[Attracteurs de valeurs extrêmes pour les copules 2-unimodales]
Nous déterminons les attracteurs des valeurs maximales pour les copules 2-unimodales (par rapport à (a,b)). Si (a,b)≠(1,1) ces attracteurs forment une famille de copules à deux paramètres généralisant celle de Cuadras–Augé alors que si (a,b)=(1,1) elles couvrent toutes les copules de valeurs maximales. Nous examinons aussi la relation entre l'unimodalité et les copules Archimax.
We determine maximum attractors for copulas star (or 2-) unimodal (about a point
Révisé le :
Publié le :
Ioan Cuculescu 1 ; Radu Theodorescu 2
@article{CRMATH_2002__334_8_689_0, author = {Ioan Cuculescu and Radu Theodorescu}, title = {Extreme value attractors for star unimodal copulas}, journal = {Comptes Rendus. Math\'ematique}, pages = {689--692}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02322-1}, language = {en}, }
Ioan Cuculescu; Radu Theodorescu. Extreme value attractors for star unimodal copulas. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 689-692. doi : 10.1016/S1631-073X(02)02322-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02322-1/
[1] Unimodality of Probability Measures, Kluwer Academic, Dordrecht, 1997
[2] Bivariate distributions with given extreme value attractor, J. Multivariate Anal., Volume 72 (2000), pp. 30-49
[3] I. Cuculescu, R. Theodorescu, Are copulas unimodal?, J. Multivariate Anal. (2002) (accepted with revision)
[4] I. Cuculescu, R. Theodorescu, Unimodal copulas: maximum domain of attraction, Preprint nr. 01-02, University Laval, Department Math. Statist., 2001
[5] Unimodality, Convexity, and Applications, Academic Press, New York, 1988
[6] The Asymptotic Theory of Extreme Order Statistics, Krieger, Malabar, 1987
[7] An Introduction to Copulas, Springer, New York, 1999
[8] Multivariate extreme value distributions, Proc. 43rd Session Internat. Statist. Inst., Buenos Aires, 1981, pp. 859-878
[9] Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, Volume 8 (1959), pp. 229-231
[10] Bivariate extreme value theory: Models and estimation, Biometrika, Volume 75 (1988), pp. 397-415
- Modeling the Risk of Extreme Value Dependence in Chinese Regional Carbon Emission Markets, Sustainability, Volume 12 (2020) no. 19, p. 7911 | DOI:10.3390/su12197911
- , 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI) (2014), p. 369 | DOI:10.1109/cinti.2014.7028703
- Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes, Information Sciences, Volume 181 (2011) no. 1, p. 23 | DOI:10.1016/j.ins.2010.08.040
- Constructing copula functions with weighted geometric means, Journal of Statistical Planning and Inference, Volume 139 (2009) no. 11, p. 3766 | DOI:10.1016/j.jspi.2009.05.016
- Two-Dimensional Copulas as Important Binary Aggregation Operators, Journal of Advanced Computational Intelligence and Intelligent Informatics, Volume 10 (2006) no. 4, p. 522 | DOI:10.20965/jaciii.2006.p0522
- Transformations of Copulas and Quasi-Copulas, Soft Methodology and Random Information Systems (2004), p. 181 | DOI:10.1007/978-3-540-44465-7_21
- Are copulas unimodal?, Journal of Multivariate Analysis, Volume 86 (2003) no. 1, p. 48 | DOI:10.1016/s0047-259x(02)00030-1
Cité par 7 documents. Sources : Crossref
Commentaires - Politique