Comptes Rendus
Continued fractions and solutions of the Feigenbaum–Cvitanović equation
[Fractions continues et des solutions de l'équation de Feigenbaum–Cvitanović]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 683-688.

In this paper, we develop a new approach to the construction of solutions of the Feigenbaum–Cvitanović equation whose existence was shown by H. Epstein. Our main tool is the analytic theory of continued fractions.

Dans ce travail, nous énonçons une nouvelle méthode de construction des solutions de l'équation de Feigenbaum–Cvitanović dont l'existence a été montrée par H. Epstein. On utilise la théorie analytique des fractions continues.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02330-0

Alexei V. Tsygvintsev 1 ; Ben D. Mestel 2 ; Andrew H. Osbaldestin 1

1 Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
2 School of Mathematical Sciences, University of Exeter, Exeter, EX4 4QE, UK
@article{CRMATH_2002__334_8_683_0,
     author = {Alexei V. Tsygvintsev and Ben D. Mestel and Andrew H. Osbaldestin},
     title = {Continued fractions and solutions of the {Feigenbaum{\textendash}Cvitanovi\'c} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {683--688},
     publisher = {Elsevier},
     volume = {334},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02330-0},
     language = {en},
}
TY  - JOUR
AU  - Alexei V. Tsygvintsev
AU  - Ben D. Mestel
AU  - Andrew H. Osbaldestin
TI  - Continued fractions and solutions of the Feigenbaum–Cvitanović equation
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 683
EP  - 688
VL  - 334
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02330-0
LA  - en
ID  - CRMATH_2002__334_8_683_0
ER  - 
%0 Journal Article
%A Alexei V. Tsygvintsev
%A Ben D. Mestel
%A Andrew H. Osbaldestin
%T Continued fractions and solutions of the Feigenbaum–Cvitanović equation
%J Comptes Rendus. Mathématique
%D 2002
%P 683-688
%V 334
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02330-0
%G en
%F CRMATH_2002__334_8_683_0
Alexei V. Tsygvintsev; Ben D. Mestel; Andrew H. Osbaldestin. Continued fractions and solutions of the Feigenbaum–Cvitanović equation. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 683-688. doi : 10.1016/S1631-073X(02)02330-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02330-0/

[1] W.F. Donoghue Monotone Matrix Functions and Analytic Continuation, Grundlehren Math. Wiss., 207, Springer-Verlag, New York, 1974

[2] H. Epstein New proofs of the existence of the Feigenbaum functions, Comm. Math. Phys., Volume 106 (1986) no. 3, pp. 395-426

[3] H. Epstein Fixed points of composition operators, Procceedings of a NATO Advanced Study Institute on Nonlilenar Evolution, Italy, 1987, pp. 71-100

[4] H. Epstein; J. Lascoux Analyticity properties of the Feigenbaum function, Comm. Math. Phys., Volume 81 (1981), pp. 437-453

[5] H.S. Wall Analytic Theory of Continued Fractions, Van Nostrand, New York, NY, 1948

  • Pradeep Malik; Nadeem Rao Note on chain sequences of Laguerre and Romanovski-Laguerre type polynomials, Thai Journal of Mathematics, Volume 20 (2022) no. 3, pp. 1303-1314 | Zbl:1498.42042
  • Min Zhang C-solutions for the second type of generalized Feigenbaum's functional equations, Acta Mathematica Sinica. English Series, Volume 30 (2014) no. 10, pp. 1785-1794 | DOI:10.1007/s10114-014-2289-2 | Zbl:1311.39027
  • Alexei Tsygvintsev Continued g-fractions and geometry of bounded analytic maps, Journal of Dynamical and Control Systems, Volume 20 (2014) no. 2, pp. 181-196 | DOI:10.1007/s10883-013-9200-9 | Zbl:1326.37014
  • 华 李 The C1 Solution of Perturbation Feigenbaum Functional Equation on High-Dimensional Space, Pure Mathematics, Volume 04 (2014) no. 06, p. 233 | DOI:10.12677/pm.2014.46034
  • Alexei Tsygvintsev Bounded analytic maps, wall fractions and ABC-flow, Journal of Approximation Theory, Volume 174 (2013), pp. 206-219 | DOI:10.1016/j.jat.2013.07.006 | Zbl:1308.35179
  • Ying Liang; XiaoPei Li; YuZhen Mi THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION, Journal of Applied Analysis Computation, Volume 1 (2011) no. 4, p. 517 | DOI:10.11948/2011035
  • JianGuo Si; Min Zhang Construction of convex solutions for the second type of Feigenbaum's functional equations, Science in China. Series A, Volume 52 (2009) no. 8, pp. 1617-1638 | DOI:10.1007/s11425-009-0004-z | Zbl:1185.39016
  • B. D. Mestel; A. H. Osbaldestin; A. V. Tsygvintsev Bounds on the unstable eigenvalue for the asymmetric renormalization operator for period doubling, Communications in Mathematical Physics, Volume 250 (2004) no. 2, pp. 241-257 | DOI:10.1007/s00220-004-1143-2 | Zbl:1145.37316

Cité par 8 documents. Sources : Crossref, zbMATH

Commentaires - Politique