - CRMATH_2002__334_8_689_0
ER  - 
%0 Journal Article
%A Ioan Cuculescu
%A Radu Theodorescu
%T Extreme value attractors for star unimodal copulas
%J Comptes Rendus. Mathématique
%D 2002
%P 689-692
%V 334
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02322-1
%G en
%F CRMATH_2002__334_8_689_0
Ioan Cuculescu; Radu Theodorescu. Extreme value attractors for star unimodal copulas. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 689-692. doi : 10.1016/S1631-073X(02)02322-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02322-1/

[1] E. Bertin; I. Cuculescu; R. Theodorescu Unimodality of Probability Measures, Kluwer Academic, Dordrecht, 1997

[2] P. Capéraà; A.-L. Fougères; C. Genest Bivariate distributions with given extreme value attractor, J. Multivariate Anal., Volume 72 (2000), pp. 30-49

[3] I. Cuculescu, R. Theodorescu, Are copulas unimodal?, J. Multivariate Anal. (2002) (accepted with revision)

[4] I. Cuculescu, R. Theodorescu, Unimodal copulas: maximum domain of attraction, Preprint nr. 01-02, University Laval, Department Math. Statist., 2001

[5] S.W. Dharmadhikari; K. Joag-dev Unimodality, Convexity, and Applications, Academic Press, New York, 1988

[6] J. Galambos The Asymptotic Theory of Extreme Order Statistics, Krieger, Malabar, 1987

[7] R.B. Nelsen An Introduction to Copulas, Springer, New York, 1999

[8] J. Pickands Multivariate extreme value distributions, Proc. 43rd Session Internat. Statist. Inst., Buenos Aires, 1981, pp. 859-878

[9] A. Sklar Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, Volume 8 (1959), pp. 229-231

[10] J.A. Tawn Bivariate extreme value theory: Models and estimation, Biometrika, Volume 75 (1988), pp. 397-415

  • Hong Qiu; Genhua Hu; Yuhong Yang; Jeffrey Zhang; Ting Zhang Modeling the Risk of Extreme Value Dependence in Chinese Regional Carbon Emission Markets, Sustainability, Volume 12 (2020) no. 19, p. 7911 | DOI:10.3390/su12197911
  • Endre Pap; Aniko Szakal, 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI) (2014), p. 369 | DOI:10.1109/cinti.2014.7028703
  • Michel Grabisch; Jean-Luc Marichal; Radko Mesiar; Endre Pap Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes, Information Sciences, Volume 181 (2011) no. 1, p. 23 | DOI:10.1016/j.ins.2010.08.040
  • Carles M. Cuadras Constructing copula functions with weighted geometric means, Journal of Statistical Planning and Inference, Volume 139 (2009) no. 11, p. 3766 | DOI:10.1016/j.jspi.2009.05.016
  • Endre Pap; Marta Takács Two-Dimensional Copulas as Important Binary Aggregation Operators, Journal of Advanced Computational Intelligence and Intelligent Informatics, Volume 10 (2006) no. 4, p. 522 | DOI:10.20965/jaciii.2006.p0522
  • Erich Peter Klement; Radko Mesiar; Endre Pap Transformations of Copulas and Quasi-Copulas, Soft Methodology and Random Information Systems (2004), p. 181 | DOI:10.1007/978-3-540-44465-7_21
  • Ioan Cuculescu; Radu Theodorescu Are copulas unimodal?, Journal of Multivariate Analysis, Volume 86 (2003) no. 1, p. 48 | DOI:10.1016/s0047-259x(02)00030-1

Cité par 7 documents. Sources : Crossref

Commentaires - Politique