Using the recently introduced concept of inertial manifold with delay we present a new method of construction of approximate inertial manifolds (AIMs). In the case when the global attractor can be embedded into a finite-dimensional C2-manifold we construct AIMs of the same dimension which contain the attractor.
Utilisant le récent concept de variété inertielle avec retard, nous présentons une nouvelle méthode de construction de variétés inertielles approchées. Dans le cas où l'attracteur global peut être plongé dans une variété C2 de dimension finie, nous construisons une variété inertielle approchée de la même dimension contenant l'attracteur.
Revised:
Published online:
Alexander Rezounenko 1
@article{CRMATH_2002__334_11_1015_0, author = {Alexander Rezounenko}, title = {A sufficient condition for the existence of approximate inertial manifolds containing the global attractor}, journal = {Comptes Rendus. Math\'ematique}, pages = {1015--1020}, publisher = {Elsevier}, volume = {334}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02385-3}, language = {en}, }
TY - JOUR AU - Alexander Rezounenko TI - A sufficient condition for the existence of approximate inertial manifolds containing the global attractor JO - Comptes Rendus. Mathématique PY - 2002 SP - 1015 EP - 1020 VL - 334 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(02)02385-3 LA - en ID - CRMATH_2002__334_11_1015_0 ER -
Alexander Rezounenko. A sufficient condition for the existence of approximate inertial manifolds containing the global attractor. Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 1015-1020. doi : 10.1016/S1631-073X(02)02385-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02385-3/
[1] Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992
[2] Invariant manifolds for flows in Banach spaces, J. Differential Equations, Volume 74 (1988), pp. 285-317
[3] Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999 (in Russian)
[4] Global attractors for a class of retarded quasilinear partial differential equations, C. R. Acad. Sci. Paris, Série I., Volume 321 (1995), pp. 607-612
[5] Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise, J. Dynamic Differential Equations, Volume 7 (1995) no. 4, pp. 549-566
[6] Global attractors for nonlinear problems of mathematical physics, Russian Math. Surveys, Volume 48 (1993) no. 3, pp. 133-161
[7] Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, Berlin, 1989
[8] Convergent families of approximate inertial manifolds, J. Math. Pure Appl., Volume 73 (1994), pp. 489-522
[9] Some new generalizations of inertial manifolds, Discr. Contin. Dynamical Systems, Volume 2 (1996), pp. 543-558
[10] Exponential Attractors for Dissipative Evolution Equations, Collection Recherches au Mathematiques Appliquees, Masson, Paris, 1994
[11] Sur l'interaction des petits et grands tourbillons dans les ecoulements turbulents, C. R. Acad. Sci. Paris, Série I, Volume 305 (1987), pp. 497-500
[12] Finite fractal dimension and Hölder–Lipschtz parametrization, Indiana Univ. Math. J., Volume 45 (1996) no. 3, pp. 603-616
[13] Variétés Inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris, Série I, Volume 301 (1985), pp. 139-142
[14] Exponential tracking and approximation of inertial manifolds for dissipative equations, J. Dynamics Differential Equations, Volume 1 (1989), pp. 199-224
[15] Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988
[16] Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981
[17] A.V. Rezounenko, Steady approximate inertial manifolds of exponential order for semilinear parabolic equations, Differential and Integral Equations (accepted)
[18] Inertial manifolds with delay for retarded semilinear parabolic equations, Discr. Contin. Dynamical Systems, Volume 6 (2000), pp. 829-840
[19] Inertial manifolds with and without delay, Discr. Contin. Dynamical Systems, Volume 5 (1999), pp. 813-824
[20] Finite-dimensional limiting dynamics of dissipative parabolic equations, Sb. Math., Volume 191 (2000) no. 3, pp. 415-429 Translation from Mat. Sb. 191 (3) (2000) 99–112
[21] Singular Integrals and Differentiality Properties of Functions, Princeton University Press, Princeton, 1970
[22] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988
Cited by Sources:
☆ For my parents Vyacheslav and Larisa.
Comments - Policy