[Fractions continues et des solutions de l'équation de Feigenbaum–Cvitanović]
In this paper, we develop a new approach to the construction of solutions of the Feigenbaum–Cvitanović equation whose existence was shown by H. Epstein. Our main tool is the analytic theory of continued fractions.
Dans ce travail, nous énonçons une nouvelle méthode de construction des solutions de l'équation de Feigenbaum–Cvitanović dont l'existence a été montrée par H. Epstein. On utilise la théorie analytique des fractions continues.
Accepté le :
Publié le :
Alexei V. Tsygvintsev 1 ; Ben D. Mestel 2 ; Andrew H. Osbaldestin 1
@article{CRMATH_2002__334_8_683_0, author = {Alexei V. Tsygvintsev and Ben D. Mestel and Andrew H. Osbaldestin}, title = {Continued fractions and solutions of the {Feigenbaum{\textendash}Cvitanovi\'c} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02330-0}, language = {en}, }
TY - JOUR AU - Alexei V. Tsygvintsev AU - Ben D. Mestel AU - Andrew H. Osbaldestin TI - Continued fractions and solutions of the Feigenbaum–Cvitanović equation JO - Comptes Rendus. Mathématique PY - 2002 SP - 683 EP - 688 VL - 334 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(02)02330-0 LA - en ID - CRMATH_2002__334_8_683_0 ER -
%0 Journal Article %A Alexei V. Tsygvintsev %A Ben D. Mestel %A Andrew H. Osbaldestin %T Continued fractions and solutions of the Feigenbaum–Cvitanović equation %J Comptes Rendus. Mathématique %D 2002 %P 683-688 %V 334 %N 8 %I Elsevier %R 10.1016/S1631-073X(02)02330-0 %G en %F CRMATH_2002__334_8_683_0
Alexei V. Tsygvintsev; Ben D. Mestel; Andrew H. Osbaldestin. Continued fractions and solutions of the Feigenbaum–Cvitanović equation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 683-688. doi : 10.1016/S1631-073X(02)02330-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02330-0/
[1] Monotone Matrix Functions and Analytic Continuation, Grundlehren Math. Wiss., 207, Springer-Verlag, New York, 1974
[2] New proofs of the existence of the Feigenbaum functions, Comm. Math. Phys., Volume 106 (1986) no. 3, pp. 395-426
[3] Fixed points of composition operators, Procceedings of a NATO Advanced Study Institute on Nonlilenar Evolution, Italy, 1987, pp. 71-100
[4] Analyticity properties of the Feigenbaum function, Comm. Math. Phys., Volume 81 (1981), pp. 437-453
[5] Analytic Theory of Continued Fractions, Van Nostrand, New York, NY, 1948
- Note on chain sequences of Laguerre and Romanovski-Laguerre type polynomials, Thai Journal of Mathematics, Volume 20 (2022) no. 3, pp. 1303-1314 | Zbl:1498.42042
-
-solutions for the second type of generalized Feigenbaum's functional equations, Acta Mathematica Sinica. English Series, Volume 30 (2014) no. 10, pp. 1785-1794 | DOI:10.1007/s10114-014-2289-2 | Zbl:1311.39027 - Continued
-fractions and geometry of bounded analytic maps, Journal of Dynamical and Control Systems, Volume 20 (2014) no. 2, pp. 181-196 | DOI:10.1007/s10883-013-9200-9 | Zbl:1326.37014 - The C1 Solution of Perturbation Feigenbaum Functional Equation on High-Dimensional Space, Pure Mathematics, Volume 04 (2014) no. 06, p. 233 | DOI:10.12677/pm.2014.46034
- Bounded analytic maps, wall fractions and ABC-flow, Journal of Approximation Theory, Volume 174 (2013), pp. 206-219 | DOI:10.1016/j.jat.2013.07.006 | Zbl:1308.35179
- THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION, Journal of Applied Analysis Computation, Volume 1 (2011) no. 4, p. 517 | DOI:10.11948/2011035
- Construction of convex solutions for the second type of Feigenbaum's functional equations, Science in China. Series A, Volume 52 (2009) no. 8, pp. 1617-1638 | DOI:10.1007/s11425-009-0004-z | Zbl:1185.39016
- Bounds on the unstable eigenvalue for the asymmetric renormalization operator for period doubling, Communications in Mathematical Physics, Volume 250 (2004) no. 2, pp. 241-257 | DOI:10.1007/s00220-004-1143-2 | Zbl:1145.37316
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique