On étudie l'équation des ondes semi-linéaire utt−Δu=p−k|u|m dans
We study the semilinear wave equation utt−Δu=p−k|u|m in
Révisé le :
Publié le :
Mohammed Aassila 1
@article{CRMATH_2002__334_11_961_0, author = {Mohammed Aassila}, title = {Non existence de solutions globales de certaines \'equations d'ondes non lin\'eaires}, journal = {Comptes Rendus. Math\'ematique}, pages = {961--966}, publisher = {Elsevier}, volume = {334}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02355-5}, language = {fr}, }
Mohammed Aassila. Non existence de solutions globales de certaines équations d'ondes non linéaires. Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 961-966. doi : 10.1016/S1631-073X(02)02355-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02355-5/
[1] M. Aassila, Blow-up of solutions to some nonlinear wave equations, Preprint
[2] Optimal bounds on positive blow-up solutions for a semilinear wave equation, Intern. Math. Res. Notices, Volume 21 (2001), pp. 1143-1167
[3] Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., Volume 39 (1986), pp. 267-282
[4] R. Penrose, Conformal treatment of infinity, in relativity, groups and topology, in: B. De Witt, C. De Witt (Eds.), Gordon and Breach, 1963
[5] Weak solutions and the development of singularities in the SU(2) σ-model, Comm. Pure Appl. Math., Volume 41 (1988), pp. 459-469
[6] Nonlinear Wave Equations, American Mathematical Society, Providence, 1989
Cité par Sources :
Commentaires - Politique